Бесконтактное зарядное устройство

Иллюстрации

Показать все

Бесконтактное зарядное устройство содержит: устройство приема энергии, которое имеет, по меньшей мере, катушку (1В) для приема энергии, которая принимает электроэнергию бесконтактным способом из катушки (1А) для передачи энергии посредством магнитного соединения; аккумулятор (5), который заряжается посредством электроэнергии; средство определения состояния заряда, которое определяет состояние заряда аккумулятора (5); средство определения позиции, которое определяет позицию катушки (1А) для передачи энергии; и средство вычисления времени зарядки, которое вычисляет первое время зарядки для аккумулятора (5) согласно состоянию заряда, определенное посредством средства определения состояния заряда, и первой позиции катушки (1А) для передачи энергии, определенной посредством средства определения позиции. Технический результат заключается в расширении допустимого диапазона времени зарядки и повышении удобства для пользователя. 12 з.п. ф-лы, 16 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

[0001] Настоящее изобретение относится к бесконтактному зарядному устройству.

[0002] Данная заявка испрашивает приоритет на основе заявки на патент (Япония) № 2010-290133, поданной 27 декабря 2010 года. Для указанных стран, которые разрешают включение документа по ссылке, содержимое, описанное в вышеупомянутой заявке, содержится по ссылке в данной заявке и выступает в качестве части описания данной заявки.

УРОВЕНЬ ТЕХНИКИ

[0003] Известна зарядная система (PTL 1), включающая в себя зарядное устройство, которое, когда транспортное средство остановлено в предварительно определенной позиции, заранее размещается около позиции остановки и заряжает аккумулятор, смонтированный на транспортном средстве; портативное устройство, которое носится водителем транспортного средства и имеет функцию связи; устройство связи на стороне транспортного средства, которое монтируется на транспортном средстве и осуществляет связь с портативным устройством; и модуль управления зарядкой аккумулятора, который монтируется на транспортном средстве, начинает зарядку для аккумулятора, если определяется то, что водитель отдаляется от транспортного средства, и завершает зарядку аккумулятора, если определяется то, что водитель приближается к транспортному средству, на основе результата связи устройства связи на стороне транспортного средства с портативным устройством. Зарядная система передает и принимает энергию через электромагнитную связь, в то время как бесконтактное состояние поддерживается между модулем приема энергии транспортного средства и модулем подачи энергии зарядного устройства.

СПИСОК БИБЛИОГРАФИЧЕСКИХ ССЫЛОК

ПАТЕНТНЫЕ ДОКУМЕНТЫ

[0004] PTL 1. Публикация не прошедшей экспертизу заявки на патент (Япония) номер 2009-89452

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

ТЕХНИЧЕСКАЯ ЗАДАЧА

[0005] Тем не менее, разрешение зарядки не оценивается на основе позиции модуля приема энергии и позиции модуля передачи энергии, и пользователь не может распознавать допуск по смещению позиции модуля передачи энергии относительно позиции модуля приема энергии. Эта конфигурация является неудобной для пользователя транспортного средства.

[0006] Задача, которая должна быть разрешена посредством настоящего изобретения, состоит в том, чтобы предоставлять бесконтактное зарядное устройство, которое повышает удобство для пользователя.

РЕШЕНИЕ ЗАДАЧИ

[0007] Настоящее изобретение разрешает вышеописанную задачу посредством включения средства определения состояния заряда для определения состояния заряда аккумулятора; и средства вычисления времени заряда для вычисления времени заряда аккумулятора в соответствии с состоянием заряда, определенным посредством средства определения состояния заряда и позицией катушки для передачи энергии.

ПРЕИМУЩЕСТВА ИЗОБРЕТЕНИЯ

[0008] С помощью настоящего изобретения допустимый диапазон зарядки задается в соответствии с состоянием заряда, или время зарядки вычисляется в соответствии с состоянием заряда и позицией катушки для передачи энергии. Например, если состояние заряда является высоким, поскольку величина энергии, требуемая для зарядки, является небольшой, за счет задания широким допустимого диапазона зарядки может быть расширен диапазон для разрешения позиционного смещения катушки для передачи энергии. Согласно другому примеру, даже если время зарядки является длительным вследствие позиционного смещения катушки для передачи энергии, зарядка может начинаться посредством определения пользователя, который распознал время зарядки. Как результат, может быть повышено удобство для пользователя.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0009] Фиг. 1 является блок-схемой бесконтактной зарядной системы согласно варианту осуществления настоящего изобретения.

Фиг. 2 является блок-схемой контроллера аккумулятора и электронного модуля управления на фиг. 1.

Фиг. 3A предоставляет вид сверху и общий вид, показывающие состояние, в котором катушка для передачи энергии и катушка для приема энергии на фиг. 1 обращены друг к другу.

