Композиции и способы получения изопрена

Иллюстрации

Показать все

Настоящее изобретение относится к биотехнологии и представляет собой способ получения изопрена и культуру рекомбинантных клеток, предназначенную для его осуществления. Рекомбинантные клетки содержат одну или несколько нуклеиновых кислот, кодирующих полипептид изопренсинтазы, полипептид изопентенилдифосфат-дельта-изомеразы (IDI) или полипептид 1-дезоксиксилулоза-5-фосфатазы (DXS) и/или один или несколько полипептидов пути мевалоната (MVA), при условии обязательного присутствия в клетке гетерологичной нуклеиновой кислоты, кодирующей изопренсинтазу. В качестве рекомбинантных клеток могут быть использованы клетки различных бактерий и грибов. Изобретение позволяет получить изопрен методом культивирования указанных рекомбинантных клеток с высоким выходом. 2 н. и 64 з.п. ф-лы, 79 ил., 6 табл., 13 пр.

Реферат

Родственные заявки

По настоящей заявке испрашивается приоритет предварительной заявки на патент США № 61/013574, поданной 13 декабря 2007 года. Содержание заявки приведено в настоящем описании в качестве ссылки в полном объеме.

Область техники, к которой относится изобретение

Настоящее изобретение в основном относится к способам получения изопрена из культивированных клеток и к композициям, содержащим эти культивированные клетки.

Уровень техники

Изопрен (2-метил-1,3-бутадиен) является основным исходным веществом для синтеза различных синтетических полимеров, из которых наибольшее значение имеют синтетические каучуки. В природных условиях изопрен продуцируется микроорганизмами, растениями и животными. В частности, установлено два пути биосинтеза изопрена: путь с участием мевалоната (MVA) и путь без участия мевалоната (DXP) (фигуры 19А и 19В). Однако получение изопрена из природных организмов в промышленном отношении является неэффективным. Ежегодно примерно 800000 тонн цис-полиизопрена получают полимеризацией изопрена; большую часть такого полиизопрена используют в производстве покрышек и каучука. Также изопрен подвергают сополимеризации для использования в качестве синтетического эластомера в других продуктах, таких как обувь, механические продукты, медицинские продукты, спортивные товары и латекс.

В настоящее время производство покрышек и каучука основано на применении природного и синтетического каучука. Природный каучук получают из молочного сока каучуковых деревьев или растений тропических лесов Африки. Синтетический каучук по существу состоит из бутадиеновых полимеров. Для таких полимеров бутадиен получают как сопродукт при производстве этилена и пропилена.

Несмотря на то, что изопрен можно получить фракционированием нефти, очистка нефти является дорогостоящей и трудоемкой. В результате крекинга нефти фракция С5 углеводородов дает только 15% изопрена. Таким образом, необходимы более экономичные способы получения изопрена. В частности, желательны способы получения изопрена, с помощью которых можно было бы получить изопрен с выходами, титрами и чистотой, которые отвечают требованиям интенсивного промышленного производства. Также желательны системы для получения изопрена из дешевых исходных веществ.

Сущность изобретения

В одном из аспектов изобретение относится к клеткам в культуре, продуцирующим изопрен. В некоторых вариантах осуществления изобретение относится к клеткам в культуре, которые продуцируют более чем 400 нмоль изопрена/г клеток на сырую клеточную массу/ч (нмоль/гскм/ч) изопрена. В некоторых вариантах осуществления клетки содержат гетерологичную нуклеиновую кислоту, которая (i) кодирует полипептид изопренсинтазы и (ii) функционально связана с промотором. В некоторых вариантах осуществления клетки культивируют в культуральной среде, которая содержит источник углерода, такой как, но ими не ограничиваясь, углевод (например, ксилоза или глюкоза), ацетат, глицерин, дигидроксиацетон, одноуглеродное соединение, масло, животный жир, животное масло, жирную кислоту, липид, фосфолипид, глицеролипид, моноглицерид, диглицерид, триглицерид, восстанавливаемый источник углерода (например, источник углерода на основе гидролизованной биомассы), полипептид (например, микробный или растительный белок или пептид), дрожжевой экстракт, компонент дрожжевого экстракта или комбинацию двух или более перечисленных источников.

В некоторых вариантах осуществления изобретение относится к клеткам в культуре, которые имеют среднюю объемную продуктивность изопрена более чем примерно 0,1 мг/лбульона/ч. В некоторых вариантах осуществления изобретение относится к клеткам в культуре, которые имеют максимальную объемную продуктивность изопрена более чем примерно 0,5 мг/лбульона/ч. В некоторых вариантах осуществления клетки содержат гетерологичную нуклеиновую кислоту, которая (i) кодирует полипептид изопренсинтазы и (ii) функционально связана с промотором. В некоторых вариантах осуществления клетки культивируют в культуральной среде, которая содержит источник углерода, такой как, не ограничиваясь этим, углевод (например, ксилоза или глюкоза), ацетат, глицерин, дигидроксиацетон, одноуглеродное соединение, масло, животный жир, животное масло, жирную кислоту, липид, фосфолипид, глицеролипид, моноглицерид, диглицерид, триглицерид, восстанавливаемый источник углерода (например, источник углерода на основе гидролизованной биомассы), полипептид (например, микробный или растительный белок или пептид), дрожжевой экстракт, компонент дрожжевого экстракта или комбинацию двух или более перечисленных источников.

