Устройство и способ определения количественного показателя состояния тела животного
Иллюстрации
Показать всеИзобретение относится к разведению животных и, в частности, к устройствам и способам для определения оценок состояния тела (BCS) животных. Техническими результатами являются повышение точности и достоверности, а также исключение ошибок при определении количественного показателя состояния тела животного. Дополнительными техническими результатами являются обеспечение автоматического, эффективного, быстрого, безопасного, легкого для использования и имеющего недорогую стоимость определения количественного показателя состояния тела животного. Устройство для определения количественного показателя состояния тела животного (50) содержит систему (51) трехмерной камеры и устройство (52) обработки изображений. Система (51) трехмерной камеры направлена на животное и предусмотрена для записи трехмерного изображения животного. Устройство (52) обработки изображений присоединено к системе (51) трехмерной камеры и предусмотрено для формирования трехмерного представления поверхности части животного из трехмерного изображения, для статистического анализа поверхности и для определения количественного показателя состояния тела животного на основании статистически проанализированной поверхности. 18 з.п. ф-лы, 20 ил., 1 табл.
Реферат
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение, в целом, относится к разведению животных и, в частности, к устройствам и способам для определения оценок состояния тела (BCS) животных.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Количественная оценка состояния тела является способом оценки упитанности или худобы у коров согласно шкале, например, пятибалльной шкале, где количественный показатель единица обозначает очень худую корову наряду с тем, что пятерка обозначает чрезмерно тучную корову. Исследования и полевые эксперименты показали, что состояние тела оказывает влияние на продуктивность, размножение, здоровье и продолжительность жизни. Таким образом, худоба или упитанность могут указывать на лежащие в основе пищевую недостаточность, проблемы со здоровьем или ненадлежащее управление стадом. В качестве средства для выявления проблем в пределах стада количественная оценка состояния тела является хорошим вспомогательным средством в улучшении здоровья и продуктивности молочного стада, когда выполняется на регулярной основе, таким образом, действуя в качестве эффективного инструмента для хорошего управлении стадом. Количественная оценка состояния тела является лучше для контроля энергетических резервов организма, чем вес тела. Вес тела может изменяться вследствие изменений тучности тела, размера скелета, размера внутренностей, размера вымени, состояния беременности и приема пищи и воды.
Состояние тела нормальной здоровой коровы колеблется в течение периодов лактации, как показано на фиг.1. При отеле рекомендованный количественный показатель состояния тела может быть от 3,25 до 3,75 или слегка ниже. При ранней лактации корова увеличивает производительность молока до тех пор, пока не достигнута пиковая производительность молока. В течение этого периода корова использует свои резервы организма для получения необходимой энергии, в то время как прием пищи будет отставать от потребностей в первые от шести до девяти недель лактации. Задача состоит в том, чтобы иметь потерю в состоянии тела от 0,5 до 0,75 при ранней лактации. При средней лактации количественный показатель состояния тела должен медленно увеличиваться для достижения такого же рекомендованного значения от 3,25 до 3,75, как при отеле в конце поздней лактации. Важно не пытаться корректировать состояние тела коровы во время стельного сухостойного периода, так как это будет оказывать влияние на вес теленка больше, чем вес коровы.
Приведение в состояние выше нормы, или упитанность, обычно начинается в течение последних от трех до четырех месяцев лактации, когда производительность молока уменьшилась, но злаковый и общие уровни питательных веществ не были уменьшены соответствующим образом. Во время отела корова с количественным показателем состояния тела выше 4,0 часто имеет следствием проблемы сниженного приема пищи и повышенного процента родовых проблем, и другие затруднения при отеле. Тучная корова более восприимчива к метаболическим проблемам и инфекциям. Приведенные в состояние выше нужного коровы имеют тенденцию иметь проблемы с задержкой отделения плаценты, гастропарезом, ведущим к дефициту кальция, синдромом тучной коровы, жировой инфильтрацией печени и маститом. Они могли бы даже сваливаться под своим чрезмерным весом.