Фиг. 3B предоставляет вид сверху и общий вид, показывающие состояние, в котором катушка для передачи энергии и катушка для приема энергии на фиг. 1 обращены друг к другу и смещаются в направлении по оси X.

Фиг. 4 показывает характеристики энергии, которая может быть принята посредством катушки 1B для приема энергии в направлении по оси X (направлении по оси Y) и в направлении по оси Z, показанных на фиг. 3A и 3B.

Фиг. 5A является графиком, показывающим характеристики мощности зарядки аккумулятора 5 относительно времени зарядки на фиг. 1, и является графиком, показывающим характеристики, когда зарядка выполняется в состоянии, в котором мощность приема катушки для приема энергии составляет 3,0 кВт.

Фиг. 5B является графиком, показывающим характеристики мощности зарядки аккумулятора 5 относительно времени зарядки на фиг. 1, и является графиком, показывающим характеристики, когда зарядка выполняется в состоянии, в котором мощность приема катушки для приема энергии составляет 1,5 кВт.

Фиг. 6A является графиком, показывающим характеристики мощности зарядки аккумулятора 5 относительно времени зарядки на фиг. 1, и является графиком, показывающим характеристики, когда зарядка выполняется в состоянии, в котором мощность приема катушки для приема энергии составляет 3,0 кВт.

Фиг. 6B является графиком, показывающим характеристики мощности зарядки аккумулятора 5 относительно времени зарядки на фиг. 1, и является графиком, показывающим характеристики, когда зарядка выполняется в состоянии, в котором мощность приема катушки для приема энергии составляет 1,5 кВт.

Фиг. 7 является иллюстрацией для пояснения допустимого диапазона зарядки, заданного посредством модуля задания допустимого диапазона зарядки на фиг. 2.

Фиг. 8 является блок-схемой последовательности операций способа, показывающей управляющую процедуру бесконтактной зарядной системы на фиг. 1.

Фиг. 9 является блок-схемой контроллера аккумулятора и электронного модуля управления бесконтактной зарядной системы согласно другому варианту осуществления настоящего изобретения.

Фиг. 10 является блок-схемой последовательности операций способа, показывающей управляющую процедуру бесконтактной зарядной системы на фиг. 9.

Фиг. 11 является блок-схемой контроллера аккумулятора и электронного модуля управления бесконтактной зарядной системы согласно еще одному другому варианту осуществления настоящего изобретения.

Фиг. 12 является блок-схемой последовательности операций способа, показывающей управляющую процедуру бесконтактной зарядной системы на фиг. 11.

Фиг. 13 является блок-схемой контроллера аккумулятора и электронного модуля управления бесконтактной зарядной системы согласно еще одному другому варианту осуществления настоящего изобретения.

Фиг. 14 является блок-схемой последовательности операций способа, показывающей управляющую процедуру бесконтактной зарядной системы на фиг. 13.

Фиг. 15 является блок-схемой контроллера аккумулятора и электронного модуля управления бесконтактной зарядной системы согласно дополнительному варианту осуществления настоящего изобретения.

Фиг. 16 является блок-схемой последовательности операций способа, показывающей управляющую процедуру бесконтактной зарядной системы на фиг. 15.

ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

[0010] В дальнейшем в этом документе со ссылкой на чертежи описываются бесконтактные зарядные устройства согласно вариантам осуществления настоящего изобретения.

[0011] ПЕРВЫЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ

Фиг. 1 является структурной схемой, показывающей бесконтактную зарядную систему, к которой применяется вариант осуществления настоящего изобретения. Система включает в себя модуль 100 на стороне земли и модуль 200 на стороне транспортного средства. Модуль 100 на стороне земли, установленный в стойке для подачи энергии и т.п., заряжает аккумулятор 5 посредством подачи энергии бесконтактным способом в нагрузку аккумулятора 5 и т.п. модуля 200 на стороне транспортного средства, смонтированного на транспортном средстве и т.п. В дальнейшем в этом варианте осуществления описывается то, что бесконтактное зарядное устройство, включающее в себя бесконтактную зарядную систему, монтируется на зарядной установке, предоставляемой в месте для парковки для транспортного средства или в электромобиле. Тем не менее, бесконтактное зарядное устройство, включающее в себя бесконтактную зарядную систему согласно этому варианту осуществления, может предоставляться на транспортном средстве, отличном от электромобиля, или может предоставляться в объекте, отличном от транспортного средства.