В некоторых вариантах осуществления изобретение относится к клеткам в культуре, которые преобразуют более чем примерно 0,002% углерода в клеточной культуральной среде в изопрен. В некоторых вариантах осуществления клетки содержат гетерологичную нуклеиновую кислоту, которая (i) кодирует полипептид изопренсинтазы и (ii) функционально связана с промотором. В некоторых вариантах осуществления клетки культивируют в культуральной среде, которая содержит источник углерода, такой как, не ограничиваясь этим, углевод (например, ксилоза или глюкоза), ацетат, глицерин, дигидроксиацетон, одноуглеродное соединение, масло, животный жир, животное масло, жирную кислоту, липид, фосфолипид, глицеролипид, моноглицерид, диглицерид, триглицерид, восстанавливаемый источник углерода (например, источник углерода на основе гидролизованной биомассы), полипептид (например, микробный или растительный белок или пептид), дрожжевой экстракт, компонент дрожжевого экстракта или комбинацию двух или более перечисленных источников.

В некоторых вариантах осуществления изобретение относится к клеткам в культуре, которые содержат гетерологичную нуклеиновую кислоту, кодирующую полипептид изопренсинтазы. В некоторых вариантах осуществления клетки содержат гетерологичную нуклеиновую кислоту, которая (i) кодирует полипептид изопренсинтазы и (ii) функционально связана с промотором. В некоторых вариантах осуществления клетки культивируют в культуральной среде, которая содержит источник углерода, такой как, не ограничиваясь этим, углевод (например, ксилоза или глюкоза), ацетат, глицерин, дигидроксиацетон, одноуглеродное соединение, масло, животный жир, жирную кислоту, липид, фосфолипид, глицеролипид, моноглицерид, диглицерид, триглицерид, восстанавливаемый источник углерода (например, источник углерода на основе гидролизованной биомассы), полипептид (например, микробный или растительный белок или пептид), дрожжевой экстракт, компонент дрожжевого экстракта или комбинацию двух или более перечисленных источников.

В одном из аспектов изобретение относится к способам получения изопрена, таким как способы получения любых клеток, описанных в настоящем документе, для получения изопрена. В некоторых вариантах осуществления способ включает культивирование клеток в условиях, достаточных для получения более чем примерно 400 нмоль/гскм/ч изопрена. В некоторых вариантах осуществления способ также включает выделение изопрена, продуцированного клетками. В некоторых вариантах осуществления способ включает очистку изопрена, продуцированного клетками. В некоторых вариантах осуществления способ включает полимеризацию изопрена. В некоторых вариантах осуществления клетки содержат гетерологичную нуклеиновую кислоту, которая (i) кодирует полипептид изопренсинтазы и (ii) функционально связана с промотором. В некоторых вариантах осуществления клетки культивируют в культуральной среде, которая содержит источник углерода, такой как, не ограничиваясь этим, углевод (например, ксилоза или глюкоза), ацетат, глицерин, дигидроксиацетон, одноуглеродное соединение, масло, животный жир, жирную кислоту, липид, фосфолипид, глицеролипид, моноглицерид, диглицерид, триглицерид, восстанавливаемый источник углерода (например, источник углерода на основе гидролизованной биомассы), полипептид (например, микробный или растительный белок или пептид), дрожжевой экстракт, компонент дрожжевого экстракта или комбинацию двух или более перечисленных источников.

В одном из аспектов изобретение относится к способам получения изопрена, таким как способы, в которых используются любые клетки, описанные в настоящем документе, для получения изопрена. В некоторых вариантах осуществления способ включает культивирование клеток в условиях, обеспечивающих среднюю объемную продуктивность изопрена более чем примерно 0,1 мг/лбульона/ч. В некоторых вариантах осуществления способ включает культивирование клеток в условиях, обеспечивающих максимальную объемную продуктивность изопрена более чем примерно 0,5 мг/лбульона/ч. В некоторых вариантах осуществления способ также включает выделение изопрена, продуцированного клетками. В некоторых вариантах осуществления способ включает очистку изопрена, продуцированного клетками. В некоторых вариантах осуществления способ включает полимеризацию изопрена. В некоторых вариантах осуществления клетки содержат гетерологичную нуклеиновую кислоту, которая (i) кодирует полипептид изопренсинтазы и (ii) функционально связана с промотором. В некоторых вариантах осуществления клетки культивируют в культуральной среде, которая содержит источник углерода, такой как, не ограничиваясь этим, углевод (например, ксилоза или глюкоза), ацетат, глицерин, дигидроксиацетон, одноуглеродное соединение, масло, животный жир, жирную кислоту, липид, фосфолипид, глицеролипид, моноглицерид, диглицерид, триглицерид, восстанавливаемый источник углерода (например, источник углерода на основе гидролизованной биомассы), полипептид (например, микробный или растительный белок или пептид), дрожжевой экстракт, компонент дрожжевого экстракта или комбинацию двух или более перечисленных источников.