Приведение в состояние ниже нормы, или худоба, возникает, когда корова была больна в течение более длительного периода, или если недостаточно энергии было добавлено в питание во время средней и поздней лактации. Приведение в состояние ниже нормы при отеле с количественным показателем состояния тела, меньшим, чем 3,0, часто имеет следствием более низкий пиковый надой молока и меньшее количество молока для лактации в целом. Опасность для здоровья при ранней лактации возникает, когда корова использует большую часть своих резервов организма. Также коровы не должны терять более чем 1,0 количественного показателя тела во время ранней лактации, так как было показано, что чрезмерная потеря состояния тела при ранней лактации снижает репродуктивную эффективность. Приведение в состояние ниже нормы часто может снижать продуктивность и уровни жирности молока вследствие недостаточных энергетических и белковых резервов. Худые коровы часто не показывают половой охоты или не беременеют до тех пор, пока они не начинают восстанавливать - или, по меньшей мере, поддерживать вес тела. При кормлении этих животных внимание должно быть уделено сохранению продуктивности наряду с увеличением резервов организма.
Пятибалльная система количественной оценки была разработана для измерения относительной величины этой подкожной жирности тела. Большинство систем количественной оценки состояния тела у молочного скота используют пятибалльную систему количественной оценки с четвертьбалльными приращениями. Были разработаны правила для системы количественной оценки состояния тела, чтобы оценивать состояние тела молочной коровы в любой момент во время производственного цикла. Для точной количественной оценки необходимы как визуальные, так и тактильные оценки спинной и задней четвертей. Рассматриваемыми частями являются грудная и поясничная области позвоночного столба (хребта, поясничного отдела и крестца), остистые отростки (поясничная область), крестцовые бугры (маклоки (крайние передние выступы подвздошных костей)), тазобедренные бугры (седалищные кости) и предшествующий копчиковому позвонок (корень хвоста), которые показаны на фиг.3. Одиночный фактор может вводить в заблуждение; однако все факторы, рассматриваемые совместно, дают точный количественный показатель. Каждый количественный показатель состояния оценивался по критериям, упрощенно показанным на фиг.4.
Хотя преимущества регулярной количественной оценки состояния тела являются наглядными для большинства молочных производителей, специалистам по питанию и консультантам, относительно немногие молочные фермы приняли ее в качестве части своей стратегии управления молочным производством. Есть много причин для непринятия этой системы, по большей части, имеющих отношение к ее субъективности, затратам и требуемому времени. Она едва ли осуществима в компьютеризованной системе управления стадом.
Ученые по молочному хозяйству еще не разработали необходимого объективного исследования, чтобы быть способными консультировать фермеров надлежащим образом. Поэтому, есть необходимость разработать способы для определения количественного показателя состояния тела отдельных коров автоматическим образом, которые были бы более экономически эффективными, объективными и легкими для соединения с данными из системы управления стадом.
В публикации Pompe V.J deGraaf, R. Semplonious, and J., «Automatic body condition scoring of dairy cows: Extracting contour lines» («Автоматическая количественная оценка состояния тела молочных коров: выделение контурных линий»), Сборник рефератов, 5-я Европейская конференция по точному земледелию, 2-я Европейская конференция по точному животноводству, страницы 243-245, 2005 год, раскрыто использование черно-белой фотографии и линейного лазера для сбора последовательности изображений с задней части коровы. Трехмерный анализ изображений дает очертание левой седалищной кости, левого маклока и корня хвоста. Ни о каком статистическом анализе, сравнивающем анализ изображений посредством BCS, не сообщается.
В публикации T. Leroy, L.-M- Aerts, J.Eeman, E. Maltz, G. Stojanovski, and D. Berckmans, «Automatic determination of body condition score of dairy cows based on 2D images» («Автоматическое определение количественного показателя состояния тела молочных коров на основании двухмерных изображений»), Точное животноводство, 05: страницы 251- 255, 2005 год, раскрыто использование обычных двухмерных изображений с задней части коровы для получения изображения силуэта. Их исследование показывает, что можно оценивать количественный показатель тела автоматически с точностью результата такого же порядка величины, как погрешность человеческой оценки.
