Высокоэффективные метатезистические катализаторы, выбираемые в реакциях romp и rcm
Иллюстрации
Показать всеИзобретение относится к лиганду координационного соединения металла. Лиганд имеет следующую структуру формулы Ia или Ib
где Ζ представляет собой СН2=; m=0 или 1, n=0 или 1; при m=0, Υ представляет собой ΝΗ, С1-С20-алкилимино или С6-С20-арилимино; при m=1, X представляет собой СН2; Υ представляет собой ΝΗ или С1-С20-алкилимино; представляет собой одинарную связь; при n=1, X1 представляет собой СН2 или карбонил; Υ1 представляет собой кислород или карбонил; R1 представляет собой водород; R2 представляет собой С1-С20-алкил или С6-С20-арил; Ε представляет собой водород, галоген, нитро, С1-С4-алкокси, С1-С4-алкоксикарбонил или С1-С8-алкиламиносульфонил; Е1 и Е2 независимо представляют собой водород или галоген; Ε3 представляет собой водород; Е4 представляет собой водород или С1-С4-алкил; Е5 и Е6 представляют собой водород, галоген, С1-С4-алкил или C1-С6-алкокси; Е7 представляет собой водород или С1-С4-алкил. Также предложены координационное соединение переходного металла, способ проведения реакции метатезиса с олефиновым субстратом, применение координационного соединения переходного металла для деполимеризации каучука и в гидрировании каучука. Изобретение позволяет получить координационные соединения переходного металла, которые имеют высокую каталитическую активность и селективность в реакциях ROMP и RCM. 5 н. и 6 з.п. ф-лы, 13 табл., 118 пр.
Реферат
ОБЛАСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к новым карбеновым лигандам и содержащим их рутениевым катализаторам, которые обладают высокой активностью и селективностью в различных типах реакций метатезиса, таких как ROMP и RCM. Изобретение относится также к способу получения новых координационных соединений рутения и их использованию в реакции метатезиса, особенно эффективно при получении различных функциональных полимерных материалов и каучуков.
ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ
После того как в 1990-х годах исследователями Richard R. Schrock и Robert Η. Grubbs были получены два вида катализаторов реакции метатезиса олефинов со структурой карбенов переходных металлов, большое внимание было обращено на разработку более активных и селективных рутениевых катализаторов для различных типов реакций метатезиса, например, полимеризационного метатезиса с раскрытием цикла (ROMP), метатезиса с закрытием цикла (RCM) и кросс-метатезиса (СМ).
На настоящий момент имеются сообщения о нескольких координационных соединениях рутения, используемых в качестве активных катализаторов метатезиса олефинов (1a-1b и 2a-2f на схеме 1) в реакциях ROMP и RCM (Grubbs et al., J. Am. Chem. Soc. 1992, 114, 3974-3975, Org. Lett. 1999, 1, 953-956, WO 2007081987 A1; Hoveyda et al., J. Am. Chem. Soc. 1999, 121, 791-799, J. Am. Chem. Soc. 2000, 122, 8168-8179; Yamaguchi et al., Chem. Commun. 1998, 1399-1400; Zhan et al., US 20070043180 A1, WO 2007003135 A1; Grela et al., WO 2004035596 A1; Slugovc et al., Organometallics 2004, 23(15), 3623-3626 для катализатора 2d; и Organometallics 2005, 24(10), 2255-2258 для катализатора 2е). Однако недостатком всех описанных рутениевых катализаторов является очевидная зависимость различных видов рутениевых катализаторов в реакциях метатезиса от субстрата, и все еще является очень трудным подобрать сколько-нибудь активные катализаторы метатезиса олефинов для реакций RCM и ROMP. Кроме того, только некоторые катализаторы метатезиса олефинов могут быть эффективно использованы в реакции ROMP для получения высокопрочного и высокотвердого полидициклопентадиенового продукта (PDCPD).
Схема 1. Структура некоторых активных катализаторов для реакций ROMP и RCM
В последнее время реакция ROMP широко используется для получения различных высокопрочных и других функциональных полимеров. Решение проблем с активностью и селективностью катализаторов ROMP являлось целью разработки альтернативных более активных и селективных катализаторов для реакций ROMP и RCM, особенно ROMP, для эффективного получения и модификации различных функциональных полимерных материалов. Весьма важным является разработка различных видов субстратов олефинов для получения функциональных полимерных материалов, а также для улучшения свойств полимеров.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение относится к двум классам новых карбеновых лигандов и содержащих их рутениевых координационных соединений, которые могут быть использованы в качестве высокоактивных катализаторов метатезиса, селективных в реакциях RCM, СМ и ROMP, соответственно. Указанные новые катализаторы метатезиса олефинов представляют собой рутениевые координационные соединения с различными типами новых функционально замещенных карбеновых лигандов. Новые рутениевые координационные соединения могут катализировать различные типы реакций метатезиса очень эффективным образом, и они обладают большим преимуществом в активности и селективности в различных типах реакций метатезиса, особенно эффективны в ROMP при получении некоторых функциональных полимерных материалов с уникальными химическими и физическими свойствами. Новые рутениевые координационные соединения по изобретению могут найти широкое применение в полимерной и фармацевтической промышленности.
