Устройство для приема дискретных сигналов, прошедших многолучевой канал связи
Иллюстрации
Показать всеИзобретение относится к области связи и может быть использовано в устройствах приема (декодирования) сигналов связи, передаваемых в каналах с многолучевым распространением. Технический результат - точность оценивания импульсной реакции канала по последовательности испытательных импульсов, переданных в полосе частот, не совпадающей с полосой частот информационных импульсов. Устройство для приема дискретных сигналов, прошедших многолучевой канал связи, содержит не менее двух корреляторов первой ступени, не менее одного коррелятора второй ступени и решающее устройство. Общий вход корреляторов первой ступени является входом устройства, первый коррелятор первой ступени вычисляет корреляцию между принимаемым и информационным сигналом, выход первого из корреляторов первой ступени подключен к первому входу коррелятора второй ступени, выход которого подключен ко входу решающего устройства, а выход решающего устройства является выходом заявляемого устройства. Между выходом второго коррелятора первой ступени и вторым входом коррелятора второй ступени включен блок пересчета оценки импульсной реакции канала (ИРК) из полосы частот испытательного сигнала в оценку ИРК в полосе частот информационного сигнала, причем второй коррелятор первой ступени вычисляет корреляцию между принимаемым и испытательным сигналами. 1 з.п. ф-лы, 3 ил.
.
Реферат
Изобретение относится к области передачи дискретной информации и предназначено для применения в устройствах приема (декодирования) сигналов связи, передаваемых, например, в KB радиоканале или иных каналах с многолучевым распространением.
Основные проблемы, встающие перед разработчиком устройств приема сигналов, прошедших через многолучевой канал связи, состоят в рассеянии энергии сигнала по времени, что (в отсутствие технических мероприятий по компенсации этого эффекта) приводит к снижению отношения сигнал/шум на решающем устройстве.
Для преодоления этих проблем необходимо априорное знание мгновенной формы импульсной реакции канала (ИРК). Далее используем следующую терминологию: ИРК - реакция канала распространения на входное воздействие в виде δ-функции (бесконечно короткого импульса), ИРК в полосе частот некоторого сигнала S(n) - свертка реакции канала на δ-функцию с автокорреляционной функцией этого сигнала. При известной ИРК весь алфавит передаваемых символов может быть предсказан, т.е. пересчитан к точке приема. В связи с этим большинство известных решений указанных проблем так или иначе основаны на излучении наряду с информационными (т.е. неизвестными на приемном конце системы связи) символами или сигналами также испытательных (или тест-) сигналов, по которым осуществляется оценивание мгновенной ИРК или, точнее, ИРК в полосе частот испытательного импульса. Такой принцип передачи именуется как «система с испытательным импульсом и предсказанием» (или СИИП) (см., например, [1], раздел 3.1, в частности, сноска на с.109).
Этот принцип лежит и в основе, в частности, объектов [2-4].
Недостатком принципа построения системы связи, на которую рассчитаны известные аналоги, является сравнительно низкое качество приема (декодирования) сообщений, обусловленное либо потерей времени при раздельной во времени передаче испытательных и информационных импульсов (как это имеет место в [1]), либо действием испытательных импульсов, мешающем приему информационных импульсов (а также и наоборот, действием информационных импульсов, мешающем приему испытательных импульсов), при одновременной передаче и тех, и других импульсов в одной и той же полосе частот. Недостатком известных аналогов является то, что в условиях прихода (передачи) испытательных и информационных импульсов в разных полосах частот они неработоспособны.
Наиболее близким по технической сущности к заявляемому объекту является устройство, описанное в [5]. Оно выбирается в качестве прототипа. Прототип решает следующую задачу. Передан один из двух возможных сигналов или связных символов (бинарная система связи) - S1(t) или S2(t), причем оба символа расположены в одной и той же полосе частот. Форма переданного сигнала (символа) при распространении в многолучевом канале подверглась искажениям, описываемым как свертка этого символа с ИРК, форма которой априорно неизвестна. В точке приема требуется принять решение о том, какой из двух символов был передан.
Блок-схема прототипа приведена на фиг.1; пояснения по ней приведены ниже при описании принципа действия прототипа.
