Катализаторы восстановления оксидов азота из нанесенной на мелкопористое молекулярное сито меди, стойкие к старению при колебаниях состава бедной/богатой смеси

Иллюстрации

Показать все

Изобретение относится к системе очистки отработавших газов. Данная система содержит катализатор-поглотитель NOx, расположенный выше по потоку от катализатора селективного каталитического восстановления (SCR), в которой указанный катализатор SCR содержит медь, нанесенную на молекулярное сито. При этом молекулярное сито (a) имеет максимальный размер кольца в восемь тетраэдрических атомов; (b) выбрано из группы, состоящей из алюмосиликатных молекулярных сит, металлозамещенных алюмосиликатных молекулярных сит и алюмофосфатных молекулярных сит; и (с) подвергнуто обработке с целью улучшения гидротермальной стабильности с использованием по меньшей мере одной технологии, выбранной из группы, состоящей из деалюминирования, катионного обмена или обработки фосфорсодержащими соединениями. Предложенная система очистки позволяет увеличить эффективность конверсии NOx. Изобретение также относится к способу применения данной системы и способу очистки отработавшего газа с ее использованием. 3 н. и 11 з.п. ф-лы, 4 ил., 2 табл., 2 пр.

Реферат

Перекрестная ссылка на родственные заявки

Для данной заявки испрашивается приоритет по предварительной заявке США №61/170 358 и предварительной заявке США №61/312,832, которые во всей их полноте являются здесь включенными посредством ссылки.

Область техники

Настоящее изобретение относится к медным катализаторам на мелкопористых молекулярных ситах, обладающим способностью к длительной службе после подвергания воздействию восстановительной газовой среды, в частности, после высокотемпературного воздействия.

Уровень техники

Селективное каталитическое восстановление (SCR) NOx азотсодержащими соединениями, такими как аммиак или мочевина, разработано для многочисленных применений, включая обработку в условиях стационарных промышленных применений, тепловых электростанций, газовых турбин, электростанций, работающих на угле, заводских и нефтезаводских нагревательных устройств и испарителей, применяемых в химической обрабатывающей промышленности, печи, коксовые печи, муниципальные установки для переработки отходов и мусоросжигательные установки, а также многочисленные транспортные (мобильные) применения, например, очистку дизельных отработавших газов.

В NH3-SCR системе протекает несколько химических реакций, все из которых представляют собой желательные реакции восстановления NOx в азот. Главная из этих реакцией представлена уравнением (1).

4 N O + 4 N H 3 + O 2 → 4 N 2 + 6 H 2 O     ( 1 )

Конкурентные неселективные реакции с кислородом могут вызвать вторичную эмиссию или могут привести к непродуктивному расходованию аммиака. Одной из таких неселективных реакций является полное окисление аммиака, представленное уравнением (2).

4 N H 3 + 5 O 2 → 4 N O + 6 H 2 O     ( 2 )

Кроме того, побочные реакции могут привести к нежелательным продуктам, таким как N2O, что отображается уравнением (3).

4 N H 3 + 4 N O + 3 O 2 → 4 N 2 O + 6 H 2 O     ( 3 )

Катализаторы для SCR-обработки NOx с применением NH3 могут включать, например, алюмосиликатные молекулярные сита. Одно применение состоит в контроле выбросов NOx автомобильными дизельными двигателями с помощью восстановителя, получаемого из предшественника аммиака, такого как мочевина, или же впрыском аммиака per se (как такового).

В алюмосиликатные молекулярные сита для промотирования каталитической активности могут вводиться переходные металлы.

В наибольшей степени опробованными молекулярными ситами с переходными металлами являются Cu/ZSM-5, Cu/бета, Fe/ZSM-5 и Fe/бета, поскольку они обладают относительно широким температурным окном активности. В целом, однако, молекулярно-ситовые катализаторы на основе меди демонстрируют лучшую низкотемпературную активность восстановления NOx, чем молекулярно-ситовые катализаторы на основе железа.