В некоторых вариантах осуществления способ включает культивирование клеток в условиях, достаточных для преобразования более чем примерно 0,002% углерода в клеточной культуральной среде в изопрен. В некоторых вариантах осуществления способ также включает выделение изопрена, продуцированного клетками. В некоторых вариантах осуществления способ включает очистку изопрена, продуцированного клетками. В некоторых вариантах осуществления способ включает полимеризацию изопрена. В некоторых вариантах осуществления клетки содержат гетерологичную нуклеиновую кислоту, которая (i) кодирует полипептид изопренсинтазы и (ii) функционально связана с промотором. В некоторых вариантах осуществления клетки культивируют в культуральной среде, которая содержит источник углерода, такой как, не ограничиваясь этим, углевод (например, ксилоза или глюкоза), ацетат, глицерин, дигидроксиацетон, одноуглеродное соединение, масло, животный жир, жирную кислоту, липид, фосфолипид, глицеролипид, моноглицерид, диглицерид, триглицерид, восстанавливаемый источник углерода (например, источник углерода на основе гидролизованной биомассы), полипептид (например, микробный или растительный белок или пептид), дрожжевой экстракт, компонент дрожжевого экстракта или комбинацию двух или более перечисленных источников.

В некоторых вариантах осуществления любого из аспектов изобретения клетки в культуре продуцируют изопрен более чем или примерно 400, 500, 600, 700, 800, 900, 1000, 1250, 1500, 1750, 2000, 2500, 3000, 4000, 5000, 10000, 12500, 20000, 30000, 40000, 50000, 75000, 100000, 125000, 150000, 188000 или более нмоль/гскм/ч изопрена. В некоторых вариантах осуществления клетки в культуре имеют среднюю объемную продуктивность изопрена более чем примерно или примерно 0,1, 1,0, 10, 25, 50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, 3500 или более мг изопрена/л бульона/ч (мг/лбульона/ч), где объем бульона включает объем клеток и клеточную среду). В некоторых вариантах осуществления клетки в культуре имеют максимальную объемную продуктивность изопрена более чем или примерно 0,5, 1,0, 10, 25, 50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900, 3000, 3100, 3200, 3300, 3400, 3500, 3750, 4000, 4250, 4500, 4750, 5000, 5250, 5500, 5750, 6000, 6250, 6500, 6750, 7000, 7250, 7500, 7750, 8000, 8250, 8500, 8750, 9000, 9250, 9500, 9750, 10000, 12500, 15000 или более мг изопрена/л бульона/ч (мг/лбульона/ч), где объем бульона включает объем клеток и клеточную среду). В некоторых вариантах осуществления любого из аспектов изобретения клетки в культуре преобразуют более чем или примерно 0,002, 0005, 0,01, 0,02, 0,05, 0,1, 0,12, 0,14, 0,16, 0,2, 0,3, 0,4, 0,5, 0,6, 0,7, 0,8, 0,9, 1,0, 1,2, 1,4, 1,6, 2,0, 2,2, 2,4, 2,6, 3,0, 4,0, 5,0, 6,0, 7,0, 8,0, 9,0, 10,0, 11,0, 12,0, 13,0, 14,0, 15,0, 16,0, 17,0, 18,0, 19,0, 20,0, 21,0, 22,0, 23,0, 23,2, 23,4, 23,6, 23,8, 24,0, 25,0, 30,0, 31,0, 32,0, 33,0, 35,0, 37,5, 40,0, 45,0, 47,5, 50,0, 55,0, 60,0, 65,0, 70,0, 75,0, 80,0, 85,0, 90,0 мол.% или более углерода в клеточной культуральной среде в изопрен. В некоторых вариантах осуществления любого из аспектов изобретения клетки в культуре продуцируют изопрен более чем или примерно 1, 10, 25, 50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000, 1250, 1500, 1750, 2000, 2500, 3000, 4000, 5000, 10000, 100000 или более нг изопрена/г клеток в пересчете на сырую клеточную массу/ч (нг/гскм/ч). В некоторых вариантах осуществления любого из аспектов изобретения клетки в культуре продуцируют кумулятивный титр (общее количество) изопрена более чем или примерно 1, 10, 25, 50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000, 1250, 1500, 1750, 2000, 2500, 3000, 4000, 5000, 10000, 100000 или более мг изопрена/л бульона (мг/лбульона, где объем бульона включает объем клеток и клеточную среду). В настоящем документе раскрыты другие, приведенные в качестве примера выхода продукции изопрена и общие количества продукции изопрена.

В некоторых вариантах осуществления любого из аспектов изобретения клетки дополнительно содержат гетерологичную нуклеиновую кислоту, кодирующую полипептид IDI. В некоторых вариантах осуществления любого из аспектов изобретения клетки дополнительно содержат вставку копии эндогенной нуклеиновой кислоты, кодирующей полипептид IDI. В некоторых вариантах осуществления любого из аспектов изобретения клетки дополнительно содержат гетерологичную нуклеиновую кислоту, кодирующую полипептид DXS. В некоторых вариантах осуществления любого из аспектов изобретения клетки дополнительно содержат вставку копии эндогенной нуклеиновой кислоты, кодирующей полипептид DXS. В некоторых вариантах осуществления любого из аспектов изобретения клетки дополнительно содержат одну или более нуклеиновых кислот, кодирующих полипептид IDI и полипептид DXS. В некоторых вариантах осуществления любого из аспектов изобретения одна нуклеиновая кислота кодирует полипептид изопренсинтазы, полипептид IDI и полипептид DXS. В некоторых вариантах осуществления любого из аспектов изобретения один вектор кодирует полипептид изопренсинтазы, полипептид IDI и полипептид DXS. В некоторых вариантах осуществления вектор содержит селективный маркер, такой как нуклеиновая кислота, придающая резистентность к антибиотикам.

