Способ утилизации активного материала оксидно-никелевого электрода никель-кадмиевого аккумулятора
Иллюстрации
Показать всеИзобретение относится к утилизации активного материала оксидно-никелевого электрода никель-кадмиевого аккумулятора. Для этого проводят растворение активной массы в 1M растворе хлорида аммония. Затем осуществляют электролиз раствора с титановым виброкатодом и графитовым анодом в режиме импульсов тока прямоугольной формы амплитуды 0,3-0,5 A/см2 при длительности импульса 0,05-0,15 с и длительности паузы 0,05-0,1 с. Перед электролизом раствор выдерживают в проточном смесителе 10-12 часов. Способ позволяет получать никелевый порошок размерами частиц в диапазоне 4-6 мкм. Техническим результатом является повышение выхода продукта и производительности процесса, получение ультрамикронных электролитических порошков никеля, повышение экономической эффективности и экологической безопасности процесса. 2 ил., 1 пр.
Реферат
Изобретение относится к цветной и порошковой металлургии, а именно к способам утилизации активных материалов щелочных аккумуляторов.
Известен способ извлечения металлов [RU заявка 2006104513, опубл. 10.09.2007] из твердых металлосодержащих сред или подземным выщелачиванием руд обработкой реагентом.
Этот способ отличается сложностью, а также отсутствием связи применяемых технологических приемов с функциональными характеристиками продукта утилизации.
Наиболее близким к заявляемому является способ получения медных порошков из медьсодержащих аммиакатных отходов, включающий их растворение и последующий электролиз раствора. Электролиз ведут на виброэлектродах при плотности тока 0,2-0,5 A/см2, при этом анод выполнен из анодированного свинца, а соотношение компонентов электролита: 40-60 г/л хлорида натрия на 20-30 г/л медьсодержащих аммиакатных отходов (RU №2469111, МПК C22B 7/00, 2011).
Однако этот способ имеет ограниченное количество факторов управления, направленных на повышение выхода и производительности получаемого порошка. Проблема низкого выхода продукта связана с протекающим параллельно основному процессу выделению водорода, доля которого сопоставима с основным процессом ввиду смещения его потенциала в отрицательную сторону за счет комплексообразования с молекулами аммиака. В связи с тем что при этом электролиз идет при постоянном токе, то существует только возможность снижения плотности тока, что снижает производительность и влияет на дисперсность получаемого порошка. Кроме того, способ не предусматривает утилизацию остаточных продуктов процесса, что ограничивает его экономическую эффективность и составляет экологическую опасность.
Перед авторами стояла задача повышения выхода и производительности получения ультрамикронных электролитических порошков никеля из активного материала оксидно-никелевого электрода (ОНЭ), повышение экономической эффективности и снижение экологической опасности процесса.
Решение этой задачи достигается тем, что в способе утилизации активного материала ОНЭ, заключающемся в растворении активной массы и последующем электролизе, растворение активной массы проводят в 1М растворе хлорида аммония, а электролиз полученного раствора осуществляют с титановым виброкатодом и графитовым анодом в режиме импульсов тока прямоугольной формы амплитуды 0,3-0,5 A/см2 при длительности импульса 0,05-0,15 с и длительности паузы 0,05-0,1 с. Далее идет отделение полученного порошка путем фильтрации, промывка и сушка. Раствор после электролиза используют для растворения новых порций активного материала.
Для пояснения предлагаемого способа на Фиг.1 представлена технологическая схема утилизации активного материала оксидно-никелевого электрода никель-кадмиевого аккумулятора, состоящая из смесителя 1 насосов 2, электролизера 3, фильтра 4, сушильной печи 5.
Сущность предлагаемого способа состоит в том, что в условиях вибрации катода увеличивается предельный ток диффузии восстановления аммиакатов никеля, что увеличивает долю количества электричества этого процесса по отношению к восстановлению водорода. Режим импульсного тока позволяет ограничить рост потенциала и тем самым уменьшить парциальный ток восстановления водорода. Совместное действие механической вибрации и импульсного режима электролиза дает возможность уменьшить дисперсность получаемого порошка за счет акустического диспергирования и прерывания роста зародышей образующихся частиц. Подкисление электролита за счет выделения кислорода на нерастворимом графитовом аноде позволяет использовать отработанный электролит для обработки новых порций активного материала, чем создается замкнутый технологический цикл и повышается экологическая безопасность способа. Увеличение экономической эффективности связано с ростом производительности и снижением удельного расхода воды и реактивов на получение продукта.
Пример осуществления способа.
Активную массу ОНЭ помещают в проточный смеситель 1, добавляют 1M раствор хлорида аммония из расчета 200 г активной массы на 1 л раствора, выдерживают в проточном смесителе без прокачки раствора в течение 10-12 часов для накопления в растворе первоначального количества аммиаката никеля, включают прокачивание раствора насосами 2 из смесителя в электролизер 3 и из электролизера 3 в смеситель 2. Далее включают режим вибрации титанового катода, включают импульсный ток с импульсами прямоугольной формы амплитуды 0,3-0,5 A/см2 при длительности импульса 0,05-0,15 с и длительности паузы 0,05-0,1 с (на схеме не показано). В процессе электролиза по мере накопления проводят отбор порошка, отделяют его путем фильтрации с возвращением электролита в проточный смеситель 1, промывают на фильтре 4 и сушат в сушильной печи 5 при температуре 110°C в течение 2 часов.
Полученный порошок характеризуется функцией распределения размеров частиц с максимумом в диапазоне 4-6 мкм. Форма частиц порошка является пластинчатой, с размерами отдельных составляющих 30-60 нм. Производительность процесса получения никелевого порошка составляет 0,89 г/см2ч, выход по веществу - 91%.
Для подтверждения получения по данному способу ультрамикронных электролитических порошков никеля нами представлена гистограмма дифференциального и интегрального распределения частиц никелевого порошка по размерам (Фиг.2).
Предлагаемый способ апробирован на кафедре функциональных наносистем и высокотемпературных материалов Московского института сталей и сплавов.
На основании вышеизложенного и с учетом проведенного патентно-информационного поиска считаем, что разработанный «Способ утилизации активного материала оксидно-никелевого электрода никель-кадмиевого аккумулятора» может быть защищен патентом Российской Федерации.
Способ утилизации активного материала оксидно-никелевого электрода никель-кадмиевого аккумулятора, включающий растворение активного материала, отличающийся тем, что растворение проводят в 1M растворе хлорида аммония в проточном смесителе, а после растворения осуществляют электролиз полученного раствора с титановым виброкатодом и графитовым анодом в режиме импульсов тока прямоугольной формы амплитуды 0,3-0,5 A/см2 при длительности импульса 0,05-0,15 с и длительности паузы 0,05-0,1 с, при этом до начала электролиза раствор в проточном смесителе выдерживают 10-12 часов, а в процессе электролиза периодически проводят отбор порошка никеля, отделяют его фильтрацией с возвращением отработанного раствора в смеситель для растворения новых порций активного материала, промывают и сушат.