[0012] Модуль 100 на стороне земли включает в себя катушку 1A для передачи энергии, электрическую схему 2A на стороне земли, электронный модуль 3 управления (ECU), системный источник 4 питания и устройство 8A связи на стороне земли. Системный источник 4 питания подает энергию переменного тока в электрическую схему 2A на стороне земли. Электрическая схема 2A на стороне земли является схемой, включающей в себя выпрямитель, преобразователь энергии, резонансную схему и т.д., преобразует энергию переменного тока, передаваемую из системного источника 4 питания, в энергию переменного тока с переменной формой сигнала и передает энергию переменного тока с переменной формой сигнала в катушку 1A для передачи энергии. Катушка 1A для передачи энергии передает высокочастотную энергию в катушку 1B для приема энергии бесконтактным способом посредством эффекта электромагнитной индукции. Катушка 1A для передачи энергии предоставляется в месте для парковки на автомобильной парковке, содержащей бесконтактную зарядную систему согласно этому варианту осуществления. Когда транспортное средство, включающее в себя модуль 200 на стороне транспортного средства, паркуется в месте для парковки, катушка 1A для передачи энергии размещается ниже катушки 1B для приема энергии с расстоянием, поддерживаемым относительно катушки 1B для приема энергии. ECU 3 является контроллером, который полностью управляет модулем 100 на стороне земли. ECU 3 управляет электрической схемой 2A на стороне земли, например, начинает и завершает передачу энергии из катушки 1A для передачи энергии в катушку 1B для приема энергии и регулирует энергию, передаваемую из катушки 1A для передачи энергии. Устройство 8A связи на стороне земли осуществляет связь с устройством 8B связи на стороне транспортного средства и передает время передачи энергии, мощность передачи и т.д. в модуль 200 на стороне транспортного средства на основе управляющего сигнала ECU 3. Кроме того, устройство 8A связи на стороне земли передает позицию катушки 1A для передачи энергии в модуль 200 на стороне транспортного средства.

[0013] Модуль 200 на стороне транспортного средства включает в себя катушку 1B для приема энергии, электрическую схему 2B на стороне транспортного средства, аккумулятор 5, электронный модуль 7 управления (ECU), контроллер 6 аккумулятора (BC) и устройство 8B связи на стороне транспортного средства. Катушка 1B для приема энергии является катушкой, которая принимает высокочастотную энергию, передаваемую из катушки 1A для передачи энергии бесконтактным способом посредством эффекта электромагнитной индукции, и которая устанавливается на нижней поверхности (в ходовой части) и т.п. транспортного средства, включающего в себя модуль 200 на стороне транспортного средства. Электрическая схема 2B на стороне транспортного средства является схемой, включающей в себя резонансную схему, выпрямитель, соединительный блок (J/B) и т.д., преобразует энергию, передаваемую из катушки 1B для приема энергии, подает энергию в аккумулятор 5 и заряжает аккумулятор 5. Иными словами, электрическая схема 2B на стороне транспортного средства имеет функцию зарядного устройства, которое заряжает аккумулятор 5. Аккумулятор 5 является аккумулятором, в котором подключаются множество аккумуляторных батарей, и является источником питания для транспортного средства, включающего в себя модуль 200 на стороне транспортного средства. BC 6 является контроллером, который управляет аккумулятором 5 и определяет состояние заряда (SOC: состояние заряда) аккумулятора 5, оставшуюся емкость аккумулятора 5 и т.д. ECU 7 является контроллером, который совместно управляет катушкой 1B для приема энергии, электрической схемой 2B на стороне транспортного средства и BC 6. ECU 7 управляет электрической схемой 2B и управляет зарядкой для аккумулятора 5 в соответствии с состоянием аккумулятора 5, управляемым посредством BC 6. Устройство 8B связи на стороне транспортного средства осуществляет связь с устройством 8A связи на стороне земли, принимает информацию позиции катушки 1A для передачи энергии, информацию касательно энергии, передаваемой из катушки 1A для передачи энергии и т.д., и передает принимаемую информацию в ECU 7.

[0014] Далее конфигурации BC 6 и ECU 7 описываются со ссылкой на фиг. 2. Фиг. 2 является структурной схемой, показывающей конфигурации BC 6 и ECU 7. BC 6 включает в себя модуль 601 определения состояния заряда. Модуль 601 определения состояния заряда определяет SOC аккумулятора 5. Поскольку SOC коррелируется с напряжением аккумулятора 5, модуль 601 определения состояния заряда может определять SOC аккумулятора 5 посредством определения напряжения аккумулятора 5. Информация касательно SOC аккумулятора 5, определенного посредством модуля 601 определения состояния заряда, передается в ECU 7.