Большая работа по автоматизированной количественной оценке состояния тела для молочного скота проводилась Coffey и другими в Шотландском сельскохозяйственном институте. Светлые линии создавались на спине коровы посредством использования света красного лазера, засвеченного через призму. Камера располагалась под углом 45° к горизонтальной плоскости спины коровы, и лазерные линии использовались при ручных выделениях кривизны на корне хвоста и ягодицах коровы. Кривизна этих форм тогда моделировалась. Исследование установило большую корреляцию, с коэффициентом корреляции 0,55, между кривизной корня хвоста и наблюдаемой BCS, тогда как коэффициент корреляции кривизны правой ягодицы, который измерялся поперек седалищной кости, имел значение 0,52.
Проведено всестороннее исследование коллективом авторов J. M. Bewley, A.M. Peacock, O. Lewis, R. E. Boyce, D. J. Roberts, M. P. Coffey, S. J. Kenyon, and M. M. Schutz «Potential for Estimation of Body Condition Scores in Dairy Cattle from Digital Images» («Потенциальная возможность для оценки количественных показателей состояния тела у домашнего скота по цифровым изображениям»), Журнал по технике производства молочных продуктов, 91:3439-3453, 2008 год. С использованием цифровых изображений, снятых сверху, углы, созданные маклоками, выделялись из контурного изображения. 99,89% автоматически полученных количественных показателей состояния тела находились в пределах 0,5 баллов от реального количественного показателя, а 89,95% находились в пределах 0,25 баллов.
Исследования количественного показателя состояния тела средиземноморских буйволов с использованием анализа обычных двухмерных изображений P. Negretti, G. Bianconi, S. Bartocci, S. Terramoccia, and M.Verna в «Determination of live weight and body condition score in lactating Mediterranean buffalo by Visual Image Analysis» («Определение живого веса и количественной оценки состояния тела у дающего молоко средиземноморского буйвола посредством визуального анализа изображений»), Наука о крупном рогатом скоте, 113:1-7, 2008 год, подтвердили, что компьютеризованный анализ изображений является эффективной измерительной системой. Итальянская группа также пришла к важным выводам, показывающим, что автоматические измерения угла между спиной и маклоками и автоматические измерения площади поверхности позади маклоков значительно коррелировались с количественным показателем состояния тела.
В EP 1537531 раскрыты способ и система формирования изображений для использования при автоматическом контроле состояния тела животного. Предварительно определенная интересующая область тела животного подвергается формированию изображения, и данные, показывающие полученное одно или более изображений, обрабатываются для получения трехмерного представления интересующей области. Трехмерное представление анализируется для определения предварительно определенного измеряемого параметра, показывающего рельеф поверхности интересующей области, которая является показывающей состояние тела изображаемого животного. Технология согласно настоящему изобретению полезна для определения состояния энергетического баланса животного (например, молочной коровы) или тенденции изменения энергетического баланса, чтобы тем самым дать возможность надлежащей коррекции питания отдельного животного; а также для определения существования в согласованности и/или движении при естественной миграции животного.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Недостаток подходов, раскрытых выше, состоит в том, что выявленные формы в большой степени зависят от перемещения, фоновой окружающей обстановки и относительного положения коровы относительно системы обработки данных визуального контроля.
Кроме того, количественные показатели состояния тела могут не быть достоверными, правильными или точными вследствие ограниченных данных двухмерного изображения, используемых при анализе изображения.
Задача настоящего изобретения состоит в том, чтобы обеспечить устройство и способ для определения количественного показателя состояния тела животного, которые не имеют описанных выше недостатков и ограничений.
Дополнительная задача изобретения состоит в том, чтобы обеспечить такое устройство и способ, которые являются автоматическими, устойчивыми к ошибкам, эффективными, быстрыми, точными, правильными, достоверными, безопасными, легкими для использования и имеют недорогую стоимость.
Поставленные задачи, согласно настоящему изобретению, достигаются устройствами и способами, которые заявлены в прилагаемой патентной формуле изобретения.
