Заякоренная профилирующая подводная обсерватория
Иллюстрации
Показать всеИзобретение относится к устройствам для подводных геофизических исследований морей и океанов. Заякоренная профилирующая подводная обсерватория сочленена с диспетчерской станцией и состоит из: подповерхностного буя, заякоренного с помощью стального буйрепа, который служит ходовым тросом для профилирующего носителя, содержащего комплект измерительных датчиков, модуль центрального микроконтроллера, электропривод, и передвигающегося по ходовому тросу; системы цифровой связи посредством бесконтактной индуктивной врезки в ходовой трос, поверхностного буя-вехи с модемами передачи данных и телеметрической информации по радиоканалу, гидроакустического размыкателя якорного балласта. На ходовом тросе над гидроакустическим размыкателем якорного балласта закреплена нижняя плавучесть шарообразной формы, внутри которой размещен модем гидроакустического канала связи, электропривод, сочлененный с телескопическим устройством, в оконечности которого установлен сейсмометр. Профилирующий носитель дополнительно содержит датчики содержания углеводородов, углекислого газа, альфа-, бета- и гамма-радиоактивности. Улучшаются условия эксплуатации, расширяются функциональные возможности подводной обсерватории. 2 ил.
Реферат
Изобретение относится к области геофизики, а более конкретно к устройствам измерения геофизических и гидрофизических параметров в придонной зоне морей и океанов, и может быть использовано при оперативной оценке сейсмического и гидродинамического состояния районов и прогноза возможных сейсмических и экологических последствий катастрофических явлений природного и техногенного характера, а более конкретно для автоматического телеуправляемого мониторинга вод шельфово-склоновой зоны моря в режиме реального времени.
Известны автономные донные станции (RU №2270464 [1], RU №2276388 [2], RU №2294000 [3], Башилов И.П. и др. Донные геофизические обсерватории: методы конструирования и области применения / Научное приборостроение, 2008, т.18, №2, с.93-95 [4], RU 2009116092 A, 20.11.2010 [5], Подводная геофизическая обсерватория / ОКБ ОТ РАН / 2-я Международная специализированная выставка «SIMEXPO - Научное приборостроение». - М, 13.10.2008 [6], RU 2331876 C2, 20.08.2008 [7]).
Так, например, известные донные станции [1,2,3]) представляют собой цилиндрические или шарообразные корпусы, снабженные балластом для установки их на грунт, внутри и на корпусе которых установлены измерительные датчики и средства обработки первичной информации. В качестве измерительных датчиков используются, как правило, гидрофоны и геофоны. Зарегистрированная датчиками информация хранится на флеш-памяти донной станции, которая после подъема донных станций обрабатывается с помощью комплекса судовой аппаратуры или считывается по каналам гидроакустической связи. Известные донные станции предназначены в основном для регистрации сейсмических сигналов в морских акваториях. Так, устройство [3] представляет собой морскую автономную донную сейсмическую станцию, устанавливаемую на морское дно преимущественно с плавучих средств. Станция включает герметичный корпус, состоящий из двух полусфер, снабженных в месте сочленения уплотнительным кольцом. Внутри размещена геофизическая аппаратура, включающая измерительные датчики геофонного и гидрофонного типов, модули приема, регистрации, преобразования и хранения зарегистрированных сигналов, блоки сопряжения с бортовым модулем после всплытия и подъема устройства на борт, спутниковый и гидроакустический каналы связи, блок ориентации, блок синхронизации, блок управления размыкателем и блок питания. На внешней поверхности корпуса установлены гидроакустическая и спутниковая антенны, средства для поиска донной станции при всплытии, такелажные элементы и разъемы, устройство постановки на дно и обеспечения всплытия донной станции, выполненное в виде якоря-балласта. Технический результат - повышение точности измерений, снижение трудоемкости и изготовления донной станции, упрощение процессов ее постановки на дно и возвращения на борт после окончания работы.
Недостатком известных автономных донных станций является то, что они предназначены для регистрации только сигналов сейсмической природы. В то же время автономные донные станции могут применяться и при решении таких задач, как изучение строения земной коры, исследование совокупности проявления геофизических полей и тектонических разломов непосредственно на дне океана, геофизический мониторинг сложных гидротехнических сооружений.