В первом аспекте в настоящем изобретении предложен класс соединений, которые образуют карбеновые лиганды, имеющие следующую структуру Ia или Ib.
где Ζ представляет собой CH2= или TsNHN=;
m=0 или 1, n=0 или 1;
при m=0 Υ представляет собой CH2, ΝΗ, кислород, азот, карбонил, имино, С1-C20-алкокси, С6-C20-арилокси, C2-C20-гетероциклический арил, С1-C20-алкоксикарбонил, С6-C20-арилоксикарбонил, С1-C20-алкилимино, С1-C20-алкиламино, С6-C20-арилимино или C2-C20-гетероциклическую амино группу;
при m=1 X представляет собой кислород, азот, серу, CH, CH2, карбонил; Υ представляет собой азот, кислород, CH, CH2, имино, ΝΗ, C1-C20-алкил, С1-C20-алкокси, С6-C20-арил, С6-C20-арилокси, C3-C20-гетероарил, С1-C20-алкилкарбонил, C1-C20-алкоксикарбонил, С6-C20-арилкарбонил, С6-C20-арилоксикарбонил, C1-C20-алкилимино, С1-C20-алкиламино, С6-C20-ариламино или C2-C20-гетероциклическую амино группу; представляет собой либо одинарную связь, либо двойную связь;
при n=1 X1 и Y1, каждый, представляют собой кислород, азот, серу, карбонил, имино, CH, CH2, С1-C20-алкил, С6-C20-арил, С6-C20-арилокси, C2-C20-гетероциклический арил, С1-C20-алкиламино, С6-C20-ариламино или C2-C20-гетероциклическую амино группу;
R1 представляет собой Н, С1-C20-алкил, C2-C20-алкенил, С6-C20-арил, С6-C20-ариленил, С1-C20-алкокси, С1-C20-алкилтио, С6-C20-арилтио, C1-C20-арилокси, C3-C20-гетероарил или C2-C20-гетероциклическую группу;
R2 представляет собой Н, С1-C20-алкил, С6-C20-арил, С6-C20-алкилкарбонил, С6-C20-арилкарбонил, С1-C20-алкоксикарбонил, С6-C20-арилоксикарбонил, С1-C20-аминокарбонил, C3-C20-гетероарил или C2-C20-гетероциклическую группу;
Ε, Ε1, Ε2, Ε3, Ε4, Ε5, Е6 и Е7, каждый, независимо, выбраны из группы, включающей Н, атом галогена, нитро, амино, циано, формил, сульфинил, сульфонил, С1-C20-алкил, С1-C20-алкокси, С1-C20-алкилтио, C2-C20-алкенилокси, С1-C20-силанил, С1-C20-алкилсилилокси, С6-C20-арил, С6-C20-арилокси, С1-C20-алкилкарбонил, С6-C20-арилкарбонил, С1-C20-алкоксикарбонил, С6-C20-арилоксикарбонил, C1-C20-алкиламинокарбонил, С6-C20-ариламинокарбонил, C1-C20-алкиламидо, С6-C20-ариламидо, С1-C20-алкиламиносульфонил, С6-C20-ариламиносульфонил, С1-C20-сульфониламидо, C3-C20-гетероарил или C2-C20-гетероциклическую группу, каждый, необязательно, замещен алкилом, алкокси, алкилтио, арилом, арилокси, атомом галогена или гетероциклической группой.