Согласно одному из аспектов изобретения, предложено устройство для определения количественного показателя состояния тела животного, устройство содержит систему трехмерной камеры, направленную на животное и предусмотренную для мгновенной записи, по меньшей мере, одного трехмерного изображения животного; и устройство обработки изображений, присоединенное к системе трехмерной камеры и предусмотренное для формирования трехмерного представления поверхности части животного из трехмерного изображения, записанного системой трехмерной камеры; для статистического анализа поверхности у трехмерного представления поверхности, в частности, анализа неровности, неправильности или текстуры поверхности у трехмерного представления поверхности; и для определения количественного показателя состояния тела животного на основании статистически проанализированной поверхности трехмерного представления поверхности.
Трехмерное представление поверхности части животного преимущественно является представлением области спины животного, расположенной впереди корня хвоста и достаточно узкой, чтобы не включать в себя подвздошные или седалищные кости животного.
Предпочтительно, система трехмерной камеры является камерой с реле времени определения дальности или камерой активной выборочной дискретизации волнового фронта, которая выдает двухмерное изображение животного, при этом, для каждого пикселя двухмерного изображения, предусматривается расстояние между системой трехмерной камеры и соответствующей изображаемой точкой объекта.
Кроме того, предпочтительно, система трехмерной камеры расположена над и, по выбору, позади животного и направлена вниз и, по выбору, вперед, на спину животного, чтобы давать видеоинформацию с задней и спинной частей животного.
Согласно дополнительному аспекту изобретения, обеспечен способ определения количественного показателя состояния тела животного, используя описанное выше устройство.
Различные варианты осуществления изобретения изложены в зависимых пунктах формулы изобретения.
Статистический анализ может включать статистический анализ градиентов поверхности, нормалей к поверхности и/или значений дальности или глубины поверхности у трехмерного представления поверхности.
Дополнительно или в качестве альтернативы, статистический анализ может включать в себя статистический анализ спектральных мер неровности поверхности у трехмерного представления поверхности.
Кроме того, дополнительно или в качестве альтернативы, статистический анализ может включать в себя статистический анализ кривизны поверхности или поворотных изображений поверхности для трехмерного представления поверхности.
Преимущественно, статистический анализ включает в себя расчет статистических характеристик гистограммы параметра признака поверхности у трехмерного представления поверхности. Статистические характеристики могут содержать среднее значение, среднеквадратическое отклонение, монотонность, несимметричность, равномерность, энтропию, ширину гистограммы, ширину на значении полумаксимума и/или параметры кривой, подогнанной к гистограмме.
Преимущества настоящего изобретения по сравнению с обычно проводимой и вручную выполняемой количественной оценкой тела опытным скотником посредством визуального осмотра и прикосновения являются следующими.
Автоматически выполняемая количественная оценка состояния тела согласно изобретению не является субъективной; она не находится под влиянием окружающей обстановки, такой как освещение, впечатление, знание животных или персонально зависимых.
Кроме того, она является экономически эффективной и не отнимает много времени работа квалифицированного скотника. Изобретение может легко применяться в больших стадах с большим количеством животных на ежедневной основе. Тренд количественного показателя состояния тела, таким образом, может часто вычерчиваться и отслеживаться.
Кроме того, дополнительно, может быть увеличено разрешение BCS. Достоверность и точность могут быть повышены.
Некоторые из преимуществ равным образом действительны при сравнении изобретения с автоматическими и полуавтоматическими подходами, раскрытыми в разделе уровня техники изобретения.
В частности, статистический анализ мгновенно записанного трехмерного представления поверхности части животного может давать точные и достоверные количественные показатели состояния тела.
Согласно дополнительным аспектам изобретения, предложены устройство и способ для определения количественного показателя состояния тела животного. Устройство содержит систему трехмерной камеры и устройство обработки изображений, присоединенное к системе трехмерной камеры. По меньшей мере одно трехмерное изображение части животного записывается системой трехмерной камеры. Трехмерное представление поверхности формируется из трехмерного изображения; трехмерное представление поверхности нормализуется; и количественный показатель состояния тела животного определяется на основании поверхности у нормализованного трехмерного представления поверхности.