Известные также подводные обсерватории (патент EP №0519031 [8], патент NO №911639 [9], патент ЕР №0516662 [10], кн.: Средства и методы океанологических исследований. Смирнов Г.В., Еремеев В.Н., Агеев М.Д. и др. - М, Наука, 2005 [11], патент AU №2002100749, 04.09.2002 [12]), которые включают донный сейсмометр, гидрофизический модуль, датчик магнитного поля, средства первичной обработки и хранения информации, средства связи с комплексом судовой аппаратуры, установленные на платформе, что позволяет регистрировать более полный спектр геофизических и гидрофизических параметров и, как следствие этого, расширить функциональные возможности донных станций.
Недостатком известных подводных обсерваторий является то, что состав их измерительных средств не позволяет решить задачу, связанную с комплексным исследованием параметров морской среды в придонной зоне, включая тектонические процессы, происходящие под морским дном, а также задачу геофизического мониторинга сложных гидротехнических сооружений.
Выявленных недостатков лишено устройство, представляющее собой подводную обсерваторию (патент RU №2348950 [13]), состоящую из герметичного корпуса, установленного на раме, и содержащую средства регистрации геофизических сигналов, включающие донный сейсмометр, гидрофизический модуль, датчик магнитного поля, блок оптических измерений, средства хранения информации, средства связи с диспетчерской станцией, датчик пространственной ориентации, радиобуй, балласт, размыкатель балласта, дополнительно введены блок гидрохимических измерений, спектроанализатор, сейсмоакустический блок, блок гидроакустического телеуправления, блок контроля радиоактивного загрязнения, блок регистрации и управления, модем кабельной линии связи, в котором блок гидрохимических измерений своими входами соединен с выходами блока контроля радиоактивного загрязнения, спектроанализатора, а своим выходом соединен с входом блока регистрации и управления, который другими выходами соединен с выходами донного сейсмометра, гидрофизического модуля, датчика магнитного поля, блока оптических измерений, модемом кабельной линии связи, а входом-выходом соединен с входом-выходом блока гидроакустического телеуправления. Отличительные признаки по сравнению с известными устройствами [1-12], заключающиеся в том, что в известное устройство дополнительно введены блок гидрохимических измерений, спектроанализатор, сейсмоакустических блок, блок гидроакустического телеуправления, блок контроля радиоактивного загрязнения, блок регистрации и управления, модем кабельной линии связи, в котором блок гидрохимических измерений своими входами соединен с выходами блока контроля радиоактивного загрязнения, спектроанализатора, а своим выходом соединен с входом блока регистрации и управления, который другими выходами соединен с выходами донного сейсмометра, гидрофизического модуля, датчика магнитного поля, блока оптических измерений, модемом кабельной линии связи, а входом-выходом соединен с входом-выходом блока гидроакустического телеуправления, позволяют решить техническую задачу не только оперативной оценки сейсмического состояния исследуемых районов, но и позволяют решить задачу оперативной оценки гидродинамического состояния на границе вода-грунт, обусловленных изменением окружающей среды под воздействием процессов природного и техногенного характера.
Однако состав измерительных средств данного устройства не позволяет выполнить анализ на содержание метана в водной среде в зонах размещения нефтегазовых трубопроводов при наличии утечек, а также определение координат газового образования. Кроме того, при использовании сейсмических датчиков электромеханического типа возможны нарушения в их работе при наличии ударов при постановке геофизической обсерватории на грунт, а также при отклонении положения сейсмических датчиков от вертикали на угол, больший максимально допустимого. Также ввиду небольшой собственной плавучести и небольшого внутреннего пространства сферы на обсерваторию невозможно установить блоки автономного питания большой емкости и, как следствие, невозможно увеличить срок автономной работы устройства без потери способности самостоятельного всплытия на водную поверхность.
В то же время посредством данных устройств, при их усовершенствовании, возможно решение следующих фундаментальных задач, заключающихся в изучении строения земной коры в акваториях мирового океана: исследование совокупности проявления геофизических полей в зонах тектонических разломов непосредственно на дне океана, исследование состояния морской среды в придонной зоне и ее взаимодействие с тектоническими процессами, геофизический мониторинг сложных гидротехнических сооружений, оперативная оценка сейсмического и гидродинамического состояния районов и прогноза возможных сейсмических и экологических последствий.
