Адаптивная управляющая система для топливных инжекторов и воспламенителей

Иллюстрации

Показать все

Изобретение может быть использовано в системах управления и топливоподачи двигателей внутреннего сгорания. Предложены система и способы регулировки работы двигателя внутреннего сгорания на основании подвергаемых мониторингу условий (давления или светового излучения) внутри камеры сгорания двигателя. В некоторых случаях система осуществляет мониторинг областей внутри камеры сгорания, идентифицирует или определяет удовлетворительное условие и прикладывает ионизирующее напряжение к топливному инжектору, с тем, чтобы инициировать акт сгорания во время удовлетворительного условия. В некоторых случаях система осуществляет мониторинг условий внутри камеры сгорания, определяет, что подвергаемое мониторингу условие указывает на необходимость регулировки и регулирует параметры акта сгорания, с тем, чтобы регулировать уровни ионизации внутри камеры сгорания. Технический результат заключается в упрощении системы управления двигателем, расширении номенклатуры топлив, пригодных для использования в двигателе, снижении потребления топлива и снижении токсичности отработавших газов. 3 н. и 17 з.п. ф-лы, 2 табл., 9 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Нижеследующее раскрытие в целом относится к интегрированным топливным инжекторам и воспламенителям и соответствующим компонентам для хранения, впрыска и воспламенения различных топлив.

УРОВЕНЬ ТЕХНИКИ

Бензиновые двигатели обычно разрабатываются таким образом, чтобы обеспечивалась экономия производственных издержек, в результате чего допускаются намеренные конструктивные несовершенства и потери с точки зрения способа управления и необходимости сдерживать (ограничивать) подачу воздуха, входящего в двигатель, и с точки зрения производства однородных воздушно-топливных смесей, которые доставляются в камеры сгорания. Бензиновые двигатели работают на проектных рабочих скоростях, или проектных количествах оборотов в минуту, и в проектном диапазоне крутящих моментов при стехиометрических пропорциях воздуха/топлива для формирования однородной смеси, которая может быть воспламенена искрой в любом месте в камере сгорания. Управление производимой мощностью осуществляется путем регулировки подачи для уменьшения впуска воздуха и соответствующего уменьшения (ограничения) количества добавляемого топлива. В современных двигателях, которые обеспечивают некоторое уменьшение токсичных выбросов, топливо пропорционируется в ответ на величину разрежения впускной системы так, чтобы обеспечивался однородный состав с избытком воздуха или «недостатком топлива» относительно стехиометрического соотношения воздуха/топлива для полного сгорания.

Большая часть двигателей, использующих однородный состав, эксплуатируется с регулируемым ограничением (сдерживанием) впуска воздуха во впускную систему и с электронно-управляемыми топливными инжекторами, которые подают топливо в каждое место или в каждый впускной трубопровод, где расположен управляемый механическим кулачком впускной клапан. Поэтому именно управляемый механическим кулачком впускной клапан обеспечивает итоговый график входа в каждую камеру сгорания результирующей однородной воздухо-топливной смеси.

На холостом ходу (наименьшем поддерживаемом количестве оборотов в минуту) и во время замедления двигателя, которые производят условия наивысшего разрежения на впуске, приблизительно 14,7 массовых частей воздуха смешивается с немного меньшей чем одной, массовой частью топлива (или приблизительно в соотношении 14,7:1) для формирования однородного состава с наименьшим количеством высвобождаемой энергии при сжигании. При ускорении и переходе на большее количество оборотов в минуту больше воздуха подается внутрь впускной системы и больше топлива может добавляться для поддержания приблизительно пропорции 14,7:1 воздуха/топлива в однородном составе, который подается, для сохранения мощности или перехода на более высокую мощность.

Поддержание разрежения во впускной системе двигателя требует значительной мощности, которая может отбираться от выпускной мощности, которую может обеспечивать двигатель. Во всех режимах работы, включая холостой ход, перемещение с одинаковой скоростью и ускорение, значительная мощность двигателя расходуется на паразитные потери, включая мощность, требуемую для поддержания разрежения на впуске.

Дизельные двигатели не сдерживают вход воздуха в камеры сгорания, что обеспечивает преимущество, заключающееся в исключении потери выходной мощности, которая требуется для поддержания разрежения впускной системы. Соотношения воздуха/топлива для дизельных двигателей при полной нагрузке находятся между 17:1 и 29:1. На холостом ходу или при отсутствии нагрузки это соотношение может превосходить 145:1. Внутри камеры сгорания дизельного двигателя с непосредственным впрыском локальные соотношения воздуха/топлива варьируются. Поскольку впрыск дизельного топлива предназначен для доставки жидкого топлива в виде струй или капель, может быть невозможным изначально обеспечивать однородное смешивание топлива с воздухом.