[0015] ECU 7 включает в себя модуль 701 задания допустимого диапазона зарядки, модуль 702 оценки, модуль 703 уведомления результатов оценки и модуль 704 управления зарядкой. Модуль 701 задания допустимого диапазона зарядки задает допустимый диапазон зарядки в соответствии с SOC, определенным посредством модуля 601 определения состояния заряда. Допустимый диапазон зарядки указывает диапазон позиции катушки 1A для передачи энергии для разрешения зарядки для аккумулятора 5 относительно позиции катушки 1B для приема энергии. Поскольку катушка 1A для передачи энергии предоставляется в модуле 100 на стороне земли, и катушка 1B для приема энергии предоставляется в модуле 200 на стороне транспортного средства, позиция катушки 1A для передачи энергии относительно катушки 1B для приема энергии варьируется в зависимости от припаркованной позиции транспортного средства. В этом варианте осуществления допустимый диапазон зарядки задается так, как описано ниже, в качестве критерия оценки для взаимного расположения между катушками для разрешения зарядки для аккумулятора 5, когда транспортное средство паркуется в месте для парковки.

[0016] Модуль 702 оценки определяет то, разрешается или нет зарядка для аккумулятора 5, в соответствии с позицией катушки 1A для передачи энергии относительно катушки 1B для приема энергии. Когда транспортное средство паркуется, если позиция катушки 1A для передачи энергии находится в пределах допустимого диапазона зарядки, зарядка разрешается, а если позиция катушки 1A для передачи энергии находится за пределами допустимого диапазона зарядки, зарядка не разрешается. Модуль 703 уведомления результатов оценки отображает результат оценки модуля 702 оценки, например, через навигационную систему (не показана), предоставляемую в приборной панели, либо речью.

[0017] Касательно зарядки для аккумулятора 5, мощность, подходящая для зарядки, заранее определяется в соответствии с SOC и снижается по мере того, как SOC приближается к полному заряду. BC 6 управляет SOC аккумулятора 5. BC 6 запрашивает мощность, требуемую для зарядки, в модуль 704 управления зарядкой на основе предварительно определенного способа зарядки. Модуль 704 управления зарядкой управляет выходной мощностью из электрической схемы 2B на стороне транспортного средства в аккумулятор 5, когда аккумулятор 5 заряжается в соответствии с мощностью, запрашиваемой посредством BC 6. Модуль 704 управления зарядкой снижает выходную мощность электрической схемы 2B на стороне транспортного средства и ограничивает мощность зарядки аккумулятора 5 ступенчато по мере того, как повышается SOC аккумулятора 5. Более конкретно, под управлением модуля 704 управления зарядкой зарядка для аккумулятора 5 посредством зарядного устройства электрической схемы 2B на стороне транспортного средства выполняется, например, посредством способа, в котором зарядка начинается посредством зарядки неизменяющимся током и затем переключается на зарядку многостадийным неизменяющимся током или на зарядку многостадийным неизменяющимся напряжением.

[0018] Далее со ссылкой на фиг. 3 и 4 описывается то, что энергия, принимаемая посредством катушки для приема энергии 1B, варьируется в зависимости от взаимного расположения между катушкой 1A для передачи энергии и катушкой 1B для приема энергии. Фиг. 3A и 3B являются видом сверху a) и общими видами b) и c), показывающими состояние, в котором катушка 1A для передачи энергии обращена к катушке 1B для приема энергии. На фиг. 3A и 3B ось X и ось Y указывают направление плоскости и направление по оси Z указывает направление высоты катушки 1A для передачи энергии и катушки 1B для приема энергии. Для описания предполагается, что катушка 1A для передачи энергии и катушка 1B для приема энергии имеют идентичную круглую форму. Тем не менее, в этом варианте осуществления катушка 1A для передачи энергии и катушка 1B для приема энергии не обязательно должны иметь круглую форму или не обязательно должны иметь идентичную форму.

[0019] Когда катушка 1A для передачи энергии устанавливается на земле и катушка 1B для приема энергии монтируется на транспортном средстве, как показано на фиг. 3A, предпочтительно, чтобы транспортное средство парковалось на автомобильной парковке, так что катушка 1B для приема энергии совмещается с катушкой 1A для передачи энергии в направлении по оси X и направлении по оси Y, которые представляют собой направление плоскости. Тем не менее, как показано на фиг. 3B, относительные позиции катушки 1A для передачи энергии и катушки 1B для приема энергии могут смещаться в направлении плоскости вследствие квалификации водителя. Кроме того, высота транспортного средства варьируется в зависимости от типа транспортного средства и величины нагрузки. Следовательно, расстояние между катушкой 1A для передачи энергии и катушкой 1B для приема энергии в направлении Z высоты варьируется вследствие высоты транспортного средства.

[0020] Когда энергия, которая должна подаваться из электрической схемы 2A на стороне земли в катушку 1A для передачи энергии, становится постоянной, эффективность энергии, принимаемой посредством катушки 1B для приема энергии, становится наибольшей, если катушка 1B для приема энергии совмещается с катушкой 1A для передачи энергии (согласно состоянию на фиг. 3A), и эффективность энергии снижается, если центральная точка катушки 1B для приема энергии находится на большом расстоянии от центральной точки катушки 1A для передачи энергии.