Известное устройство (заявка RU №2009116092 [5]) представляет собой подводную обсерваторию, состоящую из герметичного прочного корпуса, установленного на несущей раме, и содержащую средства регистрации геофизических и гидрофизических данных, включающие сейсмометр, гидрофизический модуль, датчик магнитного поля, средства связи с комплексом судовой аппаратуры, радиобуй, балласт, размыкатель балласта, блок гидрохимических измерений, блок гидроакустического телеуправления, блок регистрации и управления, в котором блок гидрохимических измерений своим выходом соединен с входом блока регистрации и управления, который другими входами соединен с выходами сейсмометра, гидрофизического модуля, датчика магнитного поля, а входом-выходом соединен с входом-выходом блока гидроакустического телеуправления, в которую дополнительно введены датчик обнаружения метана, соединенный своим выходом с блоком регистрации и управления, донный датчик давления, соединенный своим выходом с блоком регистрации и управления, датчик пространственной ориентации, соединенный своим входом-выходом с входом-выходом блока регистрации и управления; сейсмометр состоит из сейсмического модуля и сейсмоакустического модуля. При этом известная подводная обсерватория сочленена с судовым комплексом и устройством типа “Data”-буй, которые используются для обеспечения функционирования подводной обсерватории по прямому назначению. Кроме того, герметичный прочный корпус, установленный на несущей раме, имеет сферическую форму и выполнен из титана с отношением запаса плавучести к полной массе подводной обсерватории 1:1,35, несущая рама снабжена анкерным устройством, на выносной штанге которого установлен сейсмический модуль.
Благодаря новым отличительным признакам, заключающимся в том, что введены датчик обнаружения метана, соединенный своим выходом с блоком регистрации и управления, датчик пространственной ориентации, соединенный своим входом-выходом с входом-выходом блока регистрации и управления; сейсмометр состоит из сейсмического модуля и сейсмоакустического модуля; герметичный корпус сферической формы, установленный на несущей раме, выполнен из титана с отношением запаса плавучести к полной массе подводной обсерватории 1:1,35; несущая рама снабжена анкерным устройством, на выносной штанге которого установлен сейсмический модуль, обеспечивается возможность выполнить анализ на содержание в водной среде метана за счет ввода в состав измерительных средств датчика метана. Ввод в состав измерительных средств донного датчика давления, соединенного своим выходом с блоком регистрации и управления, позволяет с высокой точностью регистрировать изменение уровня моря и тем самым определять приближение и фиксировать прохождение волны цунами. Выполнение сейсмометра из двух модулей расширяет функциональные возможности устройства и повышает надежность проводимых исследований. Выполнение герметичного прочного корпуса из титана с отношением плавучести к полной массе подводной обсерватории 1:1,35 обеспечивает большую положительную плавучесть обсерватории и возможность установки элементов электрического питания повышенной емкости, обеспечение глубоководных исследований. Снабжение несущей рамы анкерным устройством, на выносной штанге которого установлен сейсмический модуль, позволяет регистрировать сейсмические сигналы на границе раздела вода-грунт.
Однако при использовании данной подводной обсерватории имеется ряд проблем, связанных с влиянием придонных течений на аппаратные шумы, сцеплением ее с мягким дном, микросейсмическими шумами, генерируемыми гравитационными волнами, особенностями распространения сейсмических сигналов в коре океанического типа и др. Например, придонные течения, особенно с рельефом дна в виде крутых склонов подводных гор, являются не коррелированными с направлением и скоростью ветра, что не позволяет из результатов наблюдений исключать данные помехи. При этом квазигармонические помехи могут возникать на частотах 1,3 Гц, 3 Гц и 6 Гц и занимать до 40% всего времени регистрации. Причем амплитуды этих помех неустойчивы и могут меняться примерно на 35 дБ.