Воспламенение и устойчивое горение может происходить лишь после «атомизации», при которой высокоскоростные струи из капель жидкого топлива испаряются путем внедрения дополнительного горячего воздуха для разбивания крупных молекул на более мелкие компоненты, которые могут быть окислены для высвобождения достаточного тепла для производства непрерывной цепной реакции.

Впрыск дизельного топлива под высоким давлением дает в результате более хорошую атомизацию для уменьшения количества топлива, которое не заканчивает процесс окисления и в результате позволяет различным загрязняющим веществам, в том числе видимым дымовым частицам, выходить из камеры сгорания. Недавний прогресс обеспечил увеличенные давления впрыска топлива, что обеспечивает генерацию большего количества тепла в насосной системе и требует отнятия большей мощности от выходной мощности двигателя для удовлетворения потребностей по перекачке топлива и рециркуляции топлива для охлаждения контуров доставки топлива высокого давления.

Характеристики сгорания дизельного топлива как результата испарения и химического дробления капель в находящемся под давлением нагретом воздухе являются функцией переменных, таких как: степень сжатия, барометрическое давление, давление наддува, температура воздуха, входящего в камеру сгорания, температура сжатого воздуха после тепловых потерь на поршень, цилиндр и головку, график начала впрыска, давление впрыска, размер, количество и ориентация отверстий для впрыска, продолжительность впрыска, кривая расхода инжектора и т.д.

Данные конкретные величины степени сжатия, барометрического давления, давления наддува, температуры воздуха в начале сжатия и температуры сжатого воздуха после тепловых потерь на компоненты поршня, цилиндра и головки цилиндра, электронный график начала непосредственного впрыска дизельного топлива могут регулироваться для удовлетворения требования по крутящему моменту или нагрузке на двигатель. В высокоскоростных дизельных двигателях для автомобилей оптимизированный впрыск при запуске, холостом ходе или отсутствии внешней нагрузки происходит приблизительно между 2° коленчатого вала перед верхней мертвой точкой и 4° после верхней мертвой точки в некоторых случаях для обеспечения более быстрого запуска.

Во время неполной нагрузки начало подачи дизельного топлива может происходить между приблизительно 8° перед верхней мертвой точкой и 4° после верхней мертвой точки. По причине значительного времени «дизельной задержки», необходимого для испарения и дробления капель дизельного топлива и зависящего от температуры и давления воздуха, которые, в свою очередь, зависят от скорости и степени сжатия, а также по причине результирующих тепловых потерь на компоненты поршня, цилиндра и головки цилиндра, время начала впрыска дизельного топлива должно быть перенесено на более ранний срок. Для производства максимального крутящего момента для полной нагрузки начало впрыска дизельного топлива может начинаться за 8-16° перед верхней мертвой точкой, а продолжительность сгорания при максимальной подаче топлива варьируется между приблизительно 40° и 70° вращения коленчатого вала.

Инициация впрыска дизельного топлива слишком рано во время сжимающего хода вызывает значительное сгорание, когда поршень еще поднимается, уменьшая производство эффективного крутящего момента и снижая тепловую эффективность из-за больших тепловых потерь на компоненты поршня, цилиндра и головки цилиндра. Это приводит к увеличению потребления топлива и интенсивности технического обслуживания двигателя. Однако такой режим работы может быть намеренно обеспечен для увеличения доставки тепла к каталитическим реакторам и другому последующему оборудованию. Резкое повышение давления в цилиндре во время сжатия также увеличивает износ подшипников и колец и шум двигателя. Для сравнения, если начало впрыска дизельного топлива является слишком поздним, эффективный крутящий момент тоже уменьшается, и происходит неполное сгорание с увеличением выброса несгоревших углеводородов.

В более популярных двигателях, использующих однородный состав, с впрыском бензина через топливный канал количество впрыскиваемого топлива прямо пропорционально степени сдерживания воздуха и времени, в течение которого инжектор открыт или открывается. Для сравнения, современный дизельный инжектор будет более узко варьировать массовый расход дизельного топлива как функции разности между давлением впрыска и давлением камеры сгорания, плотности топлива, которая зависит от температуры, и динамической сжимаемости топлива.

Для того чтобы оперировать переменными, упомянутыми выше, и в попытках уменьшить проблематичные выбросы, электронно-управляемые и эксплуатируемые инжекторы дизельного топлива могут обеспечивать несколько периодов впрыска для разных компромиссов и целей, к числу которых относятся следующие.

Первый впрыск малой продолжительности для уменьшения скорости роста давления сгорания, что может уменьшать шум сгорания и в некоторой степени уменьшать производство оксидов азота (NOx) во время жесткой работы дизельного двигателя, при которой имеет место сгорание с быстрым ростом давления.

Второй впрыск большей части доставляемого топлива, осуществляемый далее, для обеспечения главной фазы впрыска.

