Устройство для выделения нанодисперсных порошков и способ его эксплуатации

Изобретение относится к области выделения частиц заданной дисперсности из суспензии и может быть применено в промышленности при получении нанодисперсных порошков для изготовления высокопрочных изделий с улучшенными свойствами. Устройство для выделения нанодисперсных порошков оксидов металла из суспензии содержит корпус, выполненный в виде двух сообщающихся между собой емкостей из диэлектрического материала, наполненных суспензией, содержащей дистиллированную воду и частицы оксидов металлов, и соединенных между собой трубопроводом с возможностью разделения, при этом одна из емкостей выполнена с возможностью подключения к ней положительного потенциала, а другая - отрицательного потенциала и с возможностью перемещения в нее под действием электрического поля более крупных по размерам частиц из емкости с положительным потенциалом. Техническим результатом изобретения является увеличение производительности за счет сокращения времени выделения частиц и увеличение срока службы. 2 н. и 5 з.п. ф-лы, 1 ил.

Реферат

Изобретение относится к устройствам для выделения из суспензии продуктов сгорания металлогазовой смеси частиц заданной дисперсности и может быть применено в промышленности при получении нанодисперсных порошков, используемых в процессе изготовления высокопрочных изделий с улучшенными свойствами.

Известен способ и устройство, соджержащее корпус, для получения нанодисперсных порошков оксидов переходных металлов из суспензий, раскрытые в RU 2400428 C2, B82B 3/00, 27.09.2010. Однако недостатками указанного устройства являются сложность процесса получения нанодисперсных порошков, низкая производительность и большие энергозатра.

Указанное устройство по своей технической сущности является наиболее близким предлагаемому изобретению.

Задачей изобретения является повышение производительности и снижение энергозатрат.

Техническим результатом является увеличение производительности и сокращение энергетических затрат.

Технический результат достигается за счет того, что в устройстве для выделения нанодисперсных порошков оксидов металлов из суспензии, содержащем корпус, корпус выполнен в виде двух сообщающихся между собой емкостей из диэлектрического материала, наполненных суспензией, содержащей дистиллированную воду и частицы оксидов металлов, при этом одна емкость выполнена с возможностью подключения к ней положительного потенциала, а другая - отрицательного потенциала и с возможностью перемещения в нее под действием электричесого поля более крупных по размерам частиц из емкости с положительным потенциалом.

На чертеже условно изображено устройство для выделения нанодисперсных порошков из суспензии оксида алюминия.

Устройство включает емкости 1 и 2, соединенные между собой трубопроводом 3 с вентилем 4. Емкость 1 выполнена с трубопроводами 5 и 6, трубопровод 6 содержит вентиль 7 для слива суспензии с нанодисперсным порошком. Емкость 2 имеет трубопровод 8 с вентилем 9 для слива жидкой фазы (среды) с высоким содержанием распределенных частиц с большими по сравнению с наночастицами размерами.

Емкость 1 содержит электрод 10 для подключения положительного электрического потенциала, а емкость 2 - электрод 11 для подводки отрицательного электрического потенциала.

Устройство работает следующим образом.

Устройство приводят в исходное состояние. Для этого открывают вентиль 4 и закрывают вентили 7 и 9. Емкости 1 и 2 по трубопроводу 5 наполняют суспензией, содержащей оксиды алюминия. Далее создают постоянное электрическое поле, прикладывая положительный потенциал посредством электрода 10 к среде (жидкой фазе), находящейся в емкости 1, а отрицательный потенциал посредством электрода 11 к среде (жидкой фазе), находящейся в емкости 2.

Для выделения нанодисперсных порошков из суспензии используют явление электрофореза. Под электрофорезом понимают процесс неравномерного по скорости перемещения под действием постоянного электрического поля в дисперсионной среде разных по величине дисперсных частиц. Под действием электрофореза большие по размерам частицы перемещаются из емкости 1 в емкость 2 с более высокими по сравнению с меньшими по размерам частицами скоростями. Указанное приводит к тому, что в емкости 1 относительное количество нанодисперсных частиц с течением времени увеличивается, а относительное количество более крупных дисперсных частиц уменьшается. Соответственно в емкости 2 увеличивается относительное количество более крупных дисперсных частиц, а относительное количество нанодисперсных частиц уменьшается.

При достижении необходимой концентрации нанодисперсных частиц в емкости 1 вентилем 4 емкости 1 и 2 разделяют и открывают вентили 7 и 9. По трубопроводу 6 суспензию с преимущественным содержанием наночастиц (нанодисперсных порошков) сливают во внешний сосуд (не показан). Суспензию с преимущественным содержанием крупных частиц из емкости 2 сливают посредством вентиля 9 трубопровода 8. При необходимости процесс повторяют, каждый раз удаляя из емкости 1 дисперсные частицы, все более приближающиеся по своим размерам к нанодисперсным частицам.

Возможны следующие варианты исполнения предлагаемого устройства.

Емкости могут быть выполнены из двух коаксиально расположенных труб с возможностью их разделения посредством вентиля или водонепроницаемой перегородки. Оксидом металла, в частном случае, является оксид алюминия.

Способ выделения порошков оксидов металла из суспензии с использованием устройства по любому из вышеназванных вариантов включает наполнение двух емкостей суспензией, содержащей дистиллированную воду и частицы оксидов металла, создание постоянного электрического поля путем приложения положительного потенциала к одной емкости и отрицательного потенциала к другой емкости и перемещение под действием электрического поля более крупных по размерам частиц в емкость с отрицательным потенциалом. При этом напряженность постоянного электрического поля изменяют в пределах от 100 до 1000 В/м, а в дистиллированную воду добавляют хлористый натрий или хлористый калий в количестве (25-250)·10-3 кг/м3.

Предлагаемые технические решения являются промышленно применимыми, обладают новизной и изобретательским уровнем.

1. Устройство для выделения нанодисперсных порошков оксидов металла из суспензии, содержащее корпус, отличающееся тем, что корпус выполнен в виде двух сообщающихся между собой емкостей из диэлектрического материала, наполненных суспензией, содержащей дистиллированную воду и частицы оксидов металлов, и соединенных между собой трубопроводом с возможностью разделения, при этом одна из емкостей выполнена с возможностью подключения к ней положительного потенциала, а другая - отрицательного потенциала и с возможностью перемещения в нее под действием электрического поля более крупных по размерам частиц из емкости с положительным потенциалом.

2. Устройство по п.1, отличающееся тем, что емкости выполнены в виде двух коаксиально расположенных труб.

3. Устройство по п.1, отличающееся тем, что емкости выполнены с возможностью разделения посредством вентиля или водонепроницаемой перегородки.

4. Устройство по п.1, отличающееся тем, что оксидом металла является оксид алюминия.

5. Способ выделения нанодисперсных порошков оксидов металла из суспензии с использованием устройства по любому из пп.1-4, включающий наполнение двух емкостей суспензией, содержащей дистиллированную воду и частицы оксидов металла, создание постоянного электрического поля путем приложения положительного потенциала к одной емкости и отрицательного потенциала к другой емкости и перемещение под действием электрического поля более крупных по размерам частиц в емкость с отрицательным потенциалом.

6. Способ по п. 5, отличающийся тем, что напряженность постоянного электрического поля изменяют в пределах от 100 до 1000 В/м.

7. Способ по п.5, отличающийся тем, что в дистиллированную воду добавляют хлористый натрий или хлористый калий в количестве (25-250) 10-3кг/м3.