В одном предпочтительном варианте осуществления настоящего изобретения в формуле Ia-Ib
Ζ представляет собой CH2= или TsNHN=;
m=0 или 1, n=0 или 1;
при m=0 Υ представляет собой CH2, ΝΗ, кислород, азот, карбонил, имино, C1-C15-алкокси, С6-C15-арилокси, С1-С15-алкоксикарбонил, С6-С15-арилоксикарбонил, C1-C15-алкилимино, С1-С15-алкиламино, C6-C15 арилимино или C2-C15-гетероциклическую амино группу;
при m=1 X представляет собой кислород, азот, серу, CH, CH2, карбонил; Υ представляет собой азот, кислород, CH, CH2, имино, ΝΗ, С1-С15-алкил, C1-C15-алкокси, С6-С15-арил, C6-C15-арилокси, C3-С15-гетероарил, С1-С15-алкилкарбонил, С1-С15-алкоксикарбонил, C6-C15-арилкарбонил, С6-С15-арилоксикарбонил, С1-С15-алкилимино, С1-С15-алкиламино, С6-С15-ариламино или C2-C15-гетероциклическую амино группу; представляет собой либо одинарную связь, либо двойную связь;
при n=1 X1 и Υ1, каждый, представляют собой кислород, азот, серу, карбонил, имино, CH, CH2, C1-C15-алкил, С6-С15-арил, С6-С15-арилокси, C2-С15-гетероциклический арил, С1-С15-алкиламино, C6-C15-ариламино или C2-C15-гетероциклическую амино группу;
R1 представляет собой Н, C1-C15-алкил, C2-С15-алкенил, C6-C15-арил, С6-С15-ариленил, C1-C15-алкокси, C1-C15-алкилтио, C6-C15-арилтио, C1-C15-арилокси, C3-С15-гетероарил или C2-C15-гетероциклическую группу;
R2 представляет собой Н, C1-C15-алкил, С6-С15-арил, С1-С15-алкилкарбонил, С6-С15-арилкарбонил, C1-C15-алкоксикарбонил, C6-C15-арилоксикарбонил, C1-C15-аминокарбонил, C3-С15-гетероарил или C2-C15-гетероциклическую группу;
E, E1, E2, E3, E4, E5, E6 и E7, каждый, независимо, выбраны из группы, включающей Н, атом галогена, нитро, амино, циано, формил, сульфинил, сульфонил, С1-С15-алкил, С1-С15-алкокси, C1-C15-алкилтио, C2-С15-алкенилокси, C1-C15-силанил, C1-C15-алкилсилилокси, C6-C15-арил, С6-С15-арилокси, C1-C15-алкилкарбонил, С6-С15-арилкарбонил, C1-C15-алкоксикарбонил, С6-С15-арилоксикарбонил, С1-С15-алкиламинокарбонил, С6-С15-ариламинокарбонил, С1-С15-алкиламидо, С6-С15-ариламидо, C1-C15-алкиламиносульфонил, C6-C15-ариламиносульфонил, C1-C15-сульфониламидо, C3-С15-гетероарил или C2-С15-гетероциклическую группу, каждый, необязательно, замещен алкилом, алкокси, алкилтио, арилом, арилокси, атомом галогена или гетероциклической группой.
В одном предпочтительном варианте осуществления настоящего изобретения в формуле Ia-Ib
Ζ представляет собой CH2= или TsNHN=;
m=0 или 1, n=0 или 1;
при m=0 Υ представляет собой кислород, азот, карбонил, имино, C1-C8-алкокси, С6-C8-арилокси, С1-C8-алкоксикарбонил, С6-C8-арилоксикарбонил, C1-C8-алкилимино, С1-C8-алкиламино, С6-С12-арилимино или C2-C12-гетероциклическую амино группу;
при m=1 X представляет собой кислород, азот, серу, CH, CH2, карбонил; Υ представляет собой кислород, азот, CH, CH2, имино, ΝΗ, С1-С15-алкил, C1-C8-алкокси, C6-C15-арил, С6-С12-арилокси, C3-С12-гетероарил, С1-C8-алкилкарбонил, C1-C8-алкоксикарбонил, С6-С12-арилкарбонил, С6-С12-арилоксикарбонил, С1-C8-алкилимино, C1-C8-алкиламино, C6-C12-арил амино или C2-C8-гетероциклическую амино группу; представляет собой либо одинарную связь, либо
двойную связь;
при n=1 X1 и Υ1, каждый, представляют собой кислород, азот, серу, карбонил, имино, CH, CH2, C1-C8-алкил, С6-C8-арил, С6-C8-арилокси, C2-C8-гетероциклический арил, C1-C8-алкиламино, С6-C8-ариламино или C2-C8-гетероциклическую амино группу;
R1 представляет собой Н, C1-C8-алкил, C2-C8-алкенил, C6-C12-арил или С6-С12-ариленил;
R2 представляет собой метил, этил, изопропил, C1-C8-алкил или С6-С12-арил;
Ε, Е1, Е2, Е3, Е4, Е5, Е6 и Е7, каждый, независимо, выбраны из группы, включающей Н, атом галогена, нитро, С1-C8-алкил, C1-C8-алкокси, C1-C8-алкилтио, C2-C8-алкенилокси, С1-C8-силанил, C1-C8-алкилсилилокси, С6-С12-арил, С6-С12-арилокси, C1-C8-алкилкарбонил, С6-C12-арил карбонил, С1-C8-алкоксикарбонил, С6-С12-арилоксикарбонил, C1-C8-алкиламинокарбонил, С6-С12-ариламинокарбонил, C1-C8-алкиламидо, С6-С12-ариламидо, C1-C8-алкиламиносульфонил, C6-C12-ариламиносульфонил, С1-C8-сульфониламидо, C3-С12-гетероарил или C2-C8-гетероциклическую группу, каждый, необязательно, замещен алкилом, алкокси, алкилтио, арилом, арилокси, атомом галогена или гетероциклической группой.