[0021] Фиг. 4 показывает характеристики энергии, которая может быть принята посредством катушки 1B для приема энергии в направлении по оси X (направлении по оси Y) и в направлении по оси Z, показанных на фиг. 3A и 3B. Предполагается, что энергия, которая должна подаваться из электрической схемы 2A на стороне земли в катушку 1A для передачи энергии, является постоянной. Как показано на фиг. 4, если позиции катушки 1A для передачи энергии и катушки 1B для приема энергии не изменяются и расстояние между катушкой 1A для передачи энергии и катушкой 1B для приема энергии увеличивается в направлении по оси Z, увеличивается интервал между катушкой 1A для передачи энергии и катушкой 1B для приема энергии и, следовательно, снижается мощность приема катушки 1B для приема энергии.

[0022] Катушка 1B для приема энергии крепится к транспортному средству. Расстояние между катушкой 1B для приема энергии и катушкой 1A для передачи энергии в направлении по оси Z заметно не изменяется относительно позиции для парковки транспортного средства и фиксируется на расстоянии (Z1) в направлении по оси Z. Когда расстояние в направлении по оси Z фиксируется на Z1, пунктирная линия на фиг. 4 указывает максимальную мощность, которая должна быть принята посредством катушки 1B для приема энергии. В направлении плоскости, если центральная точка катушки 1A для передачи энергии не смещается от центральной точки катушки 1B для приема энергии и катушка 1A для передачи энергии непосредственно обращена к катушке 1B для приема энергии (согласно фиг. 3A), максимальная мощность, которая должна быть принята посредством катушки 1B для приема энергии, становится равной 3,0 кВт (точка A на фиг. 4). Когда центральная точка катушки 1А для передачи энергии смещается от центральной точки катушки 1B для приема энергии в направлении по оси X (или направлении по оси Y) и расстояние между катушкой 1A для передачи энергии и катушкой 1B для приема энергии в направлении по оси X становится равным X1 (согласно фиг. 3B), максимальная мощность, которая должна быть принята посредством катушки 1B для приема энергии, снижается и становится равной 1,5 кВт (точка B на фиг. 4). Дополнительно, когда центральная точка катушки 1А для передачи энергии смещается от центральной точки катушки 1B для приема энергии в направлении по оси X (или направлении по оси Y), и расстояние между катушкой 1A для передачи энергии и катушкой 1B для приема энергии в направлении по оси X становится равным X2, мощность, которая должна быть принята посредством катушки 1B для приема энергии, дополнительно снижается и становится равной 1,0 кВт (точка C на фиг. 4).

[0023] Далее мощность приема катушки 1B для приема энергии и время зарядки аккумулятора 5 описываются со ссылкой на фиг. 5. Фиг. 5A и 5B являются графиками, показывающими характеристики мощности зарядки аккумулятора 5 относительно времени зарядки. Фиг. 5A показывает характеристики, когда зарядка выполняется в состоянии, в котором мощность приема катушки 1B для приема энергии составляет 3,0 кВт. Фиг. 5B показывает характеристики, когда зарядка выполняется в состоянии, в котором мощность приема катушки 1B для приема энергии составляет 1,5 кВт. Заряд начинается, когда SOC аккумулятора 5 составляет 10%, и заряд завершается, когда SOC аккумулятора 5 становится равным 100%. Свойства зарядки на фиг. 5A указывают свойства, когда взаимное расположение между катушками является таким, как показано на фиг. 3A, и зарядка выполняется с использованием мощности в точке A на фиг. 4. Свойства зарядки на фиг. 5B указывают свойства, когда взаимное расположение между катушками является таким, как показано на фиг. 3B, и зарядка выполняется с использованием мощности в точке B на фиг. 4.

[0024] Модуль 704 управления зарядкой заряжает аккумулятор 5 посредством задания мощности зарядки аккумулятора 5, равной 3,0 кВт, до тех пор, пока SOC аккумулятора 5 не становится 80%, снижения мощности зарядки аккумулятора 5 до 2,5 кВт, если SOC аккумулятора 5 становится 80%, снижения мощности зарядки аккумулятора 5 до 1,5 кВт, если SOC аккумулятора 5 становится 90%, снижения мощности зарядки аккумулятора 5 до 1,2 кВт, если SOC аккумулятора 5 становится 94%, снижения мощности зарядки аккумулятора 5 до 1,0 кВт, если SOC аккумулятора 5 становится 96%, и снижения мощности зарядки аккумулятора 5 до 0,8 кВт, если SOC аккумулятора 5 становится 98%.