Известна также подводная обсерватория (патент RU №2468395 C1, 27.11.2012 [13]), которая сочленена с судовым комплексом и устройством типа "Data"-буй и состоящая из герметичного прочного корпуса, установленного на несущей раме, и содержащая средства регистрации геофизических и гидрофизических данных, включающие сейсмометр, гидрофизический модуль, датчик магнитного поля, средства связи с комплексом судовой аппаратуры, радиобуй, балласт, размыкатель балласта, блок гидрохимических измерений, блок гидроакустического телеуправления, блок регистрации и управления, в котором блок гидрохимических измерений своим выходом соединен с входом блока регистрации и управления, который другими входами соединен с выходами сейсмометра, гидрофизического модуля, датчика магнитного поля, а входом-выходом соединен с входом-выходом блока гидроакустического телеуправления, дополнительно содержащая датчик обнаружения метана, соединенный своим выходом с блоком регистрации и управления, донный датчик давления, соединенный своим выходом с блоком регистрации и управления, датчик пространственной ориентации, соединенный своим входом-выходом с входом-выходом блока регистрации и управления; сейсмометр состоит из сейсмического модуля и сейсмоакустического модуля, при этом герметичный прочный корпус, установленный на несущей раме, имеет сферическую форму и выполнен из титана с отношением запаса плавучести к полной массе подводной обсерватории 1:1,35, несущая рама снабжена анкерным устройством, на выносной штанге которого установлен сейсмический модуль, отличается тем, что на несущей раме и в корпусе устройства типа "Data"-буй размещены датчики ядерно-магнитного резонанса, соединенные своими выходами с входом блока регистрации и управления, датчик ядерно-магнитного резонанса состоит из самарий-кобальтовых шайб, что позволяет устранить недостатки, присущие аналогам [1-12].
Однако известное устройство [13] имеют сложную конструкцию, включающую несущую раму, что усложняет постановку их на дно, особенно при постановке такого устройства, например, с нефтегазовой платформы или терминала для контроля гидрологических и физико-химических характеристик водных масс в целях мониторинга экологического состояния морской среды непосредственно у стационарного сооружения. Кроме того, при наличии несущей рамы остается проблема, связанная с влиянием придонных течений на аппаратные шумы, сцеплением их с мягким дном, микросейсмическими шумами, генерируемыми гравитационными волнами, особенностями распространения сейсмических сигналов в коре океанического типа и др. В общем случае придонные течения могут носить как ламинарный, так и турбулентный характер (вследствие наличия неровностей дна). При этом в низкочастотной части диапазона сейсмометра возможно возникновение помех за счет турбулентных явлений на крупных неровностях дна (до 10 м). В связи с этим практически полностью исключается возможность использования сейсмических приемников с инерционной массой на упругой подвеске, несмотря на то, что они имеют высокую чувствительность, широкий динамический и частотный диапазоны.
В окраинных морях Российской Федерации в шельфовых зонах активно ведутся сейсмоакустические исследования, использующие методы активного зондирования. Для этого используются, как правило, системы пневмопушек или спаркеры и бумеры, суммарная мощность которых превышает биологически допустимые нормы. Известны исследования экологов, опубликованные в последние годы, о необратимых воздействиях мощных акустических импульсов на природу океана, что дает основания сформировать различные меры, ограничивающие плановое проведение морских сейсмических исследований. Преодоление ограничений за счет уменьшения мощности зондирующих сигналов в морской сейсморазведке до настоящего времени активно не рассматривалось, поскольку считалось, что в этом случае не обеспечивается решение главной задачи - получения качественных результатов сейсмопрофилирования. С другой стороны, в смежной отрасли - в подводной гидролокации используются методы когерентного зондирования, которые могут представлять интерес для систем морской сейсморазведки. Излучатели, применяемые в подводной гидролокации, имеют существенно меньшую мощность, а качество зондирования достигается за счет использования когерентных методов обработки принимаемых эхо-сигналов. Кроме того, использование, например, когерентного зондирования, посредством гидролокатора, позволит получить избыточную сейсмическую информацию, а также обеспечит исследование подводных конструкций морских терминалов, что позволит на ранней стадии выявить деформацию и трещины подводных конструкций. Из известных устройств, представляющих измерительные обсерватории для оперативного мониторинга морской среды в водах шельфово-склоновой зоны, наиболее близким аналогом является известная заякоренная профилирующая океанская обсерватория (Заякоренная профилирующая океанская обсерватория / А.Г. Островский, А.Г. Зацепин, В.Н. Иванов и др. // Подводные исследования и робототехника, №2(8), 2009, с.50-59, [14]), которая выбрана в качестве прототипа.