В некоторых вариантах осуществления любого из аспектов изобретения гетерологичная нуклеиновая кислота изопренсинтазы функционально связана с Т7-промотором, таким как Т7-промотор, находящийся в среде или высококопийной плазмиде. В некоторых вариантах осуществления любого из аспектов изобретения гетерологичная нуклеиновая кислота изопренсинтазы функционально связана с Trc-промотором, таким как Trc-промотор, находящийся в среде или высококопийной плазмиде. В некоторых вариантах осуществления любого из аспектов изобретения гетерологичная нуклеиновая кислота изопренсинтазы функционально связана с Lac-промотором, таким как промотор Lac, находящийся в низкокопийной плазмиде. В некоторых вариантах осуществления любого из аспектов изобретения гетерологичная нуклеиновая кислота изопренсинтазы функционально связана с эндогенным промотором, таким как эндогенный промотор щелочной серинпротеазы. В некоторых вариантах осуществления гетерологичная нуклеиновая кислота изопренсинтазы интегрирует в хромосому клеток без селективного маркера.

В некоторых вариантах осуществления любого из аспектов изобретения по меньшей мере часть клеток сохраняет гетерологичную нуклеиновую кислоту изопренсинтазы, по меньшей мере, или примерно на 5, 10, 20, 40, 50, 60, 65 или более клеточных делений в непрерывной культуре (такой как непрерывная культура без разведения). В некоторых вариантах осуществления любого из аспектов изобретения нуклеиновая кислота, содержащая нуклеиновую кислоту изопренсинтазы, IDI или DXS, также содержит селективный маркер, такой как нуклеиновая кислота, обеспечивающая резистентность к антибиотикам.

В некоторых вариантах осуществления любого из аспектов изобретения клетки дополнительно содержат гетерологичную нуклеиновую кислоту, кодирующую полипептид пути MVA (такой как полипептид пути MVA из Saccharomyces cerevisi, Methanosarcina mazei или Enterococcus faecalis). В некоторых вариантах осуществления любого из аспектов изобретения клетки дополнительно содержат вставку копии эндогенной нуклеиновой кислоты, кодирующей полипептид пути MVA (такой как полипептид пути MVA из Saccharomyces cerevisia, Methanosarcina mazei или Enterococcus faecalis). В некоторых вариантах осуществления любого из аспектов изобретения клетки содержат нуклеиновую кислоту изопренсинтазы, DXS и пути MVA. В некоторых вариантах осуществления любого из аспектов изобретения клетки содержат нуклеиновую кислоту изопренсинтазы, нуклеиновую кислоту DXS и нуклеиновую кислоту IDI, и нуклеиновую кислоту пути MVA (в дополнении к нуклеиновой кислоте IDI).

В некоторых вариантах осуществления любого из аспектов изобретения полипептид изопренсинтазы представляет природный полипептид из растения, такого как Pueraria (например, Pueraria montana) или Populus (например, Populus tremuloides, Populus alba (P. alba), Populus nigra, Populus trichocapra или гибрид Populus alba×Populus tremula).

В некоторых вариантах осуществления любого из аспектов изобретения клетки представляют собой бактериальные клетки, такие как грамположительные бактериальные клетки (например, клетки Bacillus, такие как клетки Bacillus subtilis или клетки Streptomyces, такие как клетки Streptomyces lividans, Streptomyces coelicolor, Streptomyces albus или Streptomyces griseus). В некоторых вариантах осуществления любого из аспектов изобретения клетки представляют собой грамотрицательные бактериальные клетки (например, клетки Escherichia, такие как Escherichia coli или клетки Pantoea, такие как клетки Pantoea citrea). В некоторых вариантах осуществления клетки E.coli представляют собой мутантные клетки E.coli FadR atoC. В некоторых вариантах осуществления клетки E.coli экспрессируют (например, конститутивно экспрессируют) ybhE (также известный как pgl). В некоторых вариантах осуществления любого из аспектов изобретения клетки представляют грибковые клетки, такие как клетки нитчатых грибов (например, клетки Trichoderma, такие как клетки Trichoderma reesei или клетки Aspergillus, такие как Aspergillus oryzae и Aspergillus niger) или дрожжевые клетки (например, клетки Yarrowia, такие как клетки Yarrowia lipolytica).

В некоторых вариантах осуществления любого из аспектов изобретения источник углерода микробного полипептида включает один или более полипептидов из дрожжей или бактерий. В некоторых вариантах осуществления любого из аспектов изобретения источник углерода растительного полипептида включает один или более полипептидов из сои, кукурузы, канолы, ятрофы, пальмы, арахиса, подсолнечника, кокосового ореха, горчицы, рапсового семени, семян хлопчатника, пальмового ядра, оливок, сафлора, кунжута или льняного семени.