Принцип действия прототипа состоит в следующем. Для каждого возможного момента прихода связного сигнала вычисляется взаимная корреляции между принятым сигналом и каждым из двух возможных символов S1(t) или S2(t). Это действие выполняется корреляторами первой ступени (КПС) (позиции 1-1 и 1-2 на фиг.1). В результате выполнения этой функции на выходах КПС 1-1 и 1-2 формируются временные реализации, причем на выходе того КПС, опорное колебание которого совпадает с фактически переданным символом, эта временная реализация есть оценка ИРК в рабочей полосе частот, а на выходе другого КПС - только шум. В связи с тем, что прототипу информация о том, какой именно из двух возможных символов был передан, неизвестна, в нем осуществляется суммирование (одноименных временных отсчетов) временных реализаций, сформированных на выходах обоих КПС (сумматор 2 на фиг.1). Этот результат суммирования оценку ИРК в рабочей полосе частот заведомо содержит. Сумматор 2 является также накапливающим на скользящем интервале времени, т.е. в нем накапливаются массивы оценок ИРК, формируемые последовательно во времени по мере прихода серии связных символов. Далее реализуется вычисление корреляции между оценкой ИРК (она формируется на выходе сумматора 2) и каждой из временных реализаций, сформированных на выходах КПС 1-1 и 1-2. Эта функция выполняется в корреляторах второй ступени (КВС) (позиции 3-1 и 3-2 на фиг.1).
Примечание. Дискретная корреляция (а все перечисленные операции являются дискретными, т.е. выполняются в дискретном времени) есть скалярное произведение массивов временных отсчетов сигнала и опорного колебания (в нашем случае это имеет место в корреляторах первой ступени) либо отсчетов двух сигналов (в нашем случае это имеет место в корреляторе второй ступени), вычисляемое при обновлении массива отсчетов входного сигнала (в корреляторах первой ступени) или обоих сигналов (в корреляторе второй ступени) при каждом обновлении результата вычисления корреляции, например, на один или более отсчетов. Свертка - та же корреляция, но при ее вычислении один из двух массивов (в основном, это касается массива отсчетов опорного колебания) читается в обратном порядке следования индексов аргумента времени. В прототипе фигурирует понятие «коррелятор», но фактически речь может идти и о вычислении сверток. При выполнении всех операций в дискретном времени аргумент времени t представляется своими дискетами tn=n·fд, где fд - частота дискретизации. В связи с этим далее все сигналы записаны как сигналы дискретного времени S(n)=S(tn).
Далее для конкретности положим, что передан символ S1(n). При этом в КВС 3-1 фактически формируется отклик, пропорциональный энергии переданного многолучевого сигнала (т.е. искаженного по форме символа S1(n)), что соответствует эффекту когерентного сложения лучей. Этот отклик характеризуется высоким уровнем. На выходе же КВС 3-2 в данной ситуации формируется лишь реализация шума (у нее низкий уровень), что позволяет при сравнении (в решающем устройстве 4) уровней откликов, сформированных на выходах КВС 3-1 и 3-2, между собой и/или с порогом принять решение о фактически переданном символе. Так, в рассматриваемом случае большим и/или превышающим порог будет, как правило, уровень на выходе КВС 3-1, что приведет (также, как правило) к принятию решения о том, что предан символ S1(n), что в рассматриваемой ситуации и является правильным решением.
Таким образом, в прототипе проблема временного рассеяния энергии сигнала связи решена, поскольку, как отмечено выше, достигнут эффект, эквивалентный когерентному сложению всех лучей. Недостатком прототипа, как и упомянутых аналогов, является то, что он неприменим при передаче испытательных и информационных импульсов в разных полосах частот.
Целью заявляемого устройства является устранение указанного недостатка прототипа, т.е. обеспечение возможности приема (декодирования) сообщения при передаче испытательных и информационных импульсов в разных полосах частот. Цель достигается тем, что в устройство, содержащее не менее двух корреляторов первой ступени, не менее одного коррелятора второй ступени, а также решающее устройство, причем общий вход корреляторов первой ступени является входом заявляемого устройства, выход первого из корреляторов первой ступени подключен к первому входу коррелятора второй ступени, выход которого подключен ко входу решающего устройства, а выход решающего устройства является выходом заявляемого устройства, введен блок пересчета оценки импульсной реакции канала, включенный между выходом второго коррелятора первой ступени и вторым входом коррелятора второй ступени.