Известная заякоренная профилирующая океанская обсерватория [14, с.52] состоит из подповерхностного буя, заякоренного с помощью стального буйрепа, который служит ходовым тросом для профилирующего носителя, носителя с комплектом измерительных датчиков, включающих датчики измерения температуры, электропроводности и давления, акустический доплеровский измеритель течения, датчик растворенного в воде кислорода, модуль центрального микроконтроллера, электропривода и передвигающийся по ходовому тросу, системы цифровой связи посредством бесконтактной индуктивной врезки в ходовой трос, поверхностного буя-вехи с модемами передачи данных и телеметрической информации по радиоканалу, гидроакустического размыкателя якорного балласта.
Преимуществами известной заякоренной профилирующей океанской обсерватории является меньший риск потери обсерватории, позволяет своевременно производить техническое обслуживание источников питания и очистку измерительных датчиков от биообрастателей. Радиосвязь в прибрежной зоне представляет собой экономическую альтернативу мобильной и спутниковой связи, поскольку передача информации по радиоканалу не имеет ограничений в частотном диапазоне.
Однако недостатком известной заякоренной профилирующей океанской обсерватории является невозможность подключения к ним сейсмических датчиков, которые не допускают механических соединений с оборудованием, генерирующим низкочастотный шум. Поскольку ходовой трос является источником такого шума, то размещение сейсмических датчиков должно выполняться на некотором удалении от него. Задачей предлагаемого технического решения является расширение функциональных возможностей и повышение надежности при эксплуатации сейсмических подводных обсерваторий.
Поставленная задача решается за счет того, что в заякоренной профилирующей подводной обсерватории, сочлененной с диспетчерской станцией и состоящей из подповерхностного буя, заякоренного с помощью стального буйрепа, который служит ходовым тросом для профилирующего носителя с комплектом измерительных датчиков, включающих датчики измерения температуры, электропроводности и давления, акустический доплеровский измеритель течения, датчик растворенного в воде кислорода, модуль центрального микроконтроллера, электропривода и передвигающийся по ходовому тросу, системы цифровой связи посредством бесконтактной индуктивной врезки в ходовой трос, поверхностного буя-вехи с модемами передачи данных и телеметрической информации по радиоканалу, гидроакустического размыкателя якорного балласта, на ходовом тросе над гидроакустическим размыкателем якорного балласта закреплена нижняя плавучесть шарообразной формы, внутри которой размещен модем гидроакустического канала связи, электропривод, сочлененный с телескопическим устройством, в оконечности которого установлен сейсмометр, профилирующий носитель дополнительно содержит датчики содержания углеводородов, углекислого газа, альфа-, бета- и гамма-радиоактивности.
Выполнение заякоренной профилирующей подводной обсерватории с размещением на ходовом тросе над гидроакустическим размыкателем якорного балласта нижней плавучести шарообразной формы, внутри которой размещен модем гидроакустического канала связи, электропривод, сочлененный с телескопическим устройством, в оконечности которого установлен сейсмограф, профилирующий носитель дополнительно содержит датчики содержания углеводородов, углекислого газа, альфа-, бета- и гамма-радиоактивности позволяет контролировать гидрологические и физико-химические характеристики водных масс в целях мониторинга экологического состояния морской среды непосредственно у стационарного сооружения. Решение этой задачи обеспечивает снижение рисков утраты или повреждения подводной обсерватории при ее постановки на дно, практически полное исключение влияния придонных течений на аппаратные шумы. Ввод в состав средств регистрации заякоренной профилирующей подводной обсерватории, сейсмографа позволяет получить сейсмическую информацию.
В связи с активным освоением шельфа для нефте- и газодобычи прокладкой подводных трубопроводов и кабелей связи донные землетрясения и провоцируемые ими явления становятся чрезвычайно опасными как для самих морских сооружений, так и для экологии региона в целом. Кроме того, имеется возможность появления наведенной сейсмичности при извлечении больших объемов нефти и газа из земных недр. Размещение подводной обсерватории непосредственно в зоне добычи и транспортировки углеводородов позволяет заблаговременно оценить возможную угрозу жизнедеятельности морских терминалов.
Сущность технического решения поясняется чертежами.
Фиг.1. Схема размещения заякоренной профилирующей подводной обсерватории. Заякоренная профилирующая подводная обсерватория выполнена в виде вертикально профилирующего носителя 1, размещенного на ходовом тросе 2 между подповерхностным буем 3 и нижней плавучестью 4. Ходовой трос 2 закреплен на балласте 5 посредством гидроакустического размыкателя 6.