Нормализация предварена поиском опорных точек, например, спинного гребня и седалищных костей или маклоков, в трехмерном представлении поверхности части животного, которые могут служить в качестве контрольных точек для нормализации.
Предпочтительно, трехмерное представление поверхности части животного нормализуется посредством вращения, смещения и масштабирования на основании местоположения опорных точек, из условия, чтобы спинной гребень был по существу параллельным с первой осью декартовой системы координат, соединительная линия между верхушками седалищных костей или маклоками была по существу параллельна со второй перпендикулярной осью декартовой системы координат, а масштабирование трехмерного представления поверхности производилось в зависимости от расстояния между верхушками седалищных костей или маклоками.
Посредством такой нормализации количественные показатели состояния тела могут определяться независимо от угла записи системы трехмерной камеры. Изображение может записываться, в то время как животные гуляют или двигаются.
Кроме того, дополнительно, предложены компоновка и способ для определения количественного показателя состояния тела животного. Устройство содержит систему трехмерной камеры и устройство обработки изображений, присоединенное к системе трехмерной камеры. Записывается, по меньшей мере, одно трехмерное изображение части животного; трехмерное представление поверхности формируется из трехмерного изображения; анатомические признаки распознаются в трехмерном представлении поверхности; рассчитываются параметры признаков распознанных анатомических признаков; и количественный показатель состояния тела животного определяется на основании рассчитанных параметров анатомических признаков, распознанных в трехмерном представлении поверхности.
Дополнительные характеристики изобретения и его преимущества будут очевидны из последующего подробного описания предпочтительных вариантов осуществления настоящего изобретения, приведенных в дальнейшем, и прилагаемых фиг.1-16, которые даны только в качестве иллюстрации и, таким образом, не являются ограничивающими настоящее изобретение.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На чертежах:
Фиг.1 изображает схему нормального периодического изменения количественного показателя состояния тела в течение разных периодов лактации у молочных коров;
Фиг.2 изображает слева направо состояние коровы значительно ниже требуемого нормального состояния коровы и приведенную в состояние значительно выше нужного коровы;
Фиг.3 изображает зоны, рассматриваемые при количественной оценке состояния тела коровы;
Фиг.4 изображает упрощенную схему количественных показателей состояния тела;
Фиг.5 изображает схему устройства для определения количественного показателя состояния тела животного, согласно варианту осуществления настоящего изобретения;
Фиг.6a-b изображают плотные множества точек исходных нефильтрованных (фиг.6a) и фильтрованных (фиг.6b) данных изображения коровы, записанных устройством по фиг.5. Изображения показывают профиль крестца от маклоков до седалищных костей и выступающего корня хвоста дальше всего внизу на изображении;
Фиг.7 изображает сегментацию данных, выделяющую поверхность коровы;
Фиг.8a изображает глобальный минимум, найденный на изображении поверхности коровы, используемом для локализации; Фиг.8b изображает данные, смещенные и повернутые. Были локализованы спинной хребет и маклоки коровы;
Фиг.9 изображает сравнение двух изображений коровы, точно определяющих местоположение маклоков;
Фиг.10 изображает параметры геометрического поворотного изображения, как используемые в способе анализа, содержащемся в изобретении;
Фиг.11 изображает условные изменения состояния тела посредством манипулирования значениями z данных изображения;
Фиг.12 изображает трехмерное представление поверхности спины коровы;
Фиг.13-16 изображают различные анатомические признаки и параметры признаков, измеренные различными способами анализа, содержащимися в изобретении.
ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Фиг.5 изображает компоновку для определения количественного показателя состояния тела животного, такого как корова 50, содержащую систему 51 трехмерной камеры, направленную на корову 50 и предусмотренную для мгновенной записи, по меньшей мере, одного трехмерного изображения коровы 50, и устройство 52 обработки изображений, такое как микрокомпьютер, оснащенный подходящим программным обеспечением, присоединенный к системе 51 трехмерной камеры.