В режиме эксплуатации ZSM-5 и бета-молекулярные сита имеют ряд недостатков. Они склонны к деалюминированию в ходе высокотемпературного гидротермального старения, приводящего к потере кислотности, особенно в случае катализаторов Cu/бета и Cu/ZSM-5. Катализаторы как на бета-, так и ZSM-5-основе также подвержены действию углеводородов, которые адсорбируются на катализаторах при относительно низких температурах и окисляются с повышением температуры каталитической системы, порождая значительный экзотермический эффект, который может привести к тепловому повреждению катализатора. Эта проблема особенно остра в автомобильных дизельных применениях, где на катализаторе могут адсорбироваться значительные количества углеводородов во время запуска холодного двигателя, а бета- и ZSM-5-молекулярные сита являются также склонными к закоксовыванию углеводородами.

В целом молекулярно-ситовые катализаторы на основе меди являются менее температурно-устойчивыми и дают более высокие уровни N2O, чем молекулярно-ситовые катализаторы на основе железа. Однако они обладают желательным преимуществом в том, что при их применении достигается меньший проскок аммиака по сравнению с соответствующими Fe-молекулярно-ситовыми катализаторами.

WO 2008/132452 раскрывает способ конверсии оксидов азота в газе в азот посредством контактирования оксидов азота с азотсодержащим восстановителем в присутствии цеолитного катализатора, содержащего по меньшей мере один переходный металл, при этом цеолит является мелкопористым цеолитом, имеющим максимальный размер кольца в восемь тетраэдрических атомов, а по меньшей мере один переходный металл выбирается из группы, состоящей из Cr, Mn, Fe, Со, Се, Ni, Си, Zn, Ga, Mo, Ru, Rh, Pd, Ag, In, Sn, Re, Ir и Pt. WO 2008/106518 раскрывает комбинацию из имеющего волоконную матрицу фильтра с пристеночным потоком и гидрофобного шабазитового молекулярного сита в качестве катализатора SCR на имеющем волоконную матрицу фильтре с пристеночным потоком. Подразумевается, что такой фильтр обеспечивает улучшение гибкости конфигурации системы и снижение затрат на топливо для восстановления активности. Такое восстановление активности, по-видимому, должно охватывать подвергание воздействию условий обедненной газовой среды. В данной ссылке, однако, не предусматривается подвергание фильтра действию восстановительных условий. В ссылке также не раскрывается или не принимается во внимание поддержание долговечности катализатора после его подвергания воздействию такой восстановительной газовой среды.

Краткое изложение сущности изобретения

Согласно одному воплощению настоящего изобретения, способ применения катализатора содержит подвергание катализатора воздействию по меньшей мере одного реагента в ходе химического процесса. Катализатор содержит медь и мелкопористое молекулярное сито, имеющее максимальный размер кольца в восемь тетраэдрических атомов. Предпочтительно катализатор является промотированным медью мелкопористым молекулярным ситом, то есть мелкопористым молекулярным ситом с внесенной в него медью. Химический способ подразумевает подвергание по меньшей мере одному периоду воздействия восстановительной газовой среды. Катализатор имеет начальную активность, а также катализатор имеет конечную активность после по меньшей мере одного периода воздействия восстановительной газовой среды. Показатель конечной активности находится в пределах 30% начальной активности при температуре между 200°С и 500°С.

Согласно другому воплощению настоящего изобретения, способ применения катализатора содержит подвергание катализатора воздействию по меньшей мере одного реагента, содержащего оксиды азота в ходе химического процесса, содержащего очистку отработавших газов. Катализатор содержит медь и мелкопористое молекулярное сито, имеющее максимальный размер кольца в восемь тетраэдрических атомов и выбранное из группы, состоящей согласно Framework Type Codes (Коды типов каркаса), из СНА, LEV, ERI и DDR. Химический процесс подразумевает подвергание по меньшей мере одному периоду воздействия восстановительной газовой среды. Катализатор имеет начальную активность, а также катализатор имеет конечную активность после по меньшей мере одного периода воздействия восстановительной газовой среды. Показатель конечной активности находится в пределах 10% начальной активности при температуре между 250 и 350°С.