[0025] Как показано на фиг. 5A, если зарядка начинается от момента, когда SOC составляет 10% в состоянии, в котором максимальная мощность приема катушки 1B для приема энергии составляет 3,0 кВт, модуль 704 управления зарядкой заряжает аккумулятор 5 посредством подачи максимальной мощности приема (3,0 кВт) катушки 1B для приема энергии в качестве мощности зарядки и снижает мощность зарядки ступенчато в соответствии с SOC при вышеописанном управлении зарядкой. Для времени зарядки время, требуемое для увеличения SOC с 10% до 80%, составляет 6 ч, время, требуемое для увеличения SOC с 80% до 90%, составляет 0,5 ч, время, требуемое для увеличения SOC с 90% до 94%, составляет 0,5 ч, время, требуемое для увеличения SOC с 94% до 96%, составляет 0,5 ч, время, требуемое для увеличения SOC с 96% до 98%, составляет 0,5 ч, и время, требуемое для увеличения SOC с 98% до 100%, составляет 0,5 ч. Следовательно, время зарядки, требуемое для зарядки аккумулятора 5 от момента, когда SOC составляет 10%, до полного заряда, составляет 8,5 ч (=6+0,5+0,5+0,5+0,5+0,5).

[0026] Напротив, как показано на фиг. 5B, если зарядка начинается от момента, когда SOC составляет 10% в состоянии, в котором максимальная мощность приема катушки 1B для приема энергии составляет 1,5 кВт, модуль 704 управления зарядкой заряжает аккумулятор 5 посредством подачи максимальной мощности приема (1,5 кВт) катушки 1B для приема энергии в качестве мощности зарядки в аккумулятор 5. Как описано выше, аккумулятор 5 согласно этому варианту осуществления может заряжаться с использованием мощности, эквивалентной или превышающей 1,5 кВт, до тех пор, пока SOC не становится 94%. Тем не менее, в состоянии позиций катушки, показанных на фиг. 3B, поскольку максимальная мощность, которая должна быть принята посредством катушки 1B для приема энергии, составляет 1,5 кВт, зарядка выполняется, в то время как мощность зарядки составляет 1,5 кВт до тех пор, пока SOC аккумулятора 5 не становится 94%, и снижает мощность зарядки ступенчато от момента, когда SOC аккумулятора 5 достигает 94%, способом, аналогичным вышеописанному способу.

[0027] Для времени зарядки время, требуемое для увеличения SOC с 10% до 80%, составляет 12 ч, время, требуемое для увеличения SOC с 80% до 90%, составляет 0,835 ч, время, требуемое для увеличения SOC с 90% до 94%, составляет 0,5 ч, время, требуемое для увеличения SOC с 94% до 96%, составляет 0,5 ч, время, требуемое для увеличения SOC с 96% до 98%, составляет 0,5 ч, и время, требуемое для увеличения SOC с 98% до 100%, составляет 0,5 ч. Т.е. время зарядки, требуемое для зарядки аккумулятора 5 от момента, когда SOC составляет 10%, до полного заряда, составляет 14,835 ч (=12+0,835+0,5+0,5+0,5+0,5).

[0028] Иными словами, в состоянии позиций катушек, показанных на фиг. 3B, по сравнению с состоянием позиций катушек, показанных на фиг. 3A, максимальная мощность, которая должна быть принята посредством катушки 1B для приема энергии, является низкой, и, следовательно, время зарядки для зарядки от момента, когда SOC составляет 10%, до полного заряда, является длительным.

[0029] Далее мощность приема катушки 1B для приема энергии и время зарядки аккумулятора 5 описываются со ссылкой на фиг. 6. Фиг. 6 отличается от фиг. 5 тем, что зарядка начинается, когда SOC составляет 90%. Фиг. 6A и 6B являются графиками, показывающими характеристики мощности зарядки аккумулятора 5 относительно времени зарядки. Фиг. 6A показывает характеристики, когда зарядка выполняется в состоянии, в котором мощность приема катушки 1B для приема энергии составляет 3,0 кВт. Фиг. 6B показывает характеристики, когда зарядка выполняется в состоянии, в котором мощность приема катушки 1B для приема энергии составляет 1,5 кВт. Свойства зарядки на фиг. 6A указывают свойства, когда взаимное расположение между катушками является таким, как показано на фиг. 3A, и зарядка выполняется с использованием мощности в точке A на фиг. 4. Свойства зарядки на фиг. 6B указывают свойства, когда взаимное расположение между катушками является таким, как показано на фиг. 3B, и зарядка выполняется с использованием мощности в точке B на фиг. 4.

