Способ газотермического напыления полимерных покрытий на металлические изделия и конструкции
Изобретение относится к газотермическому напылению полимерных покрытий на металлические элементы и конструкции. В способе газотермического напыления на первом этапе металлическую поверхность подвергают механической обработке и обезжириванию. После этого перед нанесением покрытия защищаемую поверхность и порошок из полиэтилена низкого давления предварительно обрабатывают композицией. Композиция представляет собой 30% водный раствор кремнезоля с добавкой 2-4% трехпроцентной дисперсии углеродных нанотрубок. Техническим результатом изобретения является повышение адгезии и эксплуатационных свойств газотермически напыляемых полимерных покрытий, получаемых путем предварительной обработки металлической поверхности наноразмерными составами. 2 табл.
Реферат
Изобретение относится к газотермическому напылению полимерных покрытий на металлических элементах и конструкциях.
Известны способы газопламенного нанесения полимерных материалов на металлические и керамические поверхности, состоящие из нанесения полиэтиленового порошка низкого давления путем воздушного распыления, газопламенного разогрева и последующего закрепления (прилипания) на защищаемой поверхности. Основными процессами в этих случаях являются: предварительная механическая или химическая подготовка металлической поверхности, подача полимерного порошка путем воздушного распыления, разогрев полимерного порошка огненным факелом горящего газа (пропана или ацетилена), закрепление разогретых частиц полимерного порошка на защищаемой поверхности и создание плотного защитного антикоррозийного слоя (Борисов Ю.С., Харламов Ю.А., Сидоренко С.Л., Ардатовская Е.Н. Газотермические покрытия из порошковых материалов. - Киев: Наукова думка, 1987. - С.73-127).
Однако все описанные способы предусматривают технологический процесс в стационарных условиях. Кроме того, получаемые полимерные покрытия имеют низкую агдезию к защищаемому металлу, что не обеспечивает длительной надежной работы в условиях воздействия коррозионных сред в широком интервале температур менее 5,0 МПа.
Известен способ создания напыленных полимерных покрытий с повышенными показателями адгезии до 8-10 МПа на предварительно фосфатируемую металлическую поверхность (Патент Беларуси №8528, МКИ B05D 1/08, 2006 г.), однако этот прием может быть реализован только в стационарных условиях, т.е. в условиях производства.
Ближе всего к заявляемому способу является способ по патенту № TJ 89, зарегистр. в Гос. Реестре изобретений Республики Таджикистан 16.10.2007 г. (Бюл. №48), включающий предварительную обработку металлической подложки углеродными нанотрубками, что обеспечивает повышение адгезии и эксплуатационных показателей полимерных покрытий.
Недостатком в этом случае является высокая себестоимость модифицирующих составов из углеродных нанотрубок, поэтому получаемый эффект не соответствует задачам обеспечения высоких эксплуатационных свойств защитных покрытий.
Задача предлагаемого технического решения является повышение адгезии и эксплуатационных свойств газотермически напыляемых полимерных покрытий, получаемых путем предварительной обработки металлической поверхности наноразмерными составами.
Для достижения поставленной цели до начала нанесения напыляемых полимерных покрытий металлическую поверхность подвергают механической обработке и обезжириванию, после чего на нее наносят композицию, содержащую наноразмерные частицы и представляющую собой 30%-ный водный раствор кремнезоля с добавкой 2-4% 3%-ного раствора углеродных нанотрубок. После высыхания в течение 3-5 часов на данную поверхность наносят полимерное покрытие из порошкового полиэтилена низкого давления методом газопламенного напыления. Получаемое при этом защитное полимерное покрытие отличается повышенной адгезией на 30-45%, твердостью на 25-30%, термостойкостью на 20-40%.
В таблице 1 представлены данные о технических свойствах термонапыляемых полимерных покрытий металлических конструкций очистных сооружений при обработке защищенной поверхности наноразмерными составами.