Подповерхностный буй 3 соединен кабелем 7 с поверхностным буем-вехи 8 с модемами передачи данных и телеметрической информации по радиоканалу на диспетчерскую станцию 9, которая может располагаться на берегу или судне.
Поверхностный буй-веха 8 представляет собой веху Фруда с расположенной в верхней точке надводной части радиоантенной 14 типа ANLI A-100MU. Встроенный в буй-веху 8 радиомодем 15 типа INTEGRA TR питается от комплекта свинцово-гелевых аккумуляторов 16, которые являются основным балластом буй-вехи 8. Внутри нижней плавучести 4 расположен электропривод 10, сочлененный с телескопическим устройством 11, в оконечности которого установлен сейсмометр 12, а также модем 13 гидроакустического канала связи с диспетчерской станцией 9.
Фиг.2. Блок-схема заякоренной профилирующей подводной обсерватории. Заякоренная профилирующая подводная обсерватория, вертикально профилирующий носитель 1, в котором размещены датчики измерения температуры 16, электропроводности 17 и давления 18, акустический доплеровский измеритель течения 19, датчик растворенного в воде кислорода 20, модуль 21 центрального микроконтроллера, электропривод 22 для перемещения по ходовому тросу 2 вертикально профилирующего носителя 1, система 23 цифровой связи посредством бесконтактной индуктивной врезки в ходовой трос 2, профилирующий носитель 1 дополнительно содержит датчики содержания углеводородов 24, углекислого газа 25, альфа-, бета- и гамма-радиоактивности 26, источник питания 27. Заякоренная профилирующая подводная обсерватория может устанавливаться непосредственно с диспетчерской станции 9 или с маломерного плавающего средства. Для буксировки заякоренной профилирующей подводной обсерватории от морского терминала, например добычной платформы, достаточно маломерного плавательного средства, например резиновой лодки. Вертикально профилирующий носитель 1 устанавливается на ходовом тросе 2, натянутом вертикально между верхней плавучестью 3 (приповерхностной плавучестью) и нижней плавучестью 4 (придонной плавучестью), которая в свою очередь закреплена на ходовом тросе 2.
После установки вертикально профилирующего носителя 1 на ходовом тросе 2 и постановки на дно балласта 5 включается электропривод 20. Вертикально профилирующий носитель 1 начинает автоматически со скоростью около 0.2 м/с передвигаться по вертикально натянутому ходовому тросу 2 между верхней плавучестью 3 и нижней плавучестью 4.
Внутри нижней плавучести 4 расположен электропривод 10, сочлененный с телескопическим устройством 11, в оконечности которого установлен сейсмограф 12, а также модем 13 с гидроакустической антенной гидроакустического канала связи с диспетчерской станцией 9.
После постановки балласта 5 на дно подается сигнал на электропривод 10, сочлененный с телескопическим устройством 11, и установленный в оконечности телескопического устройства 11 сейсмограф 12 занимает рабочее положение на некотором расстоянии от ходового троса 2.
Измерение сейсмических сигналов производится с помощью сейсмометра 12, который включает сейсмический модуль, который функционально объединен с сейсмоакустическим модулем для компактности и обеспечения проведения измерений одновременно несколькими датчиками различных конструкций, что приводит к повышению точности и надежности проводимых измерений.
Сейсмометр 12 предназначен для обеспечения непрерывного сейсмического мониторинга морского дна в широком частотном диапазоне и включает в себя датчики: электрохимический велосиметр типа СМЕ-3011-3, представляющий собой трехкомпонентный сейсмический датчик, предназначенный для регистрации сейсмических колебаний донной поверхности вдоль трех ортогональных направлений; датчик сильных движений, представляющий собой трехкомпонентный векторный сейсмометр; датчик пространственной ориентации.
Датчик сильных движений снабжен сенсором, который состоит из магнитоупругого кристаллического преобразователя, постоянного магнита высокой энергии, трех независимых электрических обмоток и единой инертной массы, а также предварительного усилителя и преобразует три компоненты вектора акустических колебаний донной поверхности по трем ортогональным направлениям в электрические сигналы. Он имеет велаксметрическую характеристику, которая, по сравнению с характеристиками традиционных приборов для измерения вибросмещений, имеет высокую частотно-зависимую чувствительность к смещениям. При этом чувствительность при увеличении частоты в 10 раз увеличивается в 1000 раз.