Краткое описание чертежей

Для более полного понимания изобретения далее делается обращение к сопутствующим, имеющим только иллюстративное назначение, чертежам, на которых:

Фигура 1 является графиком, иллюстрирующим конверсию NOx на катализаторах из молекулярных сит с порами среднего размера и с крупными порами с нанесенной на них медью после гидротермального старения в условиях бедной смеси и старения в условиях циклических колебаний состава бедной/богатой смеси;

Фигура 2 является графиком, иллюстрирующим конверсию NOx на катализаторах Fe/молекулярное сито после гидротермального старения в условиях бедной смеси и старения в условиях циклических колебаний состава бедной/богатой смеси;

Фигура 3 является графиком, иллюстрирующим конверсию NOx на катализаторах согласно данному изобретению из мелкопористых молекулярных сит с нанесением меди и на сравнительном катализаторе Cu/бета после гидротермального старения в условиях бедной смеси и старения в условиях циклических колебаний состава бедной/богатой смеси; и

Фигура 4 является графиком, представляющим эффективность конверсии NOx на катализаторе-поглотителе NOx (NAC) и объединенных системах NAC+SCR с различными катализаторами SCR согласно воплощениям данного изобретения и сравнительным примерам.

Подробное описание сущности изобретения

Способ переработки NOx в отработавшем газе двигателя внутреннего сгорания, работающего на бедных смесях, состоит в накоплении NOx из бедного газа в основном материале и последующем высвобождении NOx из основного материала и его восстановлении в периодическом процессе с применением богатого газа. В качестве катализатора-поглотителя NOx (NAC), улавливателя NOx для бедных смесей (LNT) или катализатора хранения/восстановления NOx (NSRC) обычно упоминается комбинация основного материала (такого как щелочной металл, щелочноземельный металл или редкоземельный металл) и благородного металла (такого как платина), а также возможно компонента каталитического восстановления (такого как родий). Для целей настоящего изобретения катализатор хранения/восстановления NOx, улавливатель NOx и катализатор-поглотитель NOx (или их акронимы) могут использоваться равнозначно (взаимозаменяемо).

При определенных условиях в ходе периодически повторяющихся этапов регенерации в условиях богатой смеси на катализаторе-поглотителе NOx может образовываться NH3. Добавление катализатора SCR ниже по потоку за катализатором-поглотителем NOx может улучшить общую эффективность системы восстановления NOx. В такой объединенной системе во время прохождения этапов регенерации богатой смесью катализатор SCR способен накапливать NH3, выделяющийся из катализатора NAC, и использовать запасенный NH3 для селективного восстановления части или всего NOx, который проникает через катализатор NAC во время работы в обычных условиях обедненной смеси. Для целей настоящего изобретения такие объединенные системы могут представляться в виде комбинации их соответствующих акронимов, например, NAC+SCR или LNT+SCR.

Объединенная система NAC+SCR предъявляет дополнительные требования к SCR-компоненту катализатора. А именно, помимо наличия хорошей активности и превосходной термической стабильности, катализатор SCR должен быть устойчивым к амплитуде колебаний состава бедной/богатой смеси. Такие колебания состава бедной/богатой смеси могут происходить не только во время регулярных этапов регенерации NAC, но также могут иметь место в ходе этапов десульфатирования NAC. Во время этапов десульфатирования NAC катализатор SCR может быть подвергнут воздействию температур, намного превышающих те, которым он подвергается во время регулярных этапов регенерации NOx. Поэтому хороший катализатор SCR, подходящий для систем NAC+SCR, должен быть устойчивым к воздействию восстановительной газовой среды при высоких температурах. Хотя настоящее изобретение описывается здесь с особым акцентом на воплощение SCR, предусматривается, что настоящее изобретение может охватывать любые катализаторы, которые теряют активность после подвергания воздействию восстановительной газовой среды.