[0030] В примере, показанном на фиг. 6, зарядка выполняется от момента, когда SOC аккумулятора 5 составляет 90%. Следовательно, модуль 704 управления зарядкой заряжает аккумулятор 5 посредством задания мощности зарядки аккумулятора 5, равной 1,5 кВт, до тех пор, пока SOC аккумулятора 5 не становится 94%, снижения мощности зарядки аккумулятора 5 до 1,2 кВт, если SOC аккумулятора 5 становится 94%, снижения мощности зарядки аккумулятора 5 до 1,0 кВт, если SOC аккумулятора 5 становится 96%, снижения мощности зарядки аккумулятора 5 до 0,8 кВт, если SOC аккумулятора 5 становится 98%.

[0031] Как показано на фиг. 6A, если зарядка начинается от момента, когда SOC составляет 90% в состоянии, в котором максимальная мощность приема катушки 1B для приема энергии составляет 3,0 кВт, модуль 704 управления зарядкой заряжает аккумулятор 5 посредством снижения максимальной мощности приема (3,0 кВт) катушки 1B для приема энергии до мощности зарядки (1,5 кВт) и подачи мощности зарядки и снижает мощность зарядки ступенчато в соответствии с SOC при вышеописанном управлении зарядкой. Для времени зарядки время, требуемое для увеличения SOC с 90% до 94%, составляет 0,5 ч, время, требуемое для увеличения SOC с 94% до 96%, составляет 0,5 ч, время, требуемое для увеличения SOC с 96% до 98%, составляет 0,5 ч, и время, требуемое для увеличения SOC с 98% до 100%, составляет 0,5 ч. Следовательно, время зарядки, требуемое для зарядки аккумулятора 5 от момента, когда SOC составляет 90%, до полного заряда, составляет 2,0 ч (=0,5+0,5+0,5+0,5).

[0032] Напротив, как показано на фиг. 6B, если зарядка начинается от момента, когда SOC составляет 90% в состоянии, в котором максимальная мощность приема катушки 1B для приема энергии составляет 1,5 кВт, модуль 704 управления зарядкой заряжает аккумулятор 5 посредством подачи максимальной мощности приема (1,5 кВт) катушки 1B для приема энергии в качестве мощности зарядки и снижает мощность зарядки ступенчато в соответствии с SOC при вышеописанном управлении зарядкой. Для времени зарядки, время, требуемое для увеличения SOC с 90% до 94%, составляет 0,5 ч, время, требуемое для увеличения SOC с 94% до 96%, составляет 0,5 ч, время, требуемое для увеличения SOC с 96% до 98%, составляет 0,5 ч, и время, требуемое для увеличения SOC с 98% до 100%, составляет 0,5 ч. Следовательно, время зарядки, требуемое для зарядки аккумулятора 5 от момента, когда SOC составляет 90%, до полного заряда, составляет 2,0 ч (=0,5+0,5+0,5+0,5).

[0033] В состоянии позиций катушек, показанных на фиг. 3B, по сравнению с состоянием позиций катушек, показанных на фиг. 3A, снижается максимальная мощность, которая должна быть принята посредством катушки 1B для приема энергии. Тем не менее, поскольку максимальная мощность приема катушки 1B для приема энергии равна или выше максимальной мощности зарядки, когда зарядка для аккумулятора 5 начинается, даже если возникает позиционное смещение катушки, как показано на фиг. 3B, время зарядки не изменяется.

[0034] Иными словами, если SOC становится близким к полному заряду, как показано на фиг. 5 и 6, мощность, требуемая для зарядки, может быть низкой. Следовательно, когда SOC является близким к полному состоянию, может разрешаться позиционное смещение катушки.

[0035] Далее содержимое управления бесконтактной зарядной системы согласно этому варианту осуществления, описывается со ссылкой на фиг. 2 и 7. Фиг. 7 является схематичной иллюстрацией для пояснения допустимого диапазона зарядки и соответствует виду сверху катушки 1B для приема энергии.