Третий впрыск, который может быть добавлен в попытке внедрения в меньшей степени использованного воздуха для уменьшения выброса сажи путем инициации дожигания с целью уничтожения в противном случае быстро охлаждающихся углеводородов, которые не сгорели полностью в результате первого и второго впрыска.

Четвертый впрыск, осуществляемый позже на период до 180° поворота коленчатого вала, для обеспечения позднего поствпрыска, который служит для повторного нагрева без производства мощности, в частности, для активации накопительных каталитических преобразователей NOx и/или для достаточного увеличения средней температуры выхлопного газа для «выжигания» собираемых углеводородных частиц в процессе, называемом «регенерацией», в керамическом фильтре частиц.

Типовые количества впрыскиваемого дизельного топлива варьируются от приблизительно 1 кубического миллиметра для первого впрыска или предварительного впрыска до приблизительно 50 кубических миллиметров для полной нагрузки. Продолжительность впрыска составляет 1-2 миллисекунды.

Большинство автомобильных дизельных двигателей использует доставку топлива по общему нагнетательному трубопроводу к каждому инжектору дизельного топлива. Это обеспечивает разделение функций сжатия топлива и впрыска топлива, и поэтому система с общим нагнетательным трубопроводом обычно способна подавать топливо с более широким диапазоном графиков впрыска и значений давления, чем предыдущие системы с объединенными операциями механического сжатия и выбора графика.

Насос высокого давления сжимает топливо для доставки по общему нагнетательному трубопроводу. Главное управление нагнетательным трубопроводом для топлива и клапан регулировки давления обеспечивают поддержание давления топлива на уровне, установленном электронным управляющим блоком (ЭУБ). Давление общего нагнетательного трубопровода, которое поддерживается, обслуживает каждый инжектор. Электронная ЭВМ (ЭУБ) принимает входные данные от датчиков о давлении топлива, скорости двигателя, положении распределительного вала, смещении педали газа, давлении наддува, температуре впускного воздуха и температуре охлаждающей жидкости двигателя. В зависимости от области применения, дополнительные датчики могут сообщать о скорости транспортного средства, температуре выхлопа, концентрации кислорода в выхлопе, каталитическом противодавлении и противодавлении улавливателя твердых частиц.

Во многих случаях дизельные двигатели с общим нагнетательным трубопроводом по-прежнему требуют свечей подогрева для предварительного нагрева воздуха для возможности пуска в холодную погоду. Помимо управления свечами подогрева, дополнительными функциями ЭУБ являются регулировка давления наддува, создаваемого механическим нагнетателем наддува или приводимым в действие выхлопными газами турбонагнетателем, степени рециркуляции выхлопного газа и, в некоторых двигателях, регулируемых заслонок впускного канала для индуцирования завихрения или иного придания импульса потоку впускного воздуха.

Насосы высокого давления подают дизельное топливо приблизительно при 1600 бар (23500 фунтов/кв. дюйм) через систему с общим нагнетательным трубопроводом. Такие насосы приводятся в действие от коленчатого вала и во многих случаях имеют радиально-поршневую конструкцию. Смазка компонентов этих насосов очень высокого давления осуществляется тщательно фильтрованным дизельным топливом. Типовой насос требует, чтобы двигатель отдавал до приблизительно 4 кВт из полезной выходной мощности.

Регулировка давления топлива обычно осуществляется соленоидным клапаном, в котором открытие клапана варьируется широтно-импульсной модуляцией при частоте в 1 кГц. В то время, когда клапан регулировки давления не активирован, внутренняя пружина поддерживает давление топлива приблизительно в 100 бар (1500 фунтов/кв. дюйм). В то время, когда клапан активирован, усилие, прикладываемое электромагнитным плунжером, помогает пружине, уменьшая полезное открытие клапана для увеличения давления доставляемого топлива. Клапаны регулировки давления топлива могут также действовать в качестве механического амортизатора давления для уменьшения высокочастотных колебаний давления топлива, создаваемых насосом.

Два подхода к уменьшению выбросов дизельного двигателя являются популярными: рециркуляция выхлопного газа и добавление мочевины в выхлопной системе для обеспечения индуцируемого водородом восстановления оксидов азота, которые были произведены работой камеры сгорания.

Рециркуляция выхлопного газа подает порцию выхлопного газа для смешивания с дозой впускного воздуха для восстановления выхлопных оксидов азота. Это снижает концентрацию и доступность кислорода в камере сгорания, пиковую температуру сгорания и температуру выхлопного газа. Это также значительно снижает объемную эффективность двигателя. Доля рециркуляции может достигать 50% во время частей рабочих условий.

Рециркуляция вызывает много тех же компромиссов эффективности, что сдерживание воздуха производит при работе двигателя, использующего однородный состав.