Катализаторы часто оказываются неустойчивыми при подвергании их воздействию восстановительной газовой среды, особенно восстановительной газовой среды при высокой температуре. Например, медные катализаторы проявляют неустойчивость в ходе повторяющихся колебаний состава бедной/богатой смеси при высоких температурах, которые, например, часто встречаются в отработавших газах транспортных средств или в системе очистки отработавших газов. Восстановительная газовая среда имеет место в богатой фазе цикла колебаний бедная/богатая смесь. Однако условия восстановительной газовой среды могут встречаться во множестве различных сред, включая, но не ограничиваясь средами, типичными для регенерации или десульфатирования катализатора-поглотителя NOx, для регенерации активности катализированного сажевого фильтра и т.п. Таким образом, для целей настоящего изобретения восстановительная газовая среда является средой, в целом восстанавливающей, например, отработавший газ, имеющий величину лямбда менее 1 (например, полученный из горючей смеси с отношением количества воздуха к количеству топлива ниже стехиометрического). В противоположность этому, невосстановительная газовая среда является в целом окисляющей, например, имеющей величину лямбда выше 1 (например, полученной из горючей смеси с отношением количества воздуха к количеству топлива выше стехиометрического).

Без привязки к какой-либо конкретной теории, до открытия настоящего изобретения предполагалось, что медные катализаторы на молекулярных ситах не будут сохранять стабильность или активность при подвергании их воздействию восстановительной газовой среды (особенно восстановительной газовой среды, с которой они сталкиваются при повторяющихся колебания состава в цикле бедная/богатая смесь), поскольку медные катализаторы, подвергнутые воздействию восстановительной газовой среды, теряли свою активность. Такая потеря активности, как подозревалось, является результатом миграции меди, спекания и/или снижения степени дисперсности меди. Авторами настоящего изобретения было неожиданно обнаружено, что медные катализаторы, нанесенные на мелкопористые молекулярные сита, сохраняли свою каталитическую активность даже тогда, когда медные катализаторы на молекулярных ситах с порами крупного и среднего размера этого не могли. Предполагается, что мелкопористое молекулярное сито ограничивает возможность миграции меди за пределы каркаса, спекание, снижение дисперсности меди, и в результате приводит к благоприятному эффекту улучшения стабильности и активности катализатора. При этом молекулярные сита с крупными порами и порами среднего размера не сохраняют своей стабильности и активности при подвергании воздействию восстановительной газовой среды, возможно, из-за эффектов миграции меди, спекания и/или снижения дисперсности меди.

Согласно одному воплощению настоящего изобретения, способ применения катализатора содержит подвергание катализатора воздействию по меньшей мере одного реагента в ходе химического процесса. Катализатор содержит медь и мелкопористые молекулярные сита, имеющие максимальный размер кольца в восемь тетраэдрических атомов. Химический процесс подразумевает подвергание по меньшей мере одному периоду воздействия восстановительной газовой среды. Катализатор имеет начальную активность, а также катализатор имеет конечную активность после по меньшей мере одного периода воздействия восстановительной газовой среды. Показатель конечной активности находится в пределах 30% начальной активности при температурах между 150 и 650°С, предпочтительно между 200 и 500°С.

Один способ применения катализатора содержит подвергание катализатора воздействию по меньшей мере одного реагента в ходе химического процесса. Для целей настоящего изобретения химический процесс может включать любой подходящий химический процесс, применяющий катализатор, содержащий мелкопористое молекулярное сито, содержащее медь, и сталкивающийся с восстановительными условиями. Типичные химические процессы включают, но не ограничиваются очисткой отработавших газов, такой как селективное каталитическое восстановление с помощью азотсодержащих восстановителей, обработкой катализатором NOx в бедных смесях, катализированным сажевым фильтром или комбинацией любого из них с катализатором -поглотителем NOx или трехкомпонентным нейтрализатором (TWC), например, NAC+(последующий) SCR или TWC+(последующий) SCR. Согласно другому объекту изобретения обеспечивается система, содержащая NAC+(последующий) SCR или TWC+(последующий) SCR, в которой катализатор SCR содержит описанное здесь промотированное медью мелкопористое цеолитное сито.