В одном наиболее предпочтительном варианте осуществления настоящего изобретения в формуле Ia-Ib
Ζ представляет собой CH2= или TsNHN=;
m=0 или 1, n=0 или 1;
при m=0 Υ представляет собой CH2, ΝΗ, С1-С4-алкокси, C1-C4-алкиламино или С6-С9-арилимино группу;
при m=1 X представляет собой азот, C1-C3-алкиламино, CH, CH2 или карбонил; Υ представляет собой кислород, азот, имино, ΝΗ, С1-С4-алкил, С1-С4-алкокси, С1-С4-алкиламино или С6-С9-ариламино; представляет собой либо одинарную связь, либо двойную связь;
при n=1 X1 представляет собой CH2, замещенный или незамещенный фенил или карбонил, Υ1 представляет собой кислород или карбонил;
R1 представляет собой Н;
при n=1 в структуре Ia R2 представляет собой метил, этил или изопропил; и при n=0 R2 представляет собой Н, галоген, C1-С4-алкил или С1-C20-алкокси.
Ε представляет собой Н, галоген, нитро, С1-С4-алкил, С1-С4-алкокси, С1-С4-алкоксикарбонил, C1-C8-алкиламиносульфонил, C6-C12-ариламиносульфонил;
Е1 и Е2, каждый, представляют собой Н, галоген, С1-С4-алкил или С1-С4-алкокси;
Е3 представляет собой Н;
Е4 представляет собой Η или С1-С4-алкил;
Е5 и Е6 представляют собой Н, галоген, С1-С4-алкил или C1-C6-алкокси;
Е7 представляет собой Η или С1-С4-алкил.
Во втором аспекте настоящее изобретение относится к типу координационного соединения металлов, имеющего следующую структуру IIa или IIb:
где m=0 или 1, и n=0 или 1;
при n=0, p=0 или 1; при n=1, p=0;
Μ представляет собой переходный металл;
L1 и L2 являются одинаковыми или различными, и каждый выбран из аниона галогена (Cl-, Br- или I-), RC(O)O- или аниона ArO-;
L представляет собой лиганд-донор электронной пары;
при m=1 X представляет собой кислород, азот, серу, CH, CH2, карбонил; Υ представляет собой азот, кислород, CH, CH2, имино, С1-C20-алкокси, С6-C20-арил, С6-C20-арилокси, C3-C20-гетероарил, С1-C20-алкилкарбонил, С1-C20-алкоксикарбонил, С6-C20-арилкарбонил, С6-C20-арилоксикарбонил, С1-C20-алкилимино, C1-C20-алкиламино, С6-C20-ариламино или C2-C20-гетероциклическую амино группу; представляет собой либо одинарную связь, либо двойную связь;
при m=0 Υ представляет собой кислород, азот, карбонил, имино, С1-C20-алкокси, С6-C20-арилокси, C2-C20-гетероциклический арил, С1-C20-алкоксикарбонил, С6-C20-арилоксикарбонил, C1-C20-алкилимино, С1-C20-алкиламино, С6-C20-арилимино или C2-C20-гетероциклическую амино группу;
при n=0 и р=1 L3 представляет собой лиганд-донор электронной пары;
при n=1 и p=0 X1 и Y1, каждый, представляют собой кислород, азот, серу, карбонил, имино, CH, CH2, С1-C20-алкил, С6-C20-арил, С6-C20-арилокси, C2-C20-гетероциклический арил, C1-C20-алкиламино, С6-C20-ариламино или C2-C20-гетероциклическую амино группу;
R1 представляет собой Н, С1-C20-алкил, C2-C20-алкенил, С6-C20-арил, С6-C20-ариленил, С1-C20-алкокси, С1-C20-алкилтио, С6-C20-арилтио, С6-C20-арилокси, C3-C20-гетероарил или C2-C20-гетероциклическую группу;
R2 представляет собой Н, С1-C20-алкил, С6-C20-арил, C1-C20-алкилкарбонил, С6-C2-арилкарбонил, С1-C20-алкоксикарбонил, С6-C20-арилоксикарбонил, С1-C20-аминокарбонил, C3-C20-гетероарил или C2-C20-гетероциклическую группу;
Ε, Е1, Е2, Е3, Е4, Е5, Е6 и Е7, каждый, независимо, выбраны из группы, включающей Н, атом галогена, нитро, амино, циано, формил, сульфинил, сульфонил, С1-C20-алкил, С1-C20-алкокси, С1-C20-алкилтио, C2-C20-алкенилокси, С1-C20-силанил, С1-C20-алкилсилилокси, С6-C20-арил, С6-C20-арилокси, С1-C20-алкилкарбонил, С6-C20-арилкарбонил, С1-C20-алкоксикарбонил, С6-C20-арилоксикарбонил, C1-C20-алкиламинокарбонил, С6-C20-ариламинокарбонил, С1-C20-алкиламидо, С6-C20-ариламидо, С1-C20-алкиламиносульфонил, С6-C20-ариламиносульфонил, С1-C20-сульфониламидо, C3-C20-гетероарил или C2-C20-гетероциклическую группу; каждый, необязательно, замещен алкилом, алкокси, алкилтио, арилом, арилокси, атомом галогена или гетероциклической группой.