Заявляемый объект может быть использован в системе связи в общем случае с многопозиционным кодированием (при этом в нем соответственно увеличивается количество корреляторов первой и второй ступени). Однако минимальный состав его признаков имеет место в случае его использования в бинарной системе связи, причем с пассивной паузой. При этом алфавит передаваемые символов состоит всего из двух символов «0» и «1», кодируемых при передаче сообщения, например, как нулевой уровень (т.е. отсутствие излучения или пассивная пауза) и S1(n) соответственно. Одновременно с каждым информационным излучается и испытательный импульс Sи(n), причем последний излучается в полосе частот, не совпадающей с полосой частот информационных символов (импульсов). Возможен и такой вариант работы системы, при котором в случае передачи символа «0» испытательный импульс не излучается.
Блок-схема заявляемого объекта приведена на фиг.2, где обозначены:
- 1-1 и 1-2 - корреляторы первой ступени;
- 2 - коррелятор второй ступени;
- 3 - блок пересчета импульсной реакции канала;
- 4 - решающее устройство.
Каждый коррелятор первой ступени (1-1 и 1-2) реализуется, например, в соответствии с [6], блок-схема на рис.5.14, с.295. При этом сигнальным входом коррелятора является нижний на указанном рис.5.14 вход, на который подается принимаемый сигнал x(n). Опорная же функция коррелятора первой ступени (на указанном рис.5.14 она обозначена как h(n)) хранится в его долговременной памяти, на рис.5.14 для простоты не показанной. В заявляемом устройстве опорные функции корреляторов первой ступени h(n) имеют вид:
- коррелятор 1-1 - h1(n)=S1(n);
- коррелятор 1-2 - h1(n)=Sи(n).
При реализации коррелятора первой ступени в спектральной области (т.е. на базе процедуры быстрой свертки) над опорной функцией каждого из этих корреляторов заранее выполняется операция дискретного преобразования Фурье (ДПФ), и массив результата ДПФ (результат его комплексного сопряжения) запоминается в долговременной памяти соответствующего коррелятора первой ступени. Над массивами отсчетов входного сигнала x(n) также выполняется ДПФ, далее выполняется поэлементное перемножение (т.е перемножение одноименных отсчетов) массивов результатов ДПФ над опорной функцией и входным сигналом и обратное ДПФ (ОДПФ) от массива результатов указанного перемножения. Период обновления массива отсчетов входного сигнала при смежных по времени циклах вычисления корреляции в каждом из корреляторов первой ступени обычно выбирается равным длительности каждого из сигналов (импульсов) S1(n) и Sи(n) (длительности этих сигналов в простейшем случае совпадают), при этом длина окна ДПФ составляет двойную длительность каждого из этих сигналов. Два независимо работающих коррелятора первой ступени показаны на фиг.2 условно. При их реализации в спектральной области входящая в состав этих корреляторов процедура ДПФ от входного сигнала может быть для двух корреляторов первой ступени общей.
Возможен также эквивалентный рассмотренному вариант блок-схемы коррелятора первой ступени во временной области; описание этого варианта коррелятора приведено [6], рис.6.18б, с.418, где (в соответствии с сегодняшним уровнем техники) вместо рециркулирующей линии задержки, хранящей массив временных отсчетов опорного сигнала при его жестком ограничении, реализуется многоразрядный регистр сдвига, хранящий те же отсчеты, представленные многоразрядными кодовыми словами. Динамика обновления входных и выходных данных рассматриваемого коррелятора иллюстрируется, например, в [7], с.76-78.
Коррелятор второй ступени 2 реализуется аналогично коррелятору первой ступени (предпочтительно в варианте во временной области), с той лишь разницей, что нем отсутствует долговременная память, хранящая опорное колебание. Длительность цикла обновления сигнала на выходе коррелятора второй ступени может составлять, например, один период дискретизации входных сигналов.
Блок пересчета оценки ИРК 3 осуществляет пересчет оценки ИРК в полосе частот испытательного импульса Sи(n), сформированной на выходе второго коррелятора первой ступени (т.е. коррелятора 1-2), например, в оценку ИРК в полосе частот информационного импульса S1(n). Блок-схема варианта реализации блока 3 приведена на фиг.3, где обозначены:
- 5-1, 5-2 - блоки долговременной памяти;
- 6 - вычислитель ДПФ;
- 7 - блок деления;
- 8 - блок умножения;
- 9 - вычислитель ОДПФ.