Согласно еще одному объекту данного изобретения обеспечивается катализированный сажевый фильтр SCR, в котором катализатор SCR содержит описанное здесь промотированное медью мелкопористое цеолитное сито.

Один способ применения катализатора содержит подвергание катализатора воздействию по меньшей мере одного реагента. Реагент может включать любые реагенты, с которыми обычно сталкиваются при вышеупомянутых химических процессах. Реагенты могут включать селективный каталитический восстановитель, такой как аммиак. Селективное каталитическое восстановление может включать (1) применение аммиака или азотсодержащего восстановителя, или (2) углеводородного восстановителя (последнее также известно как катализ NOx в бедных смесях). Другие реагенты могут включать оксиды азота и кислород.

Катализатор содержит переходный металл, предпочтительно медь, и мелкопористые молекулярные сита, имеющие максимальный размер кольца в восемь тетраэдрических атомов. При употреблении здесь под «молекулярным ситом» понимается метастабильный материал, содержащий крошечные поры определенного и единообразного размера, который может быть применен в качестве адсорбента для газов или жидкостей. Молекулы, которые оказываются достаточно малыми для того, чтобы пройти через такие поры, адсорбируются, в то время как с более крупными молекулами этого не происходит. Каркас молекулярного сита может быть определен так, как это в целом принимается Кодами типов каркаса (framework type codes) Международной ассоциации по цеолитам (International Zeolite Association, http://www.iza-online.org/). Более подробно эти молекулярные сита описываются ниже. Молекулярные сита обычно определяются количеством звеньев в их кольце следующим образом: кольца больших пор представлены кольцами из 12 или более звеньев, кольца пор средних размеров являются 10-членными кольцами и кольца мелких пор составлены 8 звеньями или менее. Катализатор в настоящем изобретении имеет кольца мелких пор с максимальным размером кольца в восемь тетраэдрических атомов.

Большинство катализаторов наносится на молекулярные сита с порами среднего размера (10-членное кольцо, например, ZSM-5) или крупными порами (12-членное кольцо, например, бета-цеолит). Например, SCR-катализатор из нанесенной на молекулярное сито меди может демонстрировать широкие температурные окна только в условиях N0. Однако, как показано на Фигуре 1, эти катализаторы неустойчивы против старения при повторяющихся колебаниях состава бедной/богатой смеси в условиях высокой температуры. На Фигуре 1 Cu/бета-катализатор (крупные поры) и катализатор Cu/ZSM-5 (поры среднего размера) показаны в условиях гидротермального старения и старения в условиях колебаний состава бедной/богатой смеси. Как видно из пунктирных линий, представляющих условия старения при колебаниях состава бедной/богатой смеси, катализаторы этих типов не являются подходящими, когда подвергаются повторяющемуся воздействию восстановительных условий. В частности, эти катализаторы не являются подходящими для применений NAC+SCR.

Нанесенные на молекулярное сито железные катализаторы SCR хотя не столь активны при низких температурах (например, <350°С), как катализаторы из молекулярных сит с нанесением из меди, но, как показано на Фигуре 2, являются устойчивым против старения при повторяющихся колебаниях состава бедной/богатой смеси в условиях высоких температур. На Фигуре 2 показаны Fe/феррьерит, Fe/ZSM-5 и Fe/бета после гидротермального старения и старения при колебаниях состава бедной/богатой смеси. Соответственно, катализаторы из молекулярных сита с нанесением железа стали часто выбираемой технологией вследствие с их превосходной стабильности против старения при циклических изменениях состава бедной/богатой смеси, с которыми сталкиваются, например, в применениях NAC+SCR.