Таблица 1 | ||||
Эксплуатационные свойства защитных термонапыляемых полимерных покрытий металлических конструкций | ||||
ПОКАЗАТЕЛИ | Способ подготовки основания и обработки порошка ПЭНД | |||
Без обработки | Обработка УНТ | Обработка КЗ | Обработка КЗ+УНТ | |
Предел прочности при растяжении, МПа | 13-17 | 18-35 | 15-24 | 22-28 |
Относительное удлинение при разрыве, % | 100-450 | 120-350 | 180-320 | 140-380 |
Температура плавление, °C | 110-120 | 125-140 | 125-135 | 130-145 |
Температура хрупкости, °C | -70 | -80 | -65 | -80 |
Водопоглощение за 24 часа, % | 0,010 | 0,006 | 0,008 | 0,007 |
Плотность, кг/м3 | 920-960 | 930-970 | 925-970 | 970-1045 |
Пористость, % | 1,2-1,6 | 0,6-0,8 | 0,8-1,1 | 0,7-0,8 |
Адгезия к стальной поверхности, МПа | 5,4-6,4 | 8,2-9,9 | 8,3-9,1 | 9,6-12,4 |
Стойкость в агрессивной среде, ч | 160-170 | 190-220 | 185-200 | 230-260 |
Расчетный срок службы, годы | 7-9 | 10-12 | 8-10 | 14-20 |
Как следует из таблицы 1, при обработке защищаемой поверхности растворами наноразмерных частиц существенно возрастает адгезия напыляемого полимерного покрытия с 5,4-6,1 до 9,1-12,4, что сопровождается существенным уплотнением пленки и значительным снижением пористости от 1,2 до 0,7-0,8%. Такое улучшение качественных показателей способствует повышенной сопротивляемости защитного покрытия в агрессивной среде от 160-170 до 230-260 часов или в переводе к расчетному прогнозируемому сроку службы и не менее 14-20 лет.
Нанесенные на поверхность и на гранулы порошка ПЭНД наноразмерные частицы, выполняя роль катализатора и центра кристаллизации полимерного покрытия, способствуют упорядочению надмолекулярной структуры и переводу ее к более усиленной пачечной структуре, что подтверждается повышением всех эксплуатационных показателей полимерного покрытия.
В таблице 2 приведены данные о расходах и стоимости устройства термонапыляемых полимерных покрытий металлических конструкций очистных сооружений при предварительной обработке защищаемой поверхности наноразмерными составами.
Таблица 2 | |||||||
Расход материалов на 100 м2 защищаемой поверхности | |||||||
Составы для защищаемой поверхности | Составляющие композиции | ||||||
Толщина покрытия, мкм | Расход, кг/м2 | Порошок ПЭНД, кг/м2 | Кремнезоль, кг/м2 | УНТ, г/м2 | Расчетный срок службы, лет | Стоимость, руб/м2 | |
Порошок без обработки | 350-550 | 0,05-0,12 | 0,052 | - | - | 7-9 | 350-420 |
Порошок с обработкой КЗ | 400-600 | 0,04-0,06 | 0,053 | 0,04 | - | 8-10 | 360-430 |
Порошок с обработкой УНТ | 250-300 | 0,03-0,07 | 0,065 | - | 0,012 | 10-12 | 400-460 |
Порошок с обработкой КЗ+УНТ | 250-350 | 0,03-0,05 | 0,060 | 0,03 | 0,054 | 14-20 | 470-580 |
Анализируя приведенные данные, следует отметить, что обработка защищаемой поверхности наноразмерными составами хотя и приводит к некоторому увеличению стоимости защитного покрытия, однако средний размер затрат на один год эксплуатации металлических конструкций очистных сооружений при обработке защищенной поверхности наноразмерными составами существенно ниже. Так, при защите без обработки стоимость одного м2 составляет 50-60 рублей в год, а при обработке совместным составом из кремнезоля и УНТ максимум 25-35 рублей в год, не считая затрат на устройство и поддержание защитного покрытия.
Таким образом, предлагаемый способ газотермического напыления полимерных покрытий на металлические изделия и конструкции с предварительной обработкой защищаемой поверхности раствором 30%-ным кремнезоля с добавкой 2-4% трехпроцентной дисперсии углеродных нанотрубок, приводящий к увеличению адгезии на 30-45%, твердости на 25-30%, термостойкости на 20-40%, можно считать вполне эффективным.
Способ газотермического напыления полимерных покрытий на металлические изделия и конструкции, включающий очистку металла, подготовку устройства, газовой горелки и полимерного порошка, отличающий тем, что перед нанесением покрытия защищаемую поверхность и порошок из полиэтилена низкого давления предварительно обрабатывают водным раствором 30%-ого кремнезоля с добавкой 2-4% трехпроцентной дисперсии углеродных нанотрубок.