В блоках долговременной памяти 5-1 и 5-2 хранятся спектры сигнала S1(n) и испытательного импульса Sи(n). Эти блоки показаны на фиг.3 условно и могут быть совмещены с блоками долговременной памяти, входящими с состав корреляторов первой ступени 1-1 и 1-2 и хранящих соответствующие массивы спектров указанных сигналов (импульсов). Блок 9 осуществляет вычисление операции обратного ДПФ (ОДПФ). Функции остальных блоков, входящих в блок-схему на фиг.3, однозначно определяются их названиями. Таким образом, выходной сигнал блока 3 (в рассматриваемом варианте его реализации) вычисляется указанный пересчет по формуле
где запись ОДПФ{M(k)} означает выполнение операции ОДПФ над массивом отсчетов дискретного спектра M(k) (k - дискретный аргумент частоты), определяемого как
где S1(k), Sи(k) и - массивы спектров, являющиеся результатами выполнения операции ДПФ над массивами временных отсчетов соответственно информационного сигнала S1(n), испытательного сигнала Sи(n), а также оценки ИРК в полосе частот испытательного сигнала.
При реализации коррелятора первой ступени 1-2 в спектральной области (т.е. на базе процедуры быстрой свертки) в нем используемый в соотношении (2) дискретный спектр формируется как промежуточный результат. При этом данный результат может быть использован для расчета по формуле (2) без дополнительной операции ДПФ (при этом вычислитель ДПФ 6, показанный на блок-схеме фиг.3, фактически заменяется оперативной памятью, хранящей поступающие в блок 3 из второго коррелятора первой ступени 1-2 текущие результаты вычисления массивов ).
Решающее устройство 4 представляет собой схему сравнения текущего уровня сигнала на его входе с заданным порогом, хранящимся в его долговременной памяти. В случае превышения уровнем сигнала порога на выходе решающего устройства 4 формируется, например, код «1», а в противном случае - код «0». Следует заметить, что реализуемая корреляторами 1-1, 1-2 и 2 процедура вычисления корреляции между входным и опорным сигналами является линейной (при этом опорные сигналы (или их спектры) корреляторов 1-1 и 1-2 хранятся в долговременной памяти этих блоков, а опорный сигнал коррелятора 2 оперативно вырабатывается блоком пересчета импульсной реакции канала 3), и поэтому корреляторы 1-1 и 2 без изменения принципа действия заявляемого объекта могут быть переставлены местами. При этом связь между выходом блока пересчета импульсной реакции канала 3 и опорным входом коррелятора 2 сохраняется.
Принцип действия заявляемого устройства состоит в следующем. При передаче символа «1» (сигнала S1(n)) на выходе коррелятора первой ступени 1-1 (опорное колебание которого совпадает с сигналом S1(n)) формируется отклик, равный свертке ИРК с автокорреляционной функцией сигнала S1(n). При этом на выходе коррелятора первой ступени 1-2 (опорное колебание которого совпадает с сигналом Sи(n)) формируется отклик, равный свертке ИРК с автокорреляционной функцией сигнала Sи(n), т.е. формируется оценка ИРК в полосе частот испытательного импульса Sи(n). Упомянутый отклик коррелятора первой ступени 1-1 в рассматриваемой ситуации можно считать оценкой ИРК в полосе частот информационного импульса S1(n). В связи с несовпадением диапазонов частот, занимаемых информационным и испытательным импульсами, оценки ИРК в диапазонах частот этих импульсов некоррелированы, причем вне зависимости от того, какой из символов был передан. В результате же пересчета оценки ИРК в полосе частот испытательного импульса в оценку ИРК в полосе частот информационного импульса, осуществляемого в блоке пересчета 3, формируемые на входах коррелятора второй ступени 2 в случае передачи символа «1», становятся коррелированными (совпадающими с точностью до имеющих место на этих входах шумов). Вследствие этого при передаче символа «1» уровень отклика коррелятора второй ступени 2 высок, и тогда решающее устройство 4 формирует код «1». При передаче же информационного символа «0» на выходе коррелятора первой ступени 1-1 формируется отклик в виде одной только помехи; при этом вне зависимости от того, излучался ли вместе с этим информационным символом испытательный импульс или нет, сигналы на входах коррелятора второй ступени 2 (несмотря на выполнение пересчета в боле 3) остаются некоррелированными, что предопределяет низкий уровень отклика коррелятора второй ступени 2, и тогда решающее устройство 4 формирует код «0».