Окислительные каталитические преобразователи несгоревшего топлива используются для уменьшения выбросов углеводородов и монооксида углерода путем проведения реакции составляющих несгоревшего топлива с кислородом, который предварительно нагревается от камеры сгорания. Составляющие несгоревшего топлива, такие как монооксид углерода и углеводороды, которые выходят через выпускной клапан камеры сгорания, окисляются с образованием воды и диоксида углерода. Для быстрого достижения его рабочей температуры этот тип каталитического преобразователя устанавливается вблизи двигателя.

Накопительные каталитические преобразователи также используются для устранения оксидов азота, которые производятся в процессе сгорания. Этот тип реактора разрушает NOx за счет увеличения времени выдержки путем их (оксидов азота) хранения в течение периодов от 30 секунд до нескольких минут. Оксиды азота соединяются с оксидами металла на поверхности накопителя NOx с образованием нитратов, когда соотношение воздуха/топлива представляет недостаток топлива с обеспечением сгорания топлива с избытком кислорода.

Однако такое хранение NOx является лишь кратковременным, и когда оксиды азота блокируют доступ для дополнительных оксидов азота, «поляризованный» каталитический преобразователь должен быть полностью обновлен процессом освобождения и преобразования хранящихся NOx в двухатомные молекулы азота и кислорода. Такое полное обновление требует, чтобы двигатель в течение короткого периода работал на богатой смеси. В качестве пояснения, двигатель должен работать на богатой топливной смеси с соотношением воздуха/топлива приблизительно 13,8:1 в течение времени, достаточного для того, чтобы позволить вновь прибывающим NOx соединяться временно с оксидами металла на поверхностях накопителя NOx.

Определение того, когда полное обновление должно происходить, а затем определение того, когда оно было в достаточной мере завершено, - это сложная задача, и имеется вероятность ложных сигналов. Одним подходом является использование модели, которая выводит и рассчитывает количество хранящихся оксидов азота на основании температуры каталитического преобразователя. Еще один подход предлагает специальный датчик NOx, расположенный ниже по потоку накопительного каталитического преобразователя, для определения потери эффективности оксидов металла в накопительном узле. Определение достаточного полного обновления осуществляется либо основанным на модели подходом, либо датчиком кислорода, расположенным ниже по потоку слоя катализатора. Изменение в сигнале от высокого содержания кислорода до низкого содержания кислорода может показывать приближение к концу операции полного обновления.

Для того чтобы гарантировать, что каталитическая система с хранением NOx работает эффективно от холодного запуска или слабо загруженного режима двигателя, для нагревания выхлопного газа часто предусмотрен электрический резистивный нагреватель. Это создает еще одну паразитную потерю мощности и повышает потребление топлива двигателем для производства электричества, хранения его в батарее и рассеяния хранящейся энергии таким способом, который не обеспечивает эффективную работу двигателя. Кроме того, это еще одно изделие, требующее дорогостоящего технического обслуживания.

Еще один тип паразитных потерь и эксплуатационных расходов касается использования восстанавливающего агента, такого как разжиженная мочевина, для обработки выхлопа с целью восстановления NOx в выхлопных газах дизельного двигателя. В этом подходе восстанавливающий агент, такой как жидкий раствор мочевины, добавляется к выхлопу в относительно малых количествах. Гидролизующий каталитический преобразователь обеспечивает диссоциацию мочевины в аммиак, что высвобождает водород для реакции с NOx с образованием азота и воды. Эта система может быть достаточно эффективной для уменьшения выбросов NOx, так что могут использоваться более бедные, чем нормальные, соотношения воздуха/топлива, в результате чего может быть обеспечено увеличение экономии топлива, что компенсирует часть расходов на систему подачи мочевины и эксплуатационных расходов. Бак с мочевиной оборудован средствами для сигнализации о необходимости повторного наполнения, когда это требуется для обеспечения восстановления оксидов азота в выхлопе.

Эти и другие ограничения существуют в работе бензиновых и дизельных двигателей.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 показывает схематичный вид сбоку в разрезе инжектора/воспламенителя, сконфигурированного согласно некоторым вариантам реализации.

Фиг.2 показывает вид сбоку системы, сконфигурированной согласно некоторым вариантам реализации.

Фиг.3A-3D иллюстрируют несколько характерных схем слоистого вброса топлива, которое может впрыскиваться инжекторами, сконфигурированными согласно некоторым вариантам реализации.

Фиг.4 показывает блок-схему, иллюстрирующую подходящую систему для адаптивного управления ионизацией согласно некоторым вариантам реализации.

Фиг.5 показывает блок-схему, иллюстрирующую адаптивную систему управления согласно некоторым вариантам реализации.

Фиг.6 показывает вид в продольном разрезе адаптивно управляемого инжектора/воспламенителя согласно одному из вариантов реализации.