Устройство 52 обработки изображений предусмотрено для обработки трехмерного изображения, записанного системой 51 трехмерной камеры, для формирования трехмерного изображения или представления поверхности части коровы 50 из обработанного трехмерного изображения; для статистического анализа трехмерного изображения поверхности; и для определения количественного показателя состояния тела коровы на основании статистически проанализированного трехмерного изображения поверхности. Обработка и анализ изображения будут более подробно обсуждены ниже.
Система 51 трехмерной камеры предпочтительно является камерой времяпролетного определения дальности, такой как датчик Mesa Imaging AG® Swiss Ranger SR-3000. Она является полностью твердотельной камерой времяпролетного определения дальности, разработанной CSEM (Centre Suisse d'electronique et de microtechnique). Она присоединена к микрокомпьютеру 52 через USB 2.0 (универсальную последовательную шину) для непосредственного измерения карты глубин реального времени и предназначена для работы в условиях внутреннего освещения.
Времяпролетная (TOF) технология основана на измерениях расстояния до объекта на основании времени, которое занимает, чтобы инфракрасный свет с пиковой длиной волны в 850 нм отражался на объекте и достигал датчика при прохождении на известной скорости. Измеренное расстояние пропорционально взятому дважды времени, необходимому, чтобы волны проходили от камеры до объекта. Фактически измеряется фазовый сдвиг между исходящим сигналом и зарегистрированным отраженным сигналом.
Проиллюстрированная выше камера основана на датчике двухмерного изображения с полем зрения в 47,5×39,6 градусов с пространственным разрешением 176×144 пикселей с использованием датчика с активными пикселями на КМОП (комплементарных элементах металл-оксид-полупроводник, CMOS). Технология очень похожа на технологию ПЗС (приборов с зарядовой связью, CCD). Результирующий выходной сигнал является четырехмерным представлением изображения, показывающего информацию об интенсивности в каждом пикселе, во взаимосвязи с обычной цифровой камерой. В дополнение, относительное положение каждой точки по отношению к камере задается ее значением x, y и глубины (z). При комбинировании информации в каналах x, y и z можно создавать трехмерную визуализацию сцены.
С установкой порогового значения амплитуды шумовые пиксели могут быть отфильтрованы. Амплитуда определяет количество излучаемого света, который отражается обратно на пиксель. Время интегрирования регулирует время экспонирования для полученного изображения.
В качестве альтернативы, система 51 трехмерной камеры основана на другой технологии для обеспечения трехмерной визуализации сцены. Например, система 51 трехмерной камеры может быть системой камеры, использующей лазерную триангуляцию и стереоскопическую систему обработки данных визуального контроля, по выбору, оборудованную источником света и устройством формирования спекл-структуры для создания света, имеющего спекл-структуру. Кроме того, в качестве альтернативы, система 51 трехмерной камеры является камерой активной выборочной дискретизации волнового фронта, которая имеет двухмерную матрицу пикселей и которая способна к выдаче, для каждого из пикселей, расстояния между камерой и изображаемой точкой объекта.
Практически, любая разновидность системы трехмерной камеры, которая способна к обеспечению трехмерных представлений поверхности сцены, может использоваться в настоящем изобретении.
Предпочтительно, система 51 трехмерной камеры расположена над и, по выбору, позади коровы 50 и направлена вниз и, по выбору, вперед, на спину коровы 50, чтобы давать видеоинформацию с задней и спинной частей коровы, в том числе спинного хребта, маклоков, седалищных костей и корня хвоста.
В качестве альтернативы, система трехмерной камеры расположена над коровой под углом относительно вертикальной плоскости, параллельной с продольным направлением коровы, и направлена по диагонали вниз на корову.
Кроме того, еще, в качестве альтернативы, система трехмерной камеры расположена сбоку от коровы и, по выбору, над коровой и направлена сбоку и, по выбору, вниз, чтобы давать боковое/заднее изображение, показывающее зону между седалищными костями и маклоками коровы, и краем выступов спинного хребта.
Кроме того, в качестве альтернативы, системы трехмерной камеры содержат несколько трехмерных камер, расположенных в разных местоположениях и направленных на корову, чтобы покрывать большую площадь поверхности коровы.