В предпочтительном варианте осуществления IIa или IIb L представляет собой гетероциклический карбеновый лиганд или фосфин P(R8)2(R9), имеющий следующую структуру IIIa, IIIb, IIIc или IIId:
где q=1, 2 или 3;
R4 и R5, каждый, представляют собой С1-C20-алкил, С6-C20-арил, C1-C20-алкиламидо, С6-C20 _ариламидо, C3-C20-гетероарил или C2-C20-гетероциклическую группу;
R6 и R7, каждый, представляют собой Н, атом галогена, нитро, амино, циано, формил, сульфинил, сульфонил, С1-C20-алкил, C1-C20-алкокси, С1-C20-алкилтио, C2-C20-алкенилокси, С1-C20-силанил, C1-C20-алкилсилилокси, C2-C20-гетероциклил, С6-C20-арил, С6-C20-арилокси, С1-C20-алкилкарбонил, С6-C20-арилкарбонил, С1-C20-алкоксикарбонил, С6-C20-арилоксикарбонил, С1-C20-алкиламинокарбонил, С6-C20-ариламинокарбонил, C1-C20-алкиламидо, С6-C20-ариламидо, C1-C20-алкиламиносульфонил, С6-C20-ариламиносульфонил, C1-C20-сульфониламидо, C3-C20-гетероарил или C2-C20-гетероциклическую группу;
R8 и R9, каждый, представляют собой С1-C20-алкил, C1-C20-алкокси, С6-C20-арил, С6-C20-арилокси, C3-C20-гетероарил или C2-C20-гетероциклическую группу.
В одном предпочтительном варианте осуществления, где L представлен формулой IIIa или IIId; и в IIIa q=1 или 2, R4 и R5, каждый, представляют собой арил, R6 и R7, каждый, представляют собой Н.
В еще одном предпочтительном варианте осуществления, где L представлен формулой IIIa или IIId; и в IIIa q=1, R4 и R5, каждый, представляют собой 2,4,6-триметилфенил, R6 и R7, каждый, представляют собой Н; или в IIId R8 и R9, каждый, представляют собой циклогексил (Су).
В другом предпочтительном варианте осуществления, в IIa-IIb
Μ представляет собой рутений (Ru), вольфрам (W) или никель (Ni);
m=0 или 1, n=0 или 1;
L1 и L2, каждый, представляют собой хлорид (Cl-);
L представляет собой IIIa или IIId; где q, R1, R2, R4, R5, R6, R7, R8, R9, Ε, Ε1, Ε2, Ε3, Ε4, Ε5, Ε6 и Ε7, каждый, определены выше;
при m=0 Υ представляет собой кислород, азот, карбонил, имино, С1-С15-алкокси, С6-С15-арилокси, C1-C15-алкоксикарбонил, С6-С15-арилоксикарбонил, С1-С15-алкилимино, C1-C15-алкиламино, C6-C15-арилимино или C2-С15-гетероциклическую амино группу;
при m=1 X представляет собой кислород, азот, серу, CH, CH2, карбонил; Υ представляет собой азот, кислород, CH, CH2, имино, С1-С15-алкокси, С6-С15-арил, С6-С15-арилокси, C3-C15-гетероарил, C1-C15-алкилкарбонил, С1-С15-алкоксикарбонил, C6-C15-арилкарбонил, С6-С15-арилоксикарбонил, C1-C15-алкилимино, С1-С15-алкиламино, C6-C15 ариламино или C2-C15-гетероциклическую амино группу; представляет собой либо одинарную связь, либо двойную связь;
при n=0 и р=1 L3 представляет собой одно- или более замещенный в орто-положении, мета-положении и/или пара-положении пиридин, и атом азота замещенного пиридина отдает пару электронов катиону переходного металла, где заместители в орто-положении, мета-положении и/или пара-положении пиридина, каждый, выбраны из галогена, нитро, циано, C1-C15-алкила, C1-C15-алкокси, С1-С15-алкилтио, C2-С15-алкенилокси, C1-C15-силанила, C1-C15-алкилсилилокси, С6-С15-арила, С6-С15-арилокси, С1-С15-алкилкарбонила, С6-С15-арилкарбонила, С1-С15-алкоксикарбонила, С6-С15-арилоксикарбонила, С1-С15-алкиламинокарбонила, C6-C15-ариламинокарбонила, C1-C15-алкиламидо, С6-С15-ариламидо, С1-С15-алкиламиносульфонила, С6-С15-ариламиносульфонила, С1-С15-сульфониламидо, C3-С15-гетероарила или C2-С15-гетероциклической группы; каждый, необязательно, замещен алкилом, алкокси, алкилтио, арилом, арилокси, атомом галогена или гетероциклической группой;
при n=1 и р=0 Х1и Y1, каждый, представляют собой кислород, азот, серу, карбонил, имино, CH, CH2, C1-C15-алкил, С6-C15-арил, С6-С15-арилокси, C2-С15-гетероциклический арил, С1-С15-алкиламино, С6-С15-ариламино или C2-C15-гетероциклическую амино группу.