Для сравнения следует упомянуть, что при таком же увеличении частоты чувствительность обычных велосиметров увеличивается в 10 раз, а обычных акселерометров - увеличивается в 100 раз.
Собственные шумы магнитоупругого сенсора меньше собственных шумов сейсмометра и намного меньше собственных шумов акселерометра.
Магнитоупругий сенсор с крутой амплитудно-частотной характеристикой может одновременно регистрировать смещения в существенном диапазоне - более 240 дБ, что позволяет одновременно измерять амплитуды смещений менее 10-15 м на частотах более 1000 Гц и более 10-3 м на частотах менее 1 Гц.
Как и в прототипе [14], модуль 21 центрального микроконтроллера по заданной программе управляет электроприводом 10, обеспечивающим движение вертикально профилирующего носителя 1, выполняет сбор и обработку данных с датчиков измерения температуры 16, электропроводности 17 и давления 18, акустического доплеровского измерителя течения 19, датчика растворенного в воде кислорода 20, а также выполняет сбор и обработку данных с датчиков содержания углеводородов 24, углекислого газа 25, альфа-, бета- и гамма-радиоактивности 26.
В качестве датчиков измерения температуры 16, электропроводности 17 и давления 18, акустического доплеровского измерителя течения 19, могут быть использованы датчики, аналогичные датчикам прототипа [14], например акустический трехкомпонентный измеритель течений типа 3D-ACM модель 3ACM-CBP-S и измеритель электропроводности с датчиком температуры, выполненный на основе измерителя скорости течения типа CTS-C-1ED.
Датчик растворенного в воде кислорода 20 может быть использован, как и в прототипе, типа (AANDERAA Oxygen Optode 4330F).
Датчик содержания углеводородов 24 представляет собой датчик типа METS ("CAPSUM"), который позволяют измерять концентрацию метана в водной толще. Датчик представляет собой полупроводниковый прибор, принцип работы которого заключается в том, что диффузия молекул углеводородов из воды через специальную силиконовую мембрану транслируется в камеру датчика. Адсорбция молекул углеводов на активном слое датчика приводит к электронному обмену с молекулами кислорода, таким образом, меняя сопротивление активного слоя, которое преобразуется в выходное (измеряемое) напряжение.
Основные характеристики датчика: 10 мкм силиконовая мембрана; рабочая глубина 0-3500 м; рабочая температура 2-20 градусов С; время измерения от 1 до 3 сек; время стабилизации диффузии до 5 минут, в зависимости от турбулентности; входное напряжение 9-36 В; расход энергии 160 мА/ч; выходной сигнал - аналоговый 0-5 В и цифровой RS - 485; метан 50 нмоль/л - 10 мкмоль/л.
Датчик содержания углекислого газа 25 предназначен для измерения спектров комбинационного рассеяния оптического излучения в составе заякоренной профилирующей подводной обсерватории посредством спектроанализатора. По спектрам комбинационного рассеивания получают информацию о составе морской воды. Основные технические характеристики спектроанализатора: спектральный диапазон 0,52-0,78 мкм, полоса пропускания 0,54 нм на 0,783 мкм, точность позиционирования по спектру 0,2 нм, число спектральных каналов 4096.
Датчики содержания альфа-, бета- и гамма-радиоактивности 26 объединены в блок гидрохимических измерений, который также содержит модуль контроля радиационного загрязнения, который предназначен для определения in situ содержания гамма-излучающих радионуклидов (как техногенного, так и естественного происхождения) в морской воде.