Фиг.7 показывает вид с торца адаптивно управляемого инжектора/воспламенителя из Фиг.6, сконфигурированного согласно одному из вариантов реализации.

Фиг.8 показывает блок-схему, иллюстрирующую последовательность операций для сжигания топлива внутри камеры сгорания согласно некоторым вариантам реализации.

Фиг.9 показывает блок-схему, иллюстрирующую последовательность операций для регулировки степени ионизации внутри камеры сгорания согласно некоторым вариантам реализации.

ПОДРОБНОЕ ОПИСАНИЕ

В настоящую заявку полностью включены посредством ссылки следующие документы:

заявка на патент США № 12/841170, поданная 21 июля 2010 года и названная «ИНТЕГРИРОВАННЫЕ ТОПЛИВНЫЕ ИНЖЕКТОРЫ И ВОСПЛАМЕНИТЕЛИ И СООТВЕТСТВУЮЩИЕ СПОСОБЫ ИСПОЛЬЗОВАНИЯ И ИЗГОТОВЛЕНИЯ»,

заявка на патент США № 12/804510, поданная 21 июля 2010 года и названная «ПРИВОДЯЩИЕ УЗЛЫ ТОПЛИВНОГО ИНЖЕКТОРА И СООТВЕТСТВУЮЩИЕ СПОСОБЫ ИСПОЛЬЗОВАНИЯ И ИЗГОТОВЛЕНИЯ»,

заявка на патент США № 12/841146, поданная 21 июля 2010 года и названная «ВОСПЛАМЕНИТЕЛИ ИНТЕГРИРОВАННОГО ТОПЛИВНОГО ИНЖЕКТОРА С БЛОКАМИ ПРОВОДЯЩИХ КАБЕЛЕЙ»,

заявка на патент США № 12/841149, поданная 21 июля 2010 года и названная «ФОРМИРОВАНИЕ ДОЗЫ ТОПЛИВА В КАМЕРЕ СГОРАНИЯ С НЕСКОЛЬКИМИ ПРИВОДНЫМИ МЕХАНИЗМАМИ И/ИЛИ КОНТРОЛЕМ ИОНИЗАЦИИ»,

заявка на патент США № 12/841135, поданная 21 июля 2010 года и названная «КЕРАМИЧЕСКИЙ ИЗОЛЯТОР И СПОСОБЫ ЕГО ИСПОЛЬЗОВАНИЯ И ИЗГОТОВЛЕНИЯ»,

заявка на патент США № 12/804509, поданная 21 июля 2010 года и названная «СПОСОБ И СИСТЕМА ТЕРМОХИМИЧЕСКОЙ РЕГЕНЕРАЦИИ ДЛЯ ОБЕСПЕЧЕНИЯ КИСЛОРОДОСОДЕРЖАЩЕГО ТОПЛИВА, НАПРИМЕР, В ОХЛАЖДАЕМЫХ ТОПЛИВОМ ТОПЛИВНЫХ ИНЖЕКТОРАХ»,

заявка на патент США № 12/804508, поданная 21 июля 2010 года и названная «СПОСОБЫ И СИСТЕМЫ ДЛЯ УМЕНЬШЕНИЯ ФОРМИРОВАНИЯ ОКСИДОВ АЗОТА ВО ВРЕМЯ ГОРЕНИЯ В ДВИГАТЕЛЯХ»,

заявка на патент США № 12/581825, поданная 19 октября 2009 года и названная «СИСТЕМА ДЛЯ ХРАНЕНИЯ, ДОЗИРОВАНИЯ И ВОСПЛАМЕНЕНИЯ НЕСКОЛЬКИХ ТОПЛИВ»,

заявка на патент США № 12/653085, поданная 7 декабря 2009 года и названная «ИНТЕГРИРОВАННЫЕ ТОПЛИВНЫЕ ИНЖЕКТОРЫ И ВОСПЛАМЕНИТЕЛИ И СООТВЕТСТВУЮЩИЕ СПОСОБЫ ИСПОЛЬЗОВАНИЯ И ИЗГОТОВЛЕНИЯ»,

заявка на патент США № 12/006774 (на которую получен патент США №7628137), поданная 7 января 2008 года и названная «СИСТЕМА ДЛЯ ХРАНЕНИЯ, ДОЗИРОВАНИЯ И ВОСПЛАМЕНЕНИЯ НЕСКОЛЬКИХ ТОПЛИВ»,

заявка PCT № PCT/US09/67044, поданная 7 декабря 2009 года и названная «ИНТЕГРИРОВАННЫЕ ТОПЛИВНЫЕ ИНЖЕКТОРЫ И ВОСПЛАМЕНИТЕЛИ И СООТВЕТСТВУЮЩИЕ СПОСОБЫ ИСПОЛЬЗОВАНИЯ И ИЗГОТОВЛЕНИЯ»,