В еще одном более предпочтительном варианте осуществления настоящего изобретения для структур IIa и IIb:
при m=0 Υ представляет собой кислород, азот, карбонил, имино, С1-C8-алкокси, С6-С12-арилокси, C1-C8-алкоксикарбонил, C6-C12-арилоксикарбонил, C1-C8-алкилимино, С1-C8-алкиламино, C6-C12-арилимино или C2-C8-гетероциклическую амино группу;
при m=1 X представляет собой кислород, азот, серу, CH, CH2, карбонил; Υ представляет собой азот, кислород, CH, CH2, имино, С1-C8-алкокси, С6-С12-арил, C6-C12-арилокси, C3-C12-гетероарил, С1-C8-алкилкарбонил, C1-C8-алкоксикарбонил, C6-C12-арилкарбонил, С6-С12-арилоксикарбонил, C1-C8-алкилимино, C1-C8-алкиламино, С6-С12-ариламино или C2-C8-гетероциклическую амино группу;представляет собой либо одинарную связь, либо двойную связь;
при n=0, p=0 или 1; при n=1, p=0;
при n=0 и р=1, L3 представляет собой одно- или более замещенный в орто-положении, мета-положении и/или пара-положении пиридин, и атом азота замещенного пиридина отдает пару электронов катиону переходного металла, где заместители в орто-положении, мета-положении и/или пара-положении пиридина, каждый, выбраны из галогена, нитро, циано, C1-C8-алкила, C1-C8-алкокси, C1-C8-алкилтио, C2-C8-алкенилокси, C1-C8-силанила, С1-C8-алкилсилилокси, С6-С12-арила, С6-С12-арилокси, C1-C8-алкилкарбонила, C6-C12-арилкарбонила, C1-C8-алкоксикарбонила, С6-C12-арилоксикарбонила, C1-C8-алкиламинокарбонила, С6-С12-ариламинокарбонила, C1-C8-алкиламидо, С6-С12-ариламидо, C1-C8-алкиламиносульфонила, C6-C12-ариламиносульфонила, С1-C8-сульфониламидо, C3-С12-гетероарила или C2-C8-гетероциклической группы; каждый, необязательно, замещен алкилом, алкокси, алкилтио, арилом, арилокси, атомом галогена или гетероциклической группой;
при n=1 и р=0 Х1и Y1, каждый, представляют собой кислород, азот, серу, карбонил, имино, CH, CH2, C1-C8-алкил, С6-С12-арил, С6-С12-арилокси, C2-С12-гетероциклический арил, C1-C8-алкиламино, С6-С12-ариламино или C2-C8-гетероциклическую амино группу;
R1 представляет собой Н, C1-C8-алкил, C2-C8-алкенил, C6-C12-арил или С6-С12-ариленил;
R2 представляет собой метил, этил, изопропил, C1-C8-алкил или С6-С12-арил;
Ε, Ε1, Ε2, Ε3, Ε4, Е5, Е6 и Е7, каждый, независимо, выбраны из группы, включающей Н, атом галогена, нитро, С1-C8-алкил, С1-C8-алкокси, C1-C8-алкилтио, C2-C8-алкенилокси, C1-C8-силанил, C1-C8-алкилсилилокси, С6-С12-арил, С6-С12-арилокси, C1-C8-алкилкарбонил, C6-C12-арилкарбонил, C1-C8-алкоксикарбонил, С6-С12-арилоксикарбонил, C1-C8-алкиламинокарбонил, С6-С12-ариламинокарбонил, C1-C8-алкиламидо, С6-С12-ариламидо, С1-C8-алкиламиносульфонил, С6-С12-ариламиносульфонил, C1-C8-сульфониламидо, C3-С12-гетероарил или C2-C8-гетероциклическую группу; каждый, необязательно, замещен алкилом, алкокси, алкилтио, арилом, арилокси, атомом галогена или гетероциклической группой.