Было показано, что катализаторы из мелкопористых молекулярных сит с нанесением меди демонстрируют улучшенную NH3-SCR-активность и превосходную термическую стабильность. Было обнаружено, что катализатор этого типа согласно одному объекту изобретения также оказывается стойким к старению при повторяющихся колебаниях состава бедной/богатой смеси в условиях высокой температуры. На Фигуре 3 сравниваются серии данных, полученных для медных катализаторов на мелкопористом молекулярном сите (Cu/SAPO-34, Cu/Nu-3 и Cu/SSZ-13, соответственно), в сравнении с катализатором с относительно крупными порами (Cu/бета) после гидротермального старения в течение 2 часов при 700°С и 12 часов старения в условиях циклических изменений состава бедной/богатой смеси при 600°С, соответственно. Как видно из Фигуры 3, катализаторы с мелкопористыми молекулярными ситами оказываются очень устойчивыми против старения при колебаниях состава бедной/богатой смеси. В частности, катализатор Cu/SAPO-34 показал исключительно хорошую низкотемпературную активность и не выявил никакого падения активности после выдерживания в условиях циклических изменений состава бедной/богатой смеси, то есть после повторяющихся воздействий восстановительной газовой среды. Катализаторы в воплощениях настоящего изобретения показывают намного более широкий температурный интервал осуществления высокоэффективной конверсии NOx. Температурный интервал обеспечения улучшенной эффективности конверсии может составлять от около 150 до 650°С, более предпочтительно от 200 до 500°С, еще более предпочтительно от 200 до 450°С или наиболее предпочтительно от около 200 до 400°С. В этих температурных границах эффективность конверсии после воздействия восстановительной газовой среды и даже после воздействия восстановительной газовой среды при высоких температурах (например, вплоть до 850°С), может составлять от более 55% до 100%), более предпочтительно эффективность превышает 90% и еще более предпочтительна эффективность, превышающая 95%. В частности, объединенные системы NAC+SCR демонстрируют намного более широкое температурное окно осуществления высокоэффективной конверсии NOx как в сравнении с индивидуальными катализаторами NAC, так и в сравнении с системами NAC+SCR, применяющими катализатор SCR Fe/молекулярное сито. См. Фигуру 4. Например, при около 250°С и около 300°С эффективность конверсии NOx для систем, подвергнутых выдерживанию в условиях колебаний бедная/богатая смесь, выглядит следующим образом:

Система (подвергнутая выдерживанию в условиях бедной/богатой смеси) Конверсия NOx (%) при 250°С Конверсия NOx (%) при 300°С
Индивидуальный NAC 73 92
NAC+Fe/бета SCR-катализатор 87 90
NAC+Cu/SSZ-13 SCR-катализатор 93 97
NAC+Cu/SAPO-34 SCR-катализатор 97 96

Из этих результатов очевидно, что применение NAC+катализатор Cu/мелкопористое молекулярное сито показывает резкое улучшение эффективности конверсии. Эти улучшения относятся к конечным выбросам NOx. Таким образом, улучшение показателя конверсии NOx от около 87% (с остающимися около 13% NOx) до величины конверсии NOx около 97% (около 3% остаточного NOx) составляет около 433% улучшение эффективности в расчете по отношению к процентной доле остаточного NOx.

Катализатор имеет начальную активность, а также катализатор имеет конечную активность после по меньшей мере одного периода воздействия восстановительной газовой среды. В некоторых воплощениях активность катализатора представляет собой эффективность конверсии NOx. Соответственно, начальная активность является эффективностью конверсии NOx катализатором, который не был подвергнут воздействию восстановительной газовой среды, а конечная активность - это эффективность конверсии NOx катализатором после воздействия на него восстановительной газовой среды. Начальная активность может включать базовое старение в гидротермальных условиях. Гидротермальные условия могут включать выдерживание при 700°С в течение 2 часов в атмосфере воздуха с 5% содержанием Н2О.