предварительная заявка на патент США № 61/237425, поданная 27 августа 2009 года и названная «ПРОИЗВОДСТВО КИСЛОРОДОСОДЕРЖАЩЕГО ТОПЛИВА»,

предварительная заявка на патент США № 61/237466, поданная 27 августа 2009 года и названная «ВБРАСЫВАТЕЛЬ НЕСКОЛЬКИХ ВИДОВ ТОПЛИВА»,

предварительная заявка на патент США № 61/237479, поданная 27 августа 2009 года и названная «ЭНЕРГИЯ ПОЛНОГО СПЕКТРА»,

предварительная заявка на патент США № 61/304403, поданная 13 февраля 2010 года и названная «ЭНЕРГИЯ ПОЛНОГО СПЕКТРА И РЕСУРСНАЯ НЕЗАВИСИМОСТЬ», и

предварительная заявка на патент США № 61/312100, поданная 9 марта 2010 года и названная «СИСТЕМА И СПОСОБ ОБЕСПЕЧЕНИЯ ЗАЩИТЫ ОТ ВЫСОКОГО НАПРЯЖЕНИЯ ВЫСОКОЙ ЧАСТОТЫ, НАПРИМЕР, ДЛЯ ИСПОЛЬЗОВАНИЯ С ТОПЛИВНЫМ ИНЖЕКТОРОМ».

В настоящую заявку полностью включены посредством ссылки заявки на патент США, поданные одновременно с настоящей заявкой 27 октября 2010 года и названные «ИНТЕГРИРОВАННЫЕ ТОПЛИВНЫЕ ИНЖЕКТОРЫ/ВОСПЛАМЕНИТЕЛИ, ПОДХОДЯЩИЕ ДЛЯ КРУПНЫХ ДВИГАТЕЛЕЙ, И СООТВЕТСТВУЮЩИЕ СПОСОБЫ ИСПОЛЬЗОВАНИЯ И ИЗГОТОВЛЕНИЯ» (номер, присвоенный патентным поверенным 69545-8039US) и «ТОПЛИВНЫЙ ИНЖЕКТОР, ПОДХОДЯЩИЙ ДЛЯ ВПРЫСКА НЕСКОЛЬКИХ РАЗНЫХ ТОПЛИВ ВНУТРЬ КАМЕРЫ СГОРАНИЯ» (номер, присвоенный патентным поверенным 69545-8054US).

ОБЩЕЕ ПРЕДСТАВЛЕНИЕ

Настоящее раскрытие описывает устройства, системы и способы сжигания топлива внутри камеры сгорания. Раскрытие также описывает устройства, системы и способы для управления ионизацией внутри камеры сгорания, а также соответствующие системы, узлы, компоненты и способы. Например, несколько вариантов реализации, описанных ниже, направлены на адаптивное управление ионизацией внутри камеры сгорания на основании различных условий внутри камеры сгорания и/или на основании различных условий в областях у или вблизи инжектора/воспламенителя внутри камеры сгорания. Определенные подробности изложены в нижеследующем описании и Фиг.1-9 для обеспечения полного понимания различных вариантов реализации. Однако другие подробности, описывающие хорошо известные структуры и системы, часто относящиеся к двигателям внутреннего сгорания, инжекторам, воспламенителям и/или другим аспектам систем сжигания топлива, не излагаются ниже, чтобы избежать чрезмерного усложнения описания различных вариантов реализации. Таким образом, необходимо понимать, что подробности, изложенные ниже, предоставлены для описания нижеследующих вариантов реализации таким способом, который достаточен для того, чтобы дать возможность специалисту в соответствующей области изготовить и использовать раскрытые варианты реализации. Подробности и преимущества, описываемые ниже, однако, могут не быть необходимыми для практического воплощения некоторых вариантов реализации.

Многие из подробностей, размеров, углов, форм и других признаков, показанных на фигурах, являются лишь признаками конкретных вариантов реализации раскрытия. Соответственно, другие варианты реализации могут иметь другие подробности, размеры, углы и признаки без выхода за рамки сущности или объема настоящего раскрытия. Кроме того, специалисты в данной области должны понимать, что другие варианты реализации раскрытия могут быть воплощены на практике без некоторых из подробностей, описанных ниже.

Ссылка в настоящем документе на «один вариант реализации» или «вариант реализации» означает, что конкретные признак, структура или характеристика, описанные применительно к этому варианту реализации, включены по меньшей мере в один вариант реализации. Таким образом, использование выражений «в одном варианте реализации» или «в варианте реализации» в различных местах в настоящем документе не обязательно означает, что все они относятся к одному и тому же варианту реализации. Далее, конкретные признаки, структуры или характеристики могут быть скомбинированы любым подходящим способом в одном или более другом варианте реализации. Заголовки, имеющиеся в настоящем документе, приведены лишь для удобства и не интерпретируют объем или значение заявленного раскрытия.

