Способ кислотной переработки красных шламов
Изобретение относится к способу кислотной переработки красных шламов, получаемых в процессе производства глинозема, и может применяться в технологиях утилизации отходов шламовых полей глиноземных заводов. Способ включает выщелачивание с использованием в качестве выщелачивающего реагента водорастворимых карбоновых кислот жирного ряда с числом атомов углерода в молекуле менее 3. Из полученного раствора проводят разделение извлекаемых целевых продуктов. При этом выщелачивание проводят при порционном добавлении красного шлама с контролем значений pH, при достижении значения pH, равного 2,3-3,8, добавление красного шлама прекращают. По завершению выщелачивания раствор выдерживают при заданной температуре выщелачивания не менее одного часа. Техническим результатом является обеспечение высокой степени извлечения ценных компонентов и увеличение производительности процесса за счет исключения выпадения высокодисперсного гидроксида алюминия. 1 табл.
Реферат
Изобретение относится к металлургической промышленности, а именно к кислотной переработке красных шламов, получаемых в процессе производства глинозема, и может применяться в технологиях утилизации отходов шламовых полей глиноземных заводов.
Известен способ переработки красного шлама глиноземного производства путем его выщелачивания серной кислотой с переводом ценных компонентов в раствор (RU, патент №2140998, C22B 7/00, C22B 59/00, опубл. 10.11.1999 г.). При этом выщелачивание ведут серной кислотой с концентрацией 74-100 г/л при температуре не ниже 64°C.
Недостатком данного способа является то, что в пределах заявленных температур и концентраций не обеспечивается степень извлечения в раствор главного ценного компонента - скандия более чем 50%, поскольку вне этих пределов ограничивающим фактором является «загипсование» пульпы - превращение ее в густую вязкую массу, чрезвычайно затрудняющее выделение целевого продукта - скандийсодержащего раствора.
Наиболее близким к заявленному способу является способ извлечения алюминия, кальция и редкоземельных металлов из красных шламов глиноземных производств, включающий выщелачивание кислотой, фильтрацию раствора и разделение извлекаемых целевых продуктов (RU, патент №2048556, C22B 21/00, C22B 26/20, C22B 59/00, C01F 7/02, опубл. 20.11.1995 г.). При этом выщелачивание проводят с использованием в качестве выщелачивающего реагента водорастворимых карбоновых кислот жирного ряда с числом атомов углерода в молекуле менее 3 при массовом соотношении сухой твердой и жидкой фаз 1:(4-18) и концентрации кислот 3-25% при температуре 30-80°C в течение 0,5-3 ч. В качестве выщелачивающего реагента используют водный раствор муравьиной кислоты HCOOH и водный раствор уксусной кислоты CH3COOH с различной концентрацией.
Недостаток данного способа заключается в отсутствии контроля уровня pH, который является решающим информативным параметром для управления процессом выщелачивания, поскольку осаждение гидроксидов металлов происходит в весьма узких интервалах кислотности. Так, TiO(OH)2 уже при pH=2 полностью переходит в твердую фазу. Fe(OH)3 начинает частично осаждаться при pH=1,5, а при pH=4,1 выпадает целиком. Al(ОН)3 полностью растворим при pH<3,2. В результате контроль процесса выщелачивания красного шлама, представляющего собой сложную многокомпонентную систему, очень затруднен. К тому же переменное содержание щелочи в исходном шламе не позволяет точно предсказать кислотность и другие свойства получаемой суспензии. Следует также учесть, что карбоновые кислоты жирного ряда, в том числе муравьиная и уксусная, способны удерживать в растворе соединения кремния с образованием трудноотделимых коллоидных осадков аморфного кремнезема.
В основу изобретения положена задача, заключающаяся в оптимизации условий выщелачивания красных шламов кислотами в процессе их переработки.
Техническим результатом является обеспечение высокой степени извлечения ценных компонентов и увеличение производительности процесса.
Достижение вышеуказанного технического результата обеспечивается тем, что в способе кислотной переработки красных шламов, включающем выщелачивание с использованием в качестве выщелачивающего реагента водорастворимых карбоновых кислот жирного ряда с числом атомов углерода в молекуле менее 3, фильтрацию раствора и разделение извлекаемых целевых продуктов, выщелачивание проводят при порционном добавлении красного шлама с контролем значений pH, при достижении заданного значения pH, равного 2,3-3,8, добавление красного шлама прекращают, по завершении выщелачивания раствор выдерживают при заданной температуре выщелачивания не менее одного часа.
Кислотная обработка красного шлама при максимальном извлечении ценных компонентов, высокой производительности процесса и эффективном разделении получаемых суспензий на твердую и жидкую фазы обеспечивается благодаря контролю значений pH, проведению выщелачивания при заданном значении pH, равном 2,3-3,8, и выдержке раствора при заданной температуре выщелачивания по его завершении.
Значение pH, равное 2,3-3,8, определено исходя из одновременного обеспечения условий высокой производительности процесса кислотной обработки и условий осуществления последующей фильтрации. При значении pH, равном менее 2,3, количество введенного в процесс и обработанного красного шлама оказывается малым. При значении pH, равном более 3,8, затрудняется последующая фильтрация, в первую очередь, из-за присутствия высокодисперсного аморфного кремнезема и практически не фильтруется и начала выпадения высокодисперсного гидроксида алюминия.