В одном из аспектов изобретение относится к покрышке, содержащей полиизопрен. В некоторых вариантах осуществления полиизопрен получают (i) полимеризацией изопрена из любых композиций или способов, описанных в настоящем документе, или (ii) полимеризацией изопрена, выделенного из любых композиций или способов, описанных в настоящем документе. В некоторых вариантах осуществления полиизопрен содержит цис-1,4-полиизопрен.

В одном из аспектов изобретение относится к продукту (такому как покрышка), полученному с использованием любых композиций или способов по изобретению.

Очевидно, понятно, что один, некоторые или все признаки различных вариантов осуществления, описанных в настоящем документе, можно объединить с получением других вариантов осуществления настоящего изобретения. Эти и другие аспекты изобретения станут очевидными специалистам в данной области.

Краткое описание фигур

На фигуре 1 приведена нуклеотидная последовательность кодон-оптимизированного гена изопренсинтазы кудзу для экспрессии в E.coli (SEQ ID NO:1). Старт-кодон atg выделен курсивом, стоп-кодон - жирным шрифтом и добавленный сайт PstI - подчеркнут.

На фигуре 2 приведена карта pTrcKudzu.

На фигуре 3А-3С приведена нуклеотидная последовательность pTrcKudzu (SEQ ID NO:2). RBS подчеркнут, старт-кодон изопренсинтазы кудзу выделен жирными заглавными буквами и стоп-кодон - жирными заглавными буквами курсивом. Остовом вектора является pTrcHis2B.

На фигуре 4 приведена карта pETNHisKudzu.

На фигуре 5А-5С приведена нуклеотидная последовательность pETNHisKudzu (SEQ ID NO:5).

На фигуре 6 приведена карта pCL-lac-Kudzu.

На фигуре 7А-7С приведена нуклеотидная последовательность pCL-lac-Kudzu (SEQ ID NO:7).

На фигуре 8А приведен график, показывающий продукцию изопрена клетками E.coli BL21 без использования вектора.

На фигуре 8В приведен график, показывающий продукцию изопрена клетками E.coli BL21 с использованием pCL-lac-Kudzu.

На фигуре 8С приведен график, показывающий продукцию изопрена клетками E.coli BL21 с использованием pTrcKudzu.

На фигуре 8D приведен график, показывающий продукцию изопрена клетками E.coli BL21 с использованием pETNHisKudzu.

На фигуре 9А приведен график, показывающий значение OD во время ферментации E.coli BL21/pTrcKudzu при периодической ферментации объемом 14 л.

На фигуре 9В приведен график, показывающий продукцию изопрена во время ферментации E.coli BL21/pTrcKudzu при периодической ферментации объемом 14 л.

На фигуре 10А приведен график, показывающий продукцию изопрена клетками Panteoa citrea. Контрольные клетки без рекомбинантной изопренсинтазы кудзу. Серые ромбики показывают изопренсинтазу, черные прямоугольники показывают OD600.

На фигуре 10В приведен график, показывающий продукцию изопрена клетками Panteoa citrea, экспрессирующими pCL-lac-Kudzu. Серые ромбики показывают изопренсинтазу, черные прямоугольники показывают OD600.

На фигуре 10С приведен график, показывающий продукцию изопрена клетками Panteoa citrea, экспрессирующими pTrcKudzu. Серые ромбики показывают изопренсинтазу, черные прямоугольники показывают OD600.

На фигуре 11 приведен график, показывающий продукцию изопрена клетками Bacillus subtilis, экспрессирующими рекомбинантную изопренсинтазу. BG3594comK представляет штамм B. subtilis без плазмиды (природная продукция изопрена). CF443-BG3594comK представляет штамм B. subtilis с pBSKudzu (рекомбинантная продукция изопрена). IS на оси y указывает изопрен.

На фигуре 12А-12С приведена нуклеотидная последовательность pBS Kudzu #2 (SEQ ID NO:57).

На фигуре 13 приведена нуклеотидная последовательность кодон-оптимизированного гена изопренсинтазы кудзу для экспрессии в Yarrowia (SEQ ID NO:8).

На фигуре 14 приведена карта pTrex3g, содержащая кодон-оптимизированный ген изопренсинтазы кудзу для экспрессии в Yarrowia.

На фигуре 15А-15С приведена нуклеотидная последовательность вектора pSPZ1 (MAP29Spb) (SEQ ID NO:11).

На фигуре 16 приведена нуклеотидная последовательность синтетического кодон-оптимизированного гена изопренсинтазы кудзу для экспрессии в Yarrowia (SEQ ID NO:12).

На фигуре 17 приведена нуклеотидная последовательность синтетического слитого гена изопренсинтазы тополя (Populus alba×Populus tremula) (SEQ ID NO:13). Старт-кодон ATG выделен жирным шрифтом и стоп-кодон подчеркнут.

На фигуре 18А приведена схема конструирования векторов pYLA1, pYL1 и pYL2.

На фигуре 18В приведена схема конструирования вектора pYLA (POP1).

На фигуре 18С приведена схема конструирования вектора pYLA (KZ1).

На фигуре 18D приведена схема конструирования вектора pYLI (KZ1).

На фигуре 18Е приведена схема конструирования вектора pYLI (МАР29).