ПОДХОДЯЩИЕ СИСТЕМЫ И КОМПОНЕНТЫ

Фиг.1 показывает схематичный вид сбоку в разрезе интегрированного инжектора/воспламенителя 110 («инжектора» 110), сконфигурированного согласно одному из вариантов реализации. Инжектор 110, изображенный на фиг.1, сконфигурирован с возможностью впрыскивать различные топлива внутрь камеры 104 сгорания, адаптивно регулировать схему и/или частоту впрысков или вбросов топлива на основании параметров сгорания и условий в камере 104 сгорания, а также с возможностью быть управляемым адаптивной управляющей системой и/или принимать команды от адаптивной управляющей системы, которая управляет ионизацией внутри камеры 104 сгорания. Инжектор 110 может оптимизировать впрыск топлива для быстрого воспламенения и полного сгорания. Помимо впрыска топлива, инжектор 110 включает по меньшей мере один интегрированный воспламеняющий элемент, который сконфигурирован с возможностью воспламенения впрыскиваемого топлива. Как таковой, инжектор 110 может быть использован для преобразования стандартных двигателей внутреннего сгорания таким образом, чтобы они были способны работать с несколькими видами разных топлив. Хотя несколько из признаков изображенного инжектора 110 показаны схематично в целях иллюстрации, несколько из этих схематично изображенных признаков описаны подробно ниже со ссылками на различные признаки вариантов реализации. Соответственно, положение, размер, ориентация и т.д. схематично изображенных компонентов инжектора на фиг.1 не имеют целью ограничить настоящее раскрытие. Кроме того, дополнительные подробности, относящиеся к подходящим инжекторам, могут быть найдены в заявке на патент США № 12/653085, поданной 7 декабря 2009 года и названной «ИНТЕГРИРОВАННЫЕ ТОПЛИВНЫЕ ИНЖЕКТОРЫ И ВОСПЛАМЕНИТЕЛИ И СООТВЕТСТВУЮЩИЕ СПОСОБЫ ИСПОЛЬЗОВАНИЯ И ИЗГОТОВЛЕНИЯ», упоминание которой означает ее включение в настоящий документ в полном объеме.

В изображенном варианте реализации инжектор 110 включает корпус 112, имеющий среднюю часть 116, проходящую между базовой частью 114 и выпускной частью 118. Выпускная часть 118 проходит, по меньшей мере частично, через проход в головке 107 цилиндра таким образом, чтобы помещать концевую часть 119 выпускной части 118 у границы с камерой 104 сгорания. Инжектор 110 также включает проход или канал 123, проходящий через корпус 112 от базовой части 114 к выпускной части 118. Канал 123 сконфигурирован с возможностью позволять протекание топлива через корпус 112. Канал 123 также сконфигурирован с возможностью позволять другим компонентам, таким как приводящее средство 122, проходить через корпус 112 наряду с измерительными компонентами и/или преобразующими энергию и подводящими энергию компонентами инжектора 110. В некоторых вариантах реализации приводящее средство 122 может представлять собой трос или стержень, который имеет первую концевую часть, которая функционально соединена с регулирующим подачу устройством 120, или клапаном 120 подачи, которое или который несется концевой частью 119 выпускной части 118. Как таковой, клапан 120 подачи расположен вблизи границы с камерой 104 сгорания. Хотя это не показано на фиг.1, в некоторых вариантах реализации инжектор 110 может включать более одного клапана подачи, а также по меньшей мере один обратный клапан, расположенные вблизи камеры 104 сгорания и в других местах корпуса 112.

Согласно еще одному признаку изображенного варианта реализации, приводящее средство 122 также включает вторую концевую часть, функционально соединенную с приводом 124. Вторая концевая часть может также быть соединена с контроллером или процессором 126. Как описано подробно со ссылкой на различные варианты реализации, контроллер 126 и/или привод 124 сконфигурированы с возможностью быстро и точно приводить в движение приводящее средство 122 для впрыска топлива внутрь камеры 104 сгорания через клапан 120 подачи. Например, в некоторых вариантах реализации клапан 120 подачи может перемещаться наружу (например, к камере 104 сгорания), а в других вариантах реализации клапан 120 подачи может перемещаться внутрь (например, от камеры 104 сгорания) для дозирования топлива и управления впрыском топлива. Кроме того, в некоторых вариантах реализации привод 124 может растягивать приводящее средство 122, чтобы удерживать клапан 120 подачи в закрытой, или прижатой к седлу, позиции, и привод 124 может освобождать приводящее средство 122, чтобы позволить клапану 120 подачи впрыскивать топливо, и наоборот. Привод 124 может приводиться в действие контроллером, а также другими создающими усилие компонентами (например, акустическими, электромагнитными и/или пьезоэлектрическими компонентами) для обеспечения желаемых частоты и схемы вбросов впрыскиваемого топлива.