[0036] Бесконтактная зарядная система согласно этому варианту осуществления работает, когда транспортное средство паркуется в месте для парковки, включающем в себя модуль 100 на стороне земли. Во-первых, модуль 601 определения состояния заряда определяет SOC аккумулятора 5 и передает информацию касательно определенного SOC в ECU 7. Затем модуль 701 задания допустимого диапазона зарядки задает допустимый диапазон зарядки следующим образом в соответствии с SOC аккумулятора 5. Модуль 701 задания допустимого диапазона зарядки задает допустимый диапазон зарядки вдоль направления главной плоскости катушки 1A для передачи энергии или катушки 1B для приема энергии. Допустимый диапазон зарядки является мнимым круговым диапазоном вокруг катушки 1B для приема энергии, служащей в качестве центра, и является диапазоном для определения того, что зарядка разрешается, если катушка 1A для передачи энергии находится в пределах допустимого диапазона зарядки. Кроме того, допустимый диапазон зарядки задается таким образом, что заряд завершается в пределах заранее предполагаемого времени зарядки. Как показано на фиг. 5B, если позиционное смещение между катушкой 1A для передачи энергии и катушкой 1B для приема энергии является большим, аккумулятор 5 может быть заряжен при условии, что катушка 1B для приема энергии может принимать энергию. Тем не менее, если аккумулятор 5 заряжается от момента, когда SOC является низким, до полного заряда, время зарядки может быть длительным. Вследствие этого допустимый диапазон зарядки задает допустимое позиционное смещение катушки в области в горизонтальном направлении (направлении, параллельном месту для парковки) в соответствии с SOC аккумулятора 5 таким образом, что заряд завершается в пределах заранее предполагаемого времени.

[0037] Более конкретно, как показано на фиг. 7, модуль 701 задания допустимого диапазона зарядки задает область (a) в качестве допустимого диапазона зарядки, если SOC аккумулятора 5 составляет 0% или выше и ниже 80%, задает область (b) в качестве допустимого диапазона зарядки, если SOC аккумулятора 5 составляет 80% или выше и ниже 90%, и задает область (с) в качестве допустимого диапазона зарядки, если SOC аккумулятора 5 составляет 90% или выше. Иными словами, модуль 701 задания допустимого диапазона зарядки задает допустимый диапазон зарядки большим по мере того, как повышается SOC. Следовательно, допустимое позиционное смещение катушки становится большим по мере того, как повышается SOC.

[0038] Когда модуль 701 задания допустимого диапазона зарядки задает допустимый диапазон зарядки, ECU 7 использует навигационное устройство и систему содействия при парковке с камерой на транспортном средстве (не показана), так что допустимый диапазон зарядки отображается на дисплее навигационного устройства. Водитель транспортного средства совмещает позицию для парковки в ходе просмотра дисплея таким образом, что позиция катушки 1A для передачи энергии находится в пределах допустимого диапазона зарядки. Соответственно, водитель может парковать транспортное средство в позиции, подходящей для зарядки.

[0039] Затем, после парковки, ECU 7 определяет позицию катушки 1A для передачи энергии через устройства 8A и 8B связи. В этом варианте осуществления позиция катушки 1A для передачи энергии определяется через связь, осуществляемую посредством устройства 8A связи на стороне земли и устройства 8B связи на стороне транспортного средства. Тем не менее, позиция катушки 1A для передачи энергии может быть определена посредством предоставления, например, датчика позиции в катушке 1A для передачи энергии или катушке 1B для приема энергии. Альтернативно, антенна для передачи сигналов может предоставляться в модуле 100 на стороне земли, приемное устройство может предоставляться в модуле 200 на стороне транспортного средства, и позиция катушки может быть определена из состояния связи сигнала, передаваемого из антенны.

[0040] Когда позиция катушки 1A для передачи энергии определяется через устройства 8A и 8B связи, модуль 702 оценки определяет то, находится или нет позиция катушки для передачи энергии в пределах допустимого диапазона зарядки. Затем, если позиция катушки для передачи энергии находится в пределах допустимого диапазона зарядки, модуль 702 оценки определяет то, что аккумулятор 5 может быть заряжен. Если модуль 702 оценки определяет то, что зарядка разрешается, модуль 704 управления зарядкой управляет мощностью приема катушки 1B для приема энергии как мощностью зарядки, подходящей для зарядки для аккумулятора 5, в соответствии с SOC, определенным посредством модуля 601 определения состояния заряда, и подает мощность зарядки в аккумулятор 5. Иными словами, если мощность приема катушки 1B для приема энергии выше мощности зарядки, подходящей для зарядки, модуль 704 управления зарядкой снижает мощность приема и подает мощность зарядки, подходящую для зарядки, в аккумулятор 5. Напротив, если мощность приема катушки 1B для приема энергии ниже мощности зарядки, подходящей для зарядки, модуль 704 управления зарядкой подает мощность приема катушки 1B для приема энергии в качестве мощности зарядки в аккумулятор 5. Если модуль 702 оценки определяет то, что зарядка не разрешается, модуль 703 уведомления результатов оценки может выдавать уведомление относительно результата оценки и уведомлять водителя относительно предложения повторной парковки.

[0041] Модуль 601 определения состояния заряда определяет SOC даже в ходе зарядки для аккумулятора 5, и модуль 704 управления зарядкой снижает мощность зарядки ступенчато по мере того, как увеличивается SOC. Затем, когда аккумулятор 5 полностью заряжен, модуль 704 управления зарядкой завершает подачу энергии в аккумулятор 5. Соответственно,