Способ кислотной переработки красных шламов осуществляли следующим образом.
Исходный красный шлам содержал, %: SiO2 9,3; Al2O3 12,4; Fe2O3 44,3; TiO2 4,4; P2O5 0,75; CaO 13,6; MgO 0,93; Na2O 2,9; K2O<0,15; V2O5 0,09; Cr2O3 0,05; MnO 0,52; SO3 2,8; редкоземельные металлы (сумма) 0,14; Sc 9,0·10-3.
Выщелачивание проводили с использованием в качестве выщелачивающего реагента водорастворимых карбоновых кислот жирного ряда с числом атомов углерода в молекуле менее 3, а именно водный раствор муравьиной кислоты HCOOH, водный раствор уксусной кислоты CH3COOH и их смеси.
Термостатированный реактор с устройством перемешивания и датчиком pH наполняли 15% раствором муравьиной и/или уксусной кислоты, доводили температуру до 80°C и затем малыми порциями добавляли красный шлам с непрерывным контролем значений pH. Процедуру прекращали по достижении заданной кислотности суспензии (в интервале pH=1,6-4,0), но перемешивание продолжали еще в течение часа с момента подачи последней порции шлама. Далее перемешивание останавливали и при той же температуре выдерживали суспензию еще один час. Затем твердый осадок отделяли от жидкости фильтрованием, после чего твердую и жидкую фазы анализировали для определения степени извлечения наиболее ценных компонентов в раствор.
В таблице приведены полученные описанным выше способом степени извлечения по алюминию, скандию и редкоземельным металлам в зависимости от pH пульпы при завершении процесса выщелачивания. Результаты, полученные для обеих кислот отдельно и для их равнообъемной смеси, отличаются незначительно. При смещении в щелочную сторону (возрастание pH) наблюдается небольшое снижение степени извлечения, но при этом увеличивается производительность процесса, сначала резко до pH=2,3, а затем более плавно до pH=3,8. При значении pH=4,0 фильтрование становится невозможным из-за накопления коллоида, состоящего, в первую очередь, из аморфных форм соединений кремния и алюминия. В итоге получается, что оптимальные значения pH, при которых можно прекращать добавление красного шлама, находятся в интервале 2,3-3,8 для любых комбинаций уксусной и муравьиной кислот.
При промышленной реализации способа выбор кислот определяется только их стоимостью и доступностью. Оказавшиеся в растворе соединения алюминия, скандия и редкоземельных металлов затем отделяются известными способами.
Таблица | |||||
№ | pH суспензии при завершении процесса | Извлечение в раствор, % | Производительность процесса кислотной обработки шлама, г/дм3·ч | ||
Al | Sc | Редкоземельные металлы (сумма) | |||
Муравьиная кислота | |||||
1 | 1,6 | 71,5 | 74,4 | 57,2 | 16,7 |
2 | 1,8 | 71,0 | 73,8 | 56,8 | 102,9 |
3 | 2,3 | 70,3 | 73,1 | 56,2 | 203,7 |
4 | 2,8 | 69,5 | 72,3 | 55,6 | 235,6 |
5 | 3,3 | 68,8 | 71,6 | 55,0 | 245,7 |
6 | 3,8 | 67,5 | 70,2 | 54,0 | 248,8 |
7 | 4,0 | суспензия не фильтруется | |||
Уксусная кислота | |||||
8 | 1,6 | 65,0 | 67,7 | 52,1 | 15,2 |
9 | 1,8 | 64,5 | 67,1 | 51,7 | 93,5 |
10 | 2,3 | 63,9 | 66,5 | 51,2 | 185,2 |
11 | 2,8 | 63,2 | 65,8 | 50,6 | 214,2 |
12 | 3,3 | 62,5 | 65,1 | 50,1 | 223,4 |
13 | 3,8 | 61,4 | 63,9 | 49,1 | 226,2 |
14 | 4,0 | суспензия не фильтруется | |||
Смесь муравьиной и уксусной кислот в объемной пропорции 1:1 | |||||
15 | 1,6 | 67,6 | 70,3 | 54,1 | 15,8 |
16 | 1,8 | 67,0 | 69,8 | 53,7 | 97,2 |
17 | 2,3 | 66,4 | 69,1 | 53,2 | 192,5 |
18 | 2,8 | 65,7 | 68,4 | 52,6 | 222,6 |
19 | 3,3 | 65,0 | 67,6 | 52,0 | 232,2 |
20 | 3,8 | 63,8 | 66,4 | 51,1 | 235,1 |
21 | 4,0 | суспензия не фильтруется |
Способ кислотной переработки красных шламов, включающий выщелачивание с использованием в качестве выщелачивающего реагента водорастворимых карбоновых кислот жирного ряда с числом атомов углерода в молекуле менее 3, фильтрацию раствора и разделение извлекаемых из раствора целевых продуктов, отличающийся тем, что выщелачивание проводят при порционном добавлении красного шлама в выщелачивающий реагент при перемешивании с контролем кислотности раствора, причем после достижения значения pH 2,3-3,8 добавление красного шлама прекращают и продолжают выщелачивание в течение часа, а по завершении выщелачивания раствор выдерживают при заданной температуре выщелачивания не менее одного часа.