В некоторых вариантах реализации приводящее средство 122 может включать по меньшей мере один измерительный и/или передающий компонент для определения параметров и условий камеры сгорания. Например, приводящее средство 122 может быть сформировано из оптоволоконных тросов, изолированных трансдукторов, интегрированных внутрь стержня или троса, или может включать другие датчики для определения и передачи данных камеры сгорания. Хотя это не показано на фиг.1, в других вариантах реализации и как описано подробно ниже, инжектор 110 может включать другие датчики или средства мониторинга, расположенные в различных местах на инжекторе 110. Например, корпус 112 может включать оптические волокна, интегрированные внутрь материала корпуса 112, или материал корпуса 112 сам может быть использован для передачи данных о сгорании по меньшей мере одному контроллеру. Кроме того, клапан 120 подачи может быть сконфигурирован с возможностью действовать в качестве датчика или нести датчики, с тем, чтобы передавать данные о сгорании одному или более контроллеру, относящемуся к инжектору 110. Эти данные могут передаваться посредством беспроводных, проводных, оптических или иных средств связи. Такая обратная связь обеспечивает возможность чрезвычайно быстрых и адаптивных регулировок для оптимизации факторов и характеристик впрыска топлива, включая, например, давление подачи топлива, график инициации впрыска топлива, продолжительность впрыска топлива для производства многослойных или послойных доз, график одного, нескольких или непрерывных воспламенений плазмой или конденсаторных разрядов и т.д.

Такая обратная связь и адаптивная регулировка контроллером 126, приводом 124 и/или приводящим средством 122 также обеспечивают возможность оптимизации выходных параметров, таких как производимая мощность, топливная экономичность и сведение к минимуму или устранение загрязняющих выбросов, включающих оксиды азота. Опубликованная заявка на патент США № 2006/0238068, упоминание которой означает ее включение в настоящий документ в полном объеме, описывает подходящие приводы для приведения ультразвуковых трансдукторов в инжекторе 110 и других инжекторах, описываемых в настоящем документе.

Инжектор 110 также может включать регулирующее воспламенение и подачу устройства, или крышку, 121 (показано или показана пунктирными линиями на фиг.1), которое или которая поддерживается концевой частью 119 вблизи прохода 107. Крышка 121 по меньшей мере частично закрывает или окружает клапан 120 подачи. Крышка 121 может также быть сконфигурирована с возможностью защищать некоторые компоненты инжектора 110, такие как датчики или иные осуществляющие мониторинг компоненты. Крышка 121 может также действовать в качестве воспламеняющего катализатора, носителя катализатора, теплоизолированного удерживающего тепло термического стимулятора для воспламенения топлива и/или первого электрода для воспламенения впрыскиваемых топлив. Кроме того, крышка 121 может быть сконфигурирована с возможностью влиять на форму, схему и/или фазу впрыскиваемого топлива. Клапан 120 подачи может тоже быть сконфигурирован с возможностью влиять на эти свойства впрыскиваемого топлива. Например, в некоторых вариантах реализации крышка 121 и/или клапан 120 подачи могут быть сконфигурированы с возможностью производить быструю газификацию топлива, текущего через эти компоненты. В частности, крышка 121 и/или клапан 120 подачи могут включать поверхности, имеющие острые грани, катализаторы или иные признаки, которые производят газ или пар из быстро входящего жидкого топлива или смеси жидкого топлива и твердого топлива. Ускорение и/или частота приведения в движение клапана 120 подачи могут тоже быстро газифицировать впрыскиваемое топливо. Во время работы эта быстрая газификация вынуждает пар или газ, выбрасываемый из выпускной части 118, более быстро и более полно сгорать. Кроме того, такая быстрая газификация может быть использована в различных сочетаниях с перегревом жидких топлив и плазменными или акустическими толчками распространяющихся вбросов топлива. В других вариантах реализации частота приведения в движение клапана 120 подачи может индуцировать распространение плазмы для выгодного влияния на форму и/или схему впрыскиваемого топлива. Заявка на патент США № 672636 (патент США 4122816), упоминание которой означает ее включение в настоящий документ в полном объеме, описывает подходящие приводы для инициации распространения плазмы с помощью инжектора 110 и других инжекторов, описываемых в настоящем документе.

Согласно еще одному аспекту изображенного варианта реализации и как описано подробно ниже, по меньшей мере часть корпуса 112 выполнена из по меньшей мере одного диэлектрического материала 117, подходящего для обеспечения возможности высокоэнергетического воспламенения для сжигания разных топлив, включая неочищенные топлива или имеющие низкую удельную энергию топлива. Эти диэлектрические материалы 117 могут обеспечивать достаточную электрическую изоляцию высокого напряжения для производства, изоляции и/или доставки искры или плазмы для вос