Химический процесс подразумевает подвергание по меньшей мере одному периоду воздействия восстановительной газовой среды. Восстановительная газовая среда может включать любую подходящую восстановительную газовую среду, такую как создающаяся в условиях богатой смеси цикла колебаний бедной/богатой смеси. Например, восстановительная газовая среда может также ограниченно наблюдаться во время регенерации катализированного сажевого фильтра. По меньшей мере один период воздействия может включать повторяющиеся воздействия восстановительных условий или же длительное воздействие восстановительных условий. Например, повторяющееся воздействие может включать выдерживание в условиях циклических изменений состава бедной/богатой смеси при 600°С в течение 12 часов. Бедная составляющая цикла может длиться от 15 секунд до нескольких десятков минут, а богатая составляющая цикла может продолжаться от менее 1 секунды до нескольких минут. В системе NAC-SCR или в системе TWC-SCR богатая составляющая цикла может непрерывно составлять, например, от 1 до 60 секунд, непрерывно от 1 до 15 секунд или непрерывно от 5 до 15 секунд. В применениях, относящихся к сажевым фильтрам с покрытием (например, SCR/DPF (дизельный сажевый фильтр) работа в режиме обогащения может продолжаться, например, от 30 секунд до 60 минут непрерывного воздействия, от 5 минут до 30 минут непрерывного воздействия или от 10 минут до 30 минут непрерывного воздействия. Например, бедная составляющая цикла может состоять из воздействия смеси из 200 ч./млн. NO, 10% 02, 5% H2O, 5% CO2 в N2, а богатая составляющая цикла может состоять из воздействия смеси из 200 ч./млн. NO, 5000 ч./млн. С3Н6, 1,3% Н2, 4% СО, 1% 02, 5% Н2O, 5% СO2 в N2. Восстановительная газовая среда может являться высокотемпературной восстановительной газовой средой. Высокотемпературная восстановительная газовая среда может присутствовать при температуре от около 150°С до 850°С или, более конкретно, от около 450°С до 850°С.

Конечная активность катализатора при рабочей температуре находится в пределах около 30%, более предпочтительно в пределах около 10%, более предпочтительно в пределах около 5%, еще более предпочтительно в пределах около 3% от начальной активности. Предпочтительно рабочая температура катализатора составляет между около 150 и около 650°С и более предпочтительно между около 200 и около 500°С. В то время как активность катализатора предпочтительно измеряется в пределах температурного диапазона 200-500°С, отдельные этапы химического процесса могут выполняться при любой температуре, например, в более широком температурном интервале, включающем и более высокие температуры. Например, активность катализатора будет все еще сохраняться в температурном интервале между 200 и 500°С даже после подвергания катализатора воздействию более высоких температур, например, вплоть до 850°С. Для целей настоящего изобретения, когда конечная активность представляется в виде процентной доли от начальной активности, она дается как средняя процентная доля по представленному интервалу температур; другими словами, если указывается, что конечная активность находится в пределах 30% от начальной активности при температуре между 200 и 500°С, то нет необходимости в том, чтобы она была не ниже 30% при каждой из исследуемых в данном диапазоне температур, надо лишь, чтобы по исследуемым температурам она в среднем составляла менее 30%. Более того, при том, что активность определяется в примерах данной заявки как показатель конверсии NOx, эта активность, в зависимости от данного химического процесса, может быть представлена с помощью некоторых других, известных в данной области критериев каталитической активности. Данные, демонстрирующие активность катализатора и процентную долю конечной активности от начальной активности, представлены в следующих далее таблицах (см. также Фигуру 3). Отрицательные числа означают, что активность после воздействия восстановительных условий фактически улучшается в сравнении с начальной активностью (и поэтому, конечно, должна была быть «внутри» некоторой положительной процентной доли от начальной активности).

Для воплощения, применяющего Cu/Nu-3, были получены следующие