В еще одном наиболее предпочтительном варианте осуществления настоящего изобретения для структур IIa и IIb:
Μ представляет собой рутений;
L представляет собой IIIa или IIId; и в IIIa q=1, R4 и R5, каждый, представляют собой 2,4,6-триметилфенил; R6 и R7, каждый, представляют собой Н; или в IIId R8 и R9, каждый, представляют собой циклогексил (Су);
L1 и L2, каждый, представляют собой хлорид анион;
m=0 или 1, n=0 или 1;
при m=0 Υ представляет собой CH2, ΝΗ, С1-С4-алкокси, C1-C4-алкиламино или С6-С9 арилимино группу;
при m=1 X представляет собой азот, C1-C3-алкиламино, CH, CH2 или карбонил; Υ представляет собой кислород, азот, имино, ΝΗ, С1-С4-алкил, С1-С4-алкокси, C1-4-алкиламино или С6-С9 ариламино; представляет собой либо одинарную связь, либо двойную связь;
при n=0, p=0 или 1; при n=1, p=0;
при n=0 и р=1 L3 представляет однозамещенный в мета-положении или пара-положении пиридин, и атом азота замещенного пиридина отдает пару электронов катиону рутения, где заместители в мета-положении или пара-положении пиридина, каждый, выбраны из галогена, нитро, C1-C3-алкила, C1-C3-алкокси, C1-C15-алкиламино, незамещенного или замещенного С6-С12-арила;
при n=1 X1 представляет собой CH2, замещенный или незамещенный фенил или карбонил; Υ1 представляет собой кислород или карбонил;
R1 представляет собой Н;
в структуре IIа при n=1 R2 представляет собой метил, этил или изопропил; при n=0 R2 представляет собой Н, галоген, C1-C4-алкил или С1-С4-алкокси;
Ε представляет собой Н, галоген, нитро, С1-С4-алкил, C1-C4-алкокси, С1-С4-алкоксикарбонил, С1-C8-алкиламиносульфонил, C6-C12-ариламиносульфонил;
Е1 и Е2, каждый, представляют собой Н, галоген, С1-С4-алкил или С1-С4-алкокси;
Е3 представляет собой Н;
Е4 представляет собой Η или С1-С4-алкил;
Е5 и Е6 представляют собой Н, галоген, С1-С4-алкил или Сх-С6-алкокси;
Е7 представляет собой Η или С1-С4-алкил.
В третьем аспекте настоящее изобретение относится к следующим синтетическим способам получения различных видов координационных соединений переходных металлов IIa-IIb.
Прежде всего, в настоящем изобретении, когда Ζ представляет собой CH2, лиганды координационных соединений Ia-Ib могут быть получены в соответствии со следующей реакцией Сузуки.
(Обозначения (здесь и далее):
Pyridine - Пиридин;
Pd catalyst - Pd катализатор (палладиевый катализатор);
Suzuki Reaction - реакция Сузуки),
где Υ, Y1, R1, R2, Ε, Ε1, Е2 и Е3, каждый, определены выше.
Лиганды Ia-Ib могут быть получены связыванием SM-Ia или SM-Ib с винилборановым реагентом в органическом растворителе, таком как ДМФ, в присутствии Pd. SM-Ia или SM-Ib были синтезированы по заказу на фирме Zannan Pharma Ltd, Китай.
Способ 1 показан на следующей схеме 1
(Обозначения (здесь и далее):
Ligand Ia или Ib - Лиганд Ia или Ib;
Complex intermediate (Va или Vb) - Промежуточное координационное соединение (Va или Vb))
Промежуточное координационное соединение переходного металла (Va или Vb) имеет следующую структуру:
(1) Координационное соединение Ru 2h было получено путем взаимодействия реагента SM-2b и RuCl2(PPh3)3 в безводном DCM в трехгорлой реакционной колбе, заполненной инертным газом (Ar).
(2) Полученное на стадии (1) координационное соединение Ru 2h подвергали взаимодействию с лигандом координационного соединения Ia или Ib в колбе, заполненной инертным газом (Ar), с получением другого координационного соединения Ru Va или Vb; где Va и Vb являются соединениями IIа или IIb, когда L представляет собой PPh3; Μ, L1, L2, Υ, Υ1, R1, R2, Ε, Ε1, Ε2 и Ε3, каждый, определены выше.
Более предпочтительно, L1 и L2, каждый, представляют собой хлорид анион (Cl-).
На стадии (1) предпочтительным является, когда один из Ε и X1 представляет собой водород; предпочтительным является использование 5-30-кратного по массе количества безводного органического растворителя относительно SM-2, более
предпочтительно, 15-30-кратного; предпочтительно, температура реакции составляет 25-75°С, более предпочтительно, 50-65°С.
На стадии (2) предпочтительная температура реакции составляет от -50°С до -85°С, более предпочтительно, от -60°С до -75°С; предпочтительным является использование 0,3-1,0 мольного соотношения ML1L2 относительно SM-2, более предпочтительно, 0,6-0,7; предпочтительным соединением ML1L2 является RuCl2 (PPh3)3.