Устройство, согласно изобретению, предпочтительно размещено там, где находятся коровы, например, в пункте кормления, дойки или лежки, оснащенном устройством идентификации коров. Предпочтительно, устройство обеспечивает определение количественного показателя состояния тела каждой коровы неоднократно, с довольно высокой частотой, например, ежедневно.
Кроме того, устройство, согласно изобретению, может быть оперативно присоединено к системе управления стадом и поставляет в нее данные BCS. Таким образом, BCS мог бы отслеживаться и сравниваться с ожидаемым BCS в каждый момент, который отличается по времени, как показано на фиг.1. Ожидаемый BCS мог бы быть статистическими значениями BCS для такого животного или для подобного животного (породы, возраста и т.д.), по выбору, компенсированными увеличивающимся возрастом животного.
Если измеренный BCS отклоняется от ожидаемого BCS на, по меньшей мере, заданную величину, это может активизировать сигнал тревоги или автоматически предпринять действие в отношении животного, например, питание животного могло бы изменяться, например, по своему питательному содержанию, или животное могло бы лечиться некоторым образом посредством автоматического устройства, оперативно присоединенного к системе управления стадом. В частности, вышеприведенное отслеживание важно в первое время, например, первые месяцы после отела, когда BCS падает.
Обработка исходных данных изображения
Обработка исходных данных изображения содержит фильтрацию и сегментацию.
Используемая функция фильтрации комбинирует двухмерное изображение интенсивности с информацией о дальности, чтобы иметь дело с объектами, которые находятся настолько далеко, чтобы давать вводящую в заблуждение информацию о глубине. Объекты, которые находятся далеко, отражают свет с меньшей интенсивностью, чем близко расположенный объект. Пиксели с интенсивностью ниже выбранного значения могут быть локализованы, а значение глубины установлено равным расстоянию на шее коровы. Ложные точки не мешают при регулярной фильтрации. Результат фильтра Винера показан на фиг.6a-b, которые иллюстрируют плотные множества точек исходных нефильтрованных (фиг.6a) и фильтрованных (фиг.6b) данных. Последний этап в последовательности операций фильтрации является идентифицирующим все пиксели, где значение дальности выше выбранного значения, таким образом, становящиеся неинтересными для анализа. Эти точки обычно принадлежат интерьеру коровника, голове коровы и соседней корове. Их значение устанавливается в расстояние шеи коровы.
Затем, изображение сегментируется, то есть изображение подразделяется на многочисленные области (наборы пикселей). Задача сегментации состоит в том, чтобы упростить или заменить представление изображения на нечто, которое является более показательным и более легким для анализа. Сегментация изображения типично используется для локализации объектов и границ (линий, изгибов, и т.д.) в изображении. В этом контексте сегментация используется для идентификации верхней поверхности коровы.
В качестве первичной сегментации чувствительная функция обнаружения краев Канни применяется к фильтрованным данным. Способ Канни находит края, отыскивая локальные максимумы градиента в изображении. Градиент рассчитывается с использованием производной фильтра Гаусса. Способ использует два пороговых значения для обнаружения стабильных и нестабильных краев и включает нестабильные края в выходной сигнал, только если они присоединены к стабильным краям. Этот способ, поэтому, менее вероятно, чем другие, подвергается влиянию шума и, более вероятно, обнаруживает истинные нестабильные края.
Фиг.7 изображает сегментацию данных, выделяющую поверхность коровы.
Распознавание анатомических признаков; нормализация
Так как большинство способов распознавания признаков, главным образом, основаны на геометрической информации, в трехмерных технологиях даже важнее, чем в двухмерных, выполнять надлежащую нормализацию изображения объекта.
Для того, чтобы нормализовать изображение коровы, первый этап состоит в том, чтобы найти характерные или опорные точки, которые будут служить в качестве контрольных точек для последовательности операций нормализации. Характерными точками, рассматриваемыми для нормализации, являются корень хвоста, седалищные кости, маклоки и спинной хребет. Изображение коровы нормализуется последовательностью поворотов и смещений на основании местоположения и взаимного расположения характерных точек.