На фигуре 18F приведена схема конструирования вектора pYLA (МАР29).

На фигуре 19А показаны метаболические пути MVA и DXP для изопрена (на основе данных F.Bouvier et al., Progress in Lipid Res., 44:357-429, 2005). Следующее описание включает альтернативные названия каждого полипептида на путях и ссылки на источник, в котором раскрывается метод определения активности указанного полипептида (каждый из данных источников в полном объеме включен для сведения, в частности, в отношении методов анализа активности полипептидов на путях MVA и DXP). Путь с участием мевалоната: ААСТ; ацетил-СоА-ацетилтрансфераза, MvaE, EC 2.3.1.9. Метод: J. Bacteriol., 184:2116-2122, 2002; HMGS; гидроксиметилглутарил-СоА-синтаза, MvaS, EC 2.3.3.10. Метод: J. Bacteriol., 184:4065-4070, 2002; HMGR; 3-гидрокси-3-метилглутарил-СоА-редуктаза, MvaE, EC 1.1.1.34. Метод: J. Bacteriol., 184:2116-2122, 2002; MVK; мевалонаткиназа, ERG12, EC 2.7.1.36. Метод: Curr. Genet., 19:9-14, 1991; PMK, фосфомевалонаткиназа, ERG8, EC 2.7.4.2. Метод: Mol. Cell Biol., 11:620-631, 1991; DPMDC; дифосфомевалонатдекарбоксилаза, MVD1, EC 4.1.1.33. Метод: Biochemistry, 33:13355-13362, 1994; IDI; изопентенилдифосфат-дельта-изомераза, IDI1, EC 5.3.3.2. Метод: J. Biol. Chem., 264:19169-19175, 1989. Путь DXP: DXS; 1-дезоксиксилулоза-5-фосфатсинтаза, dxc, EC 2.2.1.7. Метод: PNAS, 94:12857-62, 1997; DXR; 1-дезокси-D-ксилулоза-5-фосфатредуктоизомераза, dxr, EC 2.2.1.7. Метод: Eur. J. Biochem., 269:4446-4457, 2002; MCT; 4-дифосфоцитидил-2С-метил-D-эритролсинтаза, IspD, EC 2.7.7.60. Метод: PNAS, 97:6451-6456, 2000; CMK; 4-дифосфоцитидил-2С-метил-D-эритролкиназа, IspE, EC 2.7.1.148. Метод: PNAS, 97:1062-1067, 2000; MCS; 2C-метил-D-эритритол-2,4-циклодифосфатсинтаза, IspF, EC 4.6.1.12. Метод: PNAS, 96:11758-11763, 1999; HDS; 1-гидрокси-2-метил-2-(Е)-бутенил-4-дифосфатсинтаза, IspG, EC 1.17.4.3. Метод: J. Org. Chem., 70:9168-9174, 2005; HDR; 1-гидрокси-2-метил-2-(Е)-бутенил-4-дифосфатредуктаза, IspH, EC 1.17.1.2. Метод: JACS, 126:12847-12855, 2004.

На фигуре 19В показаны классические и модифицированные пути MVA. 1, ацетил-СоА-ацетилтрансфераза (ААСТ); 2, HMG-СоА-синтаза (HMGS); 3, HMG-CoA-редуктаза (HMGR); 4, мевалонаткиназа (MVK); 5, фосфомевалонаткиназа (PMK); 6, дифосфомевалонатдекарбоксилаза (MVD или DPMDC); 7, изопентенилдифосфатизомераза (IDI); 8, фосфомевалонатдекарбоксилаза (PMDC); 9, изопентенилфосфаткиназа (IPK). Классический путь MVA протекает от реакции 1 до реакции 7 через реакции 5 и 6, в то время как модифицированный путь MVA протекает через реакции 8 и 9. Р и РР в структурных формулах представляют соответственно фосфат и пирофосфат. Данная фигура взята из Koga and Morii, Microbiology and Mol. Biology Reviews, 71:97-120, 2007, источник в полном объеме включен в настоящий документ для сведения, в частности, в отношении нуклеиновых кислот и полипептидов с модифицированного пути MVA. Модифицированный путь MVA имеется, например, в некоторых архебактериях, таких как Methanosarcina mazei.

На фигуре 20 приведен график, показывающий результаты анализа ГХ-МС продукции изопрена рекомбинантными штаммами Y. lipolytica (слева) и при участии гена изопренсинтазы кудзу (справа). Стрелки указывают время элюирования аутентичного стандарта изопрена.

На фигуре 21 приведена карта pTrcKudzu yIDI DXS Kan.

На фигуре 22А-22D приведена нуклеотидная последовательность pTrcKudzu yIDI DXS Kan (SEQ ID NO:20).

На фигуре 23А приведен график, показывающий продукцию изопрена из глюкозы клетками штамма BL21/pTrcKudzukan. Время 0 представляет время индукции IPTG (400 мкмоль). Ось Х представляет время после индукции; ось Y представляет OD600, и ось Y2 представляет общую продуктивность изопрена (мкг/л пространства над жидкостью или удельную продуктивность (мкг/л пространства над жидкостью/OD). Ромбики показывают OD600, кружки показывают общую продуктивность изопрена (мкг/л) и прямоугольники показывают удельную продуктивность изопрена (мкг/л/OD).