В случаях использования заявляемого устройства в системах связи типа СИИП с многопозиционным (N-позиционным) кодированием в нем количество корреляторов первой ступени равно N+1, а второй ступени - N. В случаях использования заявляемого устройства в системах связи, работающих при многопозиционном кодировании, но без специального испытательного импульса, когда оценки ИРК формируются с помощью излучаемых в разных частотных диапазонах информационных импульсов, в нем количество корреляторов первой и второй ступеней равно по N. В обеих указанных ситуациях решающее устройство имеет N входов.
Как отмечено выше, при совпадении диапазонов частот, в которых передаются информационные и испытательные сигналы, имеет место действие (влияние), мешающее приему этих сигналов, т.е. информационный сигнал является помехой для «ветви» приема испытательного сигнала (т.е. соответствующего коррелятора первой ступени) и наоборот. Частотное же разнесение информационных и испытательных сигналов обеспечивает повышение качества приема (декодирования) за счет устранения указанного мешающего влияния. Заявляемое устройство, в отличие от известных аналогов, обеспечивает возможность приема (декодирования) сигналов при передаче информационных и испытательных импульсов в разных диапазонах частот, т.е. его применение позволяет реализовать указанный выше эффект повышения качества приема.
Литература
1. Д.Д. Кловский. Передача дискретных сообщений по радиоканалам. М.: Связь, 1969.
2. Устройство приема дискретных сигналов в многолучевом канале связи. Пат. РФ №2048701.
3. Цифровое устройство для демодуляции дискретных сигналов в многолучевом канале связи. Пат. РФ 2267230.
4. Устройство для передачи дискретных сигналов в многолучевом канале связи. Пат. РФ №959291.
5. Sussman S.M. A matched filter communication system for multipath channels // IEEE Trans. IT - 6. N 3. June 1960.
6. «Применение цифровой обработки сигналов». Под ред. Э. Оппенгейма. М.: Мир, 1980.
7. Л. Рабинер, Б. Гоулд. Теория и применение цифровой обработки сигналов. М.: Мир, 1978.
1. Устройство для приема дискретных сигналов, прошедших многолучевой канал связи, содержащее не менее двух корреляторов первой ступени, не менее одного коррелятора второй ступени, а также решающее устройство, причем общий вход корреляторов первой ступени является входом заявляемого устройства, первый коррелятор первой ступени вычисляет корреляцию между принимаемым и информационным сигналом, выход первого из корреляторов первой ступени подключен к первому входу коррелятора второй ступени, выход которого подключен ко входу решающего устройства, а выход решающего устройства является выходом заявляемого устройства, отличающееся тем, что в него введен блок пересчета оценки импульсной реакции канала (ИРК) из полосы частот испытательного сигнала в оценку ИРК в полосе частот информационного сигнала, включенный между выходом второго коррелятора первой ступени и вторым входом коррелятора второй ступени, причем второй коррелятор первой ступени вычисляет корреляцию между принимаемым и испытательным сигналами.
2. Устройство для приема дискретных сигналов, прошедших многолучевой канал связи, по п.1, отличающееся тем, что блок пересчета оценки ИРК из полосы частот испытательного сигнала в оценку ИРК в полосе частот информационного сигнала осуществляет указанный пересчет по формуле где запись ОДПФ{М(k)} означает выполнение операции ОДПФ над массивом отсчетов дискретного спектра M(k) (k - дискретный аргумент частоты), определяемого как где S1(k), Sи(k) и - массивы спектров, являющиеся результатами выполнения операции ДПФ над массивами временных отсчетов соответственно информационного сигнала S1(n), испытательного сигнала Sи(n), а также массив отсчетов, формируемый на выходе второго коррелятора первой ступени, указанные массивы спектров хранятся в блоках долговременной памяти, входящих в состав блока пересчета оценки ИРК из полосы частот испытательного сигнала в оценку ИРК в полосе частот информационного сигнала.