В качестве первичной локализации коровы в изображении локализуется значение минимальной дальности, которое всегда принадлежит точке на хвосте. Коровы обычно фотографируются под углом около 45° с их спины, с тем, чтобы находить местоположение и ориентацию спинного хребта; изображения поворачиваются на 45° вокруг оси x. Данные изображения могут быть довольно редкими, но посредством съемки срезов коровы может быть обнаружен локальный минимум на каждом срезе, представляющий наивысшую точку на спине коровы в такой зоне. Все точки вместе образуют форму спинного хребта. Через эти точки приближенно выражается линия средних значений, и изображения автоматически смещаются и поворачиваются, чтобы подогнать линию спинного хребта к оси y. Это сопровождается идентификацией маклоков посредством поворота изображения влево и вправо и нахождения локальных минимумов в этих направлениях. Итерационным образом корова выравнивается так, что спинной хребет придерживается оси y, а подвздошные кости находятся в плоскости, нормальной к плоскости xy, симметрично вокруг оси x. В качестве альтернативы или дополнительно, подвздошные кости и/или корень хвоста используются для последовательностей операций поворота и смещения.
Расстояние между маклоками может использоваться для масштабирования изображения. В качестве альтернативы, другие признаки используются для масштабирования, такие как длина животного, длина спинного хребта, расстояние между седалищными костями и т.д.
Нормализация используется для обеспечения способности к получению правильных количественных показателей состояния тела независимо от размера животного, расстояния между системой камеры и животным, и угла обзора системы камеры.
Фиг.8a изображает глобальный минимум, найденный для локализации. Фиг.8b изображает данные, смещенные и повернутые. Были локализованы спинной хребет и маклоки.
Выделение признаков
Обычно интересны два разных способа обнаружения корреляций между параметрами и BCS: глобальный способ, использующий статистические характеристики поверхностей модифицированных изображений дальности и поверхностей, и локальный способ, где изгибы и углы подгоняются к контурам.
Последний способ показал хорошие результаты на контролируемых изображениях, но анатомические точки, которые указывают BCS, не всегда соответствуют явным видимым контурам. При автоматическом выделении характерных точек точность идентификации ограничена. Фиг.9 изображает точность определения местонахождения маклоков в двух изображениях одной коровы, снятой при одном и том же удобном случае. Также есть большие различия между отдельными коровами по форме, которая делает обоснованным другой подход, то есть глобальный подход со статистическим анализом поверхностей.
В общих чертах, заинтересованность в устойчивом к ошибкам распознавании признаков значительно выросла в последнее время. В течение последних лет были разработаны многие новые системы, которые могут хранить биометрическую информацию, такую как строение лица, отпечаток пальца или голос, для того, чтобы их использовать для верификации в тех случаях, когда требуется обеспечение безопасности. В последнее время многие применения распознавания двухмерных признаков были осуществлены с оптимальными результатами, полученными для изображений, полученных в контролируемых условиях. Основными ограничениями этих технологий являются: во-первых, влияние освещения, так как затененные части коровы могут вводить в заблуждение последовательность операций верификации, а во-вторых, изменения позы.
Однако как люди, так и коровы являются трехмерными, значит проецирование их в качестве двухмерных объектов способствует потере информации. С развитием и усовершенствованием устройств получения трехмерных данных, по большей части, технологии трехмерного распознавания лиц приобрели больший интерес. В наши дни это одна из наиболее мощных тематик в рамках биометрии. Хотя корова отличается от лица человека по многим аспектам, могло бы быть полезным использовать инструментальные средства распознавания трехмерных признаков лица.
Вследствие новизны технологий распознавания трехмерных признаков есть немного опубликованных результатов. Вообще, рассматриваются два вида аспектов: во-первых, использование данных дальности, преобразующее трехмерную информацию в двухмерную карту глубин или расстояние до системы сбора данных, а во-вторых, использование трехмерного сетчатого представления объекта. При комбинировании разных глобальных статистических характеристик необходимо объединять два аспекта.
Статистические характеристики
Многие участки изображения коровы лишены резких краев в зонах спинной и поясничной области за исключением окклюзии впереди маклоков. В этих зонах найдено, что текстура пове