На фигуре 23В приведен график, показывающий продукцию изопрена из глюкозы клетками штамма BL21/pTrcKudzu yIDI kan. Время 0 представляет время индукции IPTG (400 мкмоль). Ось Х представляет время после индукции; ось Y представляет OD600, и ось Y2 представляет общую продуктивность изопрена (мкг/л пространства над жидкостью или удельную продуктивность (мкг/л пространства над жидкостью/OD). Ромбики показывают OD600, кружки показывают общую продуктивность изопрена (мкг/л) и прямоугольники показывают удельную продуктивность изопрена (мкг/л/OD).

На фигуре 23С приведен график, показывающий продукцию изопрена из глюкозы клетками штамма BL21/pTrcKudzu DXS kan. Время 0 представляет время индукции IPTG (400 мкмоль). Ось Х представляет время после индукции; ось Y представляет OD600, и ось Y2 представляет общую продуктивность изопрена (мкг/л пространства над жидкостью или удельную продуктивность (мкг/л пространства над жидкостью/OD). Ромбики показывают OD600, кружки показывают общую продуктивность изопрена (мкг/л) и прямоугольники показывают удельную продуктивность изопрена (мкг/л/OD).

На фигуре 23D приведен график, показывающий продукцию изопрена из глюкозы клетками штамма BL21/pTrcKudzu yIDI DXS kan. Время 0 представляет время индукции IPTG (400 мкмоль). Ось Х представляет время после индукции; ось Y представляет OD600, и ось Y2 представляет общую продуктивность изопрена (мкг/л пространства над жидкостью или удельную продуктивность (мкг/л пространства над жидкостью/OD). Ромбики показывают OD600, кружки показывают общую продуктивность изопрена (мкг/л) и прямоугольники показывают удельную продуктивность изопрена (мкг/л/OD).

На фигуре 23Е приведен график, показывающий продукцию изопрена из глюкозы клетками штамма BL21/pCL PtrcKudzu. Время 0 представляет время индукции IPTG (400 мкмоль). Ось Х представляет время после индукции; ось Y представляет OD600, и ось Y2 представляет общую продуктивность изопрена (мкг/л пространства над жидкостью или удельную продуктивность (мкг/л пространства над жидкостью/OD). Ромбики показывают OD600, кружки показывают общую продуктивность изопрена (мкг/л) и прямоугольники показывают удельную продуктивность изопрена (мкг/л/OD).

На фигуре 23F приведен график, показывающий продукцию изопрена из глюкозы клетками штамма BL21/pCL PtrcKudzu yIDI. Время 0 представляет время индукции IPTG (400 мкмоль). Ось Х представляет время после индукции; ось Y представляет OD600, и ось Y2 представляет общую продуктивность изопрена (мкг/л пространства над жидкостью или удельную продуктивность (мкг/л пространства над жидкостью/OD). Ромбики показывают OD600, кружки показывают общую продуктивность изопрена (мкг/л) и прямоугольники показывают удельную продуктивность изопрена (мкг/л/OD).

На фигуре 23G приведен график, показывающий продукцию изопрена из глюкозы клетками штамма BL21/pCL PtrcKudzu DXS. Время 0 представляет время индукции IPTG (400 мкмоль). Ось Х представляет время после индукции; ось Y представляет OD600, и ось Y2 представляет общую продуктивность изопрена (мкг/л пространства над жидкостью или удельную продуктивность (мкг/л пространства над жидкостью/OD). Ромбики показывают OD600, кружки показывают общую продуктивность изопрена (мкг/л) и прямоугольники показывают удельную продуктивность изопрена (мкг/л/OD).

На фигуре 23H приведен график, показывающий продукцию изопрена из глюкозы клетками штамма BL21/pTrcKudzuIDIDXSkan. Стрелка указывает время индукции IPTG (400 мкмоль). Ось Х представляет время после индукции; ось Y представляет OD600, и ось Y2 представляет общую продуктивность изопрена (мкг/л пространства над жидкостью или удельную продуктивность (мкг/л пространства над жидкостью/OD). Черные ромбики показывают OD600, черные треугольники показывают продуктивность изопрена (мкг/л) и белые прямоугольники показывают удельную продуктивность изопрена (мкг/л/OD).

На фигуре 24 приведена карта pTrcKKDyIkIS kan.

На фигуре 25A-25D приведена нуклеотидная последовательность pTrcKKDyIkIS kan (SEQ ID NO:33).

На фигуре 26 приведена карта pCL Ptrcверхний путь.

На фигуре 27A-27D приведена нуклеотидная последовательность pCL Ptrcверхний путь (SEQ ID NO:46).

На фигуре 28 приведена карта кассеты, содержащей нижний путь MVA и дрожжевую idi для интеграции в хромосому B. subtilis в локусе nprE. nprE слева/справа указывает 1 т.п.н. каждой последовательности от локуса nprE для интеграции. Промотор aprE (промотор щелочной серинпротеазы) указывает промотор (-35, -10, +1 сайт старта транскрипции, RBS) гена aprE. MVK1 означает ген дрожжевой мевалонаткиназы. RBS-PMK означает ген дрожжевой фосфомевалонаткиназы с RBS Bacillus слева от сайта старта. RBS-MPD означает ген дрожжевой дифосфомевалонатдекарбоксилазы с RBS Bacillus слева от сайта старта. RBS-IDI означает ген дрожжевой idi с RBS Bacillus слева от сайта старта. Терминатор означает терминатор транскрипции щелочной серинпротеазы из B. amyliquefaciens. SpecR обозначает маркер резистентности к спектиномицину. «nprE повтор слева для амплификации» обозначает прямой повтор области слева, используемый для амплификации.