На стадии (3) способа 1 предпочтительная температура реакции составляет от -50°С до -85°С, более предпочтительна температура от -60°С до -75°С; предпочтительным является использование лигандов координационного соединения Ia или Ib в мольном соотношении 1-3 по отношению к промежуточному координационному соединению, более предпочтительно, 1,5-2 экв.
Когда ML1L2 представляет собой RuCl2 (PPh3)3, структура продукта Va или Vb является следующей:
Способ 2: координационное соединение Va или Vb, полученное способом 1, подвергали взаимодействию, соответственно, с любым лигандом-донором электронной пары координационного соединения L, за исключением PPh3, с получением следующих координационных соединений металлов IIа или IIb, где p=0, q=1; Μ, L, L1, L2, Υ, Y1, R1, R2, Ε, Ε1, E2 и E3, каждый, определены выше.
Где, предпочтительно, в структуре координационных соединений переходных металлов IIa или IIb, предпочтительным лигандом L является IIIa или IIId. Предпочтительной температурой реакции является от 20°С до 75°С, более предпочтительной температурой реакции взаимодействия с лигандом IIIa является от 60°С до 75°С, более предпочтительной температурой реакции взаимодействия с лигандом IIId является от 20°С до 35°С. Предпочтительное количество используемого IIIa или IIId составляет 1-3 мольного соотношения относительно промежуточного координационного соединения Va или Vb, более предпочтительно, мольное соотношение составляет 1,5-2 экв.
Способ 3: когда L представляет собой PCy3 или PPh3, IIa или IIb подвергали взаимодействию, соответственно, с любым лигандом-донором электронной пары координационного соединения L (IIIa) или L3 с получением следующих координационных соединений металлов IIa или IIb, где p=0, М, L, L1, L2, Υ, Υ1, R1, R2, Ε, Ε1, Ε2, Е3, каждый, определены выше.
Способ 4: когда L представляет собой РСу3 или IIIa, IIa или IIb подвергали взаимодействию, соответственно, с любым лигандом-донором электронной пары координационного соединения L3 с получением координационных соединений металлов IIа или IIb, где p=1, Μ, L1, L2, Υ, Υ1, R1, R2, Ε, Ε1, Ε2, Ε3, каждый, определены выше. В способе 4 предпочтительная температура реакции составляет от 20°С и 35°С.
В способах от 1 до 4 L1 и L2, каждый представляют собой хлорид анионы.
На основе разработанного в настоящее время метода координационные соединения металлов IIa или IIb по настоящему изобретению могут быть получены с помощью следующих двух альтернативных способов, представленных на схемах 2 и 3.
(Обозначение (здесь и далее):
or - или;
2,4,6-trimethylphenyl - 2,4,6-триметилфенил)
В вышеуказанном способе, Ζ в структуре Ia или Ib представляет собой TsNHN.
На схеме 2 Ia или Ib подвергали взаимодействию с NaOEt в безводном EtOH в колбе, наполненной инертным газом, с получением карбена, затем подвергали взаимодействию с RuCl2P(Ph3)3 и получали координационное соединение Va или Vb. Координационное соединение Va или Vb подвергали взаимодействию с IIIa или IIId в инертном газе, что позволяло получить координационное соединение IIa или IIb
Схема 3:
Координационные соединения IIa и IIb также могут быть получены двумя альтернативными способами синтеза, как показано на схеме 3.
На схеме 3 Ia или Ib подвергали взаимодействию с рутениевым координационным соединением 1 или 2 в колбе, наполненной инертным газом (Ar), с получением желаемого координационного соединения IIa или IIb соответственно.
В четвертом аспекте данное изобретение относится к способу проведения реакции метатезиса, осуществляемой с субстратом олефина, включающей внутримолекулярный метатезис с образованием цикла (RCM), внутримолекулярный кросс-метатезис (СМ), метатезис ациклических диенов (ADMET) или метатезис-полимеризацию с раскрытием цикла (ROMP) субстрата циклического олефина, селективно, в присутствии новых рутениевых катализаторов.
Предпочтительный субстрат циклического олефина для ROMP, необязательно, выбран из дициклопентадиена (DCPD), норборнена, циклооктена или одного из видов олефинов с циклическим напряжением; каждый является, необязательно, замещенным или незамещенным одним или нескольким заместителями, выбранными из F, Cl, Br, С1-С15-алкила, С1-С15-алкокси, С1-C15-алкилтио, C2-C15-алкенилокси, C1-C15-силанила, C1-C15-алкилсилилокси, С6-С15-арила, С6-С15-арилокси, C1-C15-алкилкарбонила, С6-С15-арилкарбонила, С1-С15-алкоксикарбонила, С6-С15-арилоксикарбонила, С1-С15-алкиламинокарбонила, С6-С15-ариламинокарбонила, C1-C15-алкиламидо, С6-С15-ариламидо, C1-C15-алкиламиносульфонила, C6-C15ариламиносульфонила, C1-C15-сульфониламидо, C3-С15-гетероарила или C2-С