Основные технические характеристики модуля контроля радиационного загрязнения: диапазон регистрируемых энергий 0,2-3,0 мэВ, энергетическое разрешение по линии цезия 137 13%, число уровней квантования спектра 256, максимальное число отсчетов в канале 65 000, максимальная скорость регистрации не менее 1000 1/с. Блок гидрохимических измерений также содержит классификатор для классификации загрязнений морской воды по спектральным характеристикам и молекулярному составу морской воды, включающий датчик ядерно-магнитного резонанса, который представляет собой минимагнитную систему, состоящую из самарий-кобальтовых шайб с большой постоянной намагниченностью и большой энергоемкостью. При массе магнита 9 кг удается достигнуть значения индукции магнитного поля в его зазоре до 1,5 Т. Таким образом, при плавной механической регулировке междуполюсного расстояния магнитной системы рабочая частота может изменяться в пределах от 12 до 60 МГц для протонов при сохранении достаточно высокой однородности. Магнит функционирует без потребления энергоресурсов и предназначен для выявления распределения температуры морской воды, солености, наличие кислорода на фиксированном разрезе. Известно, что в морской воде содержится большое количество парамагнитных примесей в виде парамагнитных ионов переходных металлов и их комплексных соединений в парамагнитном состоянии. По сигналам, полученным с датчика ядерно-магнитного резонанса, строят графики распределения времени спин-решеточной релаксации (T1) (так называемые изолинии T1) в поверхностном и в придонном слоях воды. Полученные изолинии позволяют "оконтурить" зоны влияния на компонентный состав приповерхностной и придонной морской воды таких источников парамагнитных примесей, как речной сток и области геохимической аномалии, приуроченные к геологическому разлому. По выявленным трассерам устанавливают динамику водных масс в зоне установки подводной обсерватории. По концентрационным полям парамагнитных примесей определяют степень загрязнения техногенного характера.
Датчик ядерно-магнитного резонанса может быть конструктивно установлен как на вертикально профилирующем носителе 1, так и в корпусах нижней 4 и подповерхностной плавучести 3, который используется для обеспечения функционирования заякоренной профилирующей подводной обсерватории по прямому назначению или в двух вариантах, что существенно повышает информативность устройства в целом.
Модуль 21 центрального микроконтроллера передает данные с помощью индуктивного модема на подповерхностную плавучесть 3.
Блок питания 27 предназначен для обеспечения возможности длительной автономной работы устройства и собран на параллельно соединенных секциях последовательно соединенных литиевых или щелочных батарей типа D.
Модем гидроакустического канала 13 связи предназначен для обеспечения связи сейсмометра 12 с комплексом обработки информации, установленным на диспетчерской стации.
Балласт 6 с гидроакустическим размыкателем предназначен для проведения спусковых и подъемных работ заякоренной профилирующей подводной обсерватории. Управляющий компьютер диспетчерской станции 9 и программно-математическое обеспечение, служба реального времени предназначены для управления оборудованием подводной обсерватории, диагностирования ее неисправностей, приема данных, получаемых с подводной обсерватории, и размещения получаемых данных на устройствах накопления информации. Функционирование всего аппаратно-программного комплекса определяется файлом конфигурации, который создается специальной программой и задает наличие подводных обсерваторий, тип используемых геофизических каналов, параметры каналов, а также наличие или отсутствие аппаратуры синхронизации времени (приемник GPS).
При запуске программы регистрации считывается конфигурация всей сети подводной обсерватории и производится привязка времени по Гринвичу с точностью до нескольких десятков микросекунд и расчет поправок к частоте кварца компьютера для поддержания функционирования комплекса в случае кратковременного отказа приемника GPS.
Синхронизация времени осуществляется каждую секунду от приемника GPS.
Вслед за синхронизацией происходит опрос, программирование, синхронизация и запуск оборудования заякоренной профилирующей подводной обсерватории. Запрашивается состояние оборудования заякоренной профилирующей подводной обсерватории (ее исправность, наличие каналов, исправность каналов и т.д.). В случае возникших проблем на экран выдается соответствующее сообщение (оно также записывается в файл протокола функционирования). В модуль 21 центрального микроконтроллера заякоренной профилирующей подводной обсерватории передается программа работы для каждого измерительного канала, частота опроса и коэффициент усиления.
Перед запуском модуль 21 центрального микроконтроллера заякоренной профилирующей подводной обсерватории синхронизируется по времени компьютера диспетчерской станции 9 (в дальнейшем синхронизация проводится каждые 10 с). При синхронизации учитывается время прохождения сигнала от компьютера диспетчерской станции 9 до синхронизируемого модуль 21 центрального микроконтроллера заякоренной профилирующей подводной обсерватории. После этого модуль 21 центрального микроконтроллера заякоренной профилирующей подводной обсерватории запускается и начинает сбор данных с измерительных каналов. Модуль 21 центрального микроконтроллера заякоренной профилирующей подводной обсерватории всю информацию сжимает и складывает в буферную память.
Управляющий компьютер д