На фигуре 29A-29D приведена нуклеотидная последовательность кассеты, содержащей нижний путь MVA и дрожжевую idi, для интеграции в хромосому B. subtilis в локусе nprE (SEQ ID NO:47).

На фигуре 30 приведена карта p9796-poplar.

На фигуре 31A-31B приведена нуклеотидная последовательность p9796-poplar (SEQ ID NO:48).

На фигуре 32 приведена карта pTrcPoplar.

На фигуре 33A-33C приведена нуклеотидная последовательность pTrcPoplar (SEQ ID NO:49).

На фигуре 34 приведена карта pTrcKudzu yIDI Kan.

На фигуре 35A-35C приведена нуклеотидная последовательность pTrcKudzu yIDI Kan (SEQ ID NO:50).

На фигуре 36 приведена карта pTrcKudzuDXS Kan.

На фигуре 37A-37C приведена нуклеотидная последовательность pTrcKudzuDXS Kan (SEQ ID NO:51).

На фигуре 38 приведена карта pCL PtrcKudzu.

На фигуре 39A-39C приведена нуклеотидная последовательность pCL PtrcKudzu (SEQ ID NO:52).

На фигуре 40 приведена карта pCL PtrcKudzu A3.

На фигуре 41A-41C приведена нуклеотидная последовательность pCL PtrcKudzu A3 (SEQ ID NO:53).

На фигуре 42 приведена карта pCL PtrcKudzu yIDI.

На фигуре 43A-43C приведена нуклеотидная последовательность pCL PtrcKudzu yIDI (SEQ ID NO:54).

На фигуре 44 приведена карта pCL PtrcKudzu DXS.

На фигуре 45A-45D приведена нуклеотидная последовательность pCL PtrcKudzu DXS (SEQ ID NO:55).

На фигуре 46 приведен график, показывающий продукцию изопрена из сырьевой биомассы. На панели А показана продукция изопрена из кукурузной соломы, на панели В показана продукция изопрена из жмыха, на панели С показана продукция изопрена из мягкой древесной пульпы, на панели D показана продукция изопрена из глюкозы, на панели E показана продукция изопрена клетками без внесения дополнительного сырья. Серые прямоугольники показывают значения OD600 культур в указанные интервалы времени после инокуляции и черные треугольники показывают продукцию изопрена в указанные интервалы времени после инокуляции.

На фигуре 47A приведен график, показывающий продукцию изопрена клетками штамма BL21 (λDE3) pTrcKudzu yIDI DXS (kan) в культуре без внесения глюкозы. Прямоугольники показывают значения OD600 и треугольники показывают продуцированный изопрен (мкг/мл).

На фигуре 47В приведен график, показывающий продукцию изопрена из сырья 1% глюкозы инвертированного сахара клетками штамма BL21 (λDE3) pTrcKudzu yIDI DXS (kan). Прямоугольники показывают значения OD600 и треугольники показывают продуцированный изопрен (мкг/мл).

На фигуре 47С приведен график, показывающий продукцию изопрена из сырья 1% инвертированного сахара клетками штамма BL21 (λDE3) pTrcKudzu yIDI DXS (kan). Прямоугольники показывают значения OD600 и треугольники показывают продуцированный изопрен (мкг/мл).

На фигуре 47D приведен график, показывающий продукцию изопрена из сырья 1% обработанной AFEX кукурузной соломы клетками штамма BL21 (λDE3) pTrcKudzu yIDI DXS (kan). Прямоугольники показывают значения OD600 и треугольники показывают продуцированный изопрен (мкг/мл).

На фигуре 48 приведен график, показывающий влияние дрожжевого экстракта на продукцию изопрена. На панели А показана динамика изменения оптической плотности во времени в ферментере с подачей различных количеств дрожжевого экстракта. На панели В показана динамика изменения титра изопрена во времени в ферментере с подачей различных количеств дрожжевого экстракта. Титр определяется, как количество изопрена, продуцированного на литр ферментационного бульона. На панели С показано влияние дрожжевого экстракта на продукцию изопрена E.coli, культивированных в культуре с подпиткой.

На фигуре 49 приведен график, показывающий продукцию изопрена в биореакторах емкостью 500 л клетками E.coli, содержащими плазмиду pTrcKudzu и yIDI и DXS. На панели А показана динамика изменения оптической плотности во времени в биореакторе емкостью 500 л с подачей глюкозы и дрожжевого экстракта. На панели В показана динамика изменения титра изопрена во времени в биореакторе емкостью 500 л с подачей глюкозы и дрожжевого экстракта. Титр определяется, как количество изопрена, продуцированного на литр ферментационного бульона. На панели С приведен временной график общего количества изопрена, продуцированного в биореакторе емкостью 500 л с подачей глюкозы и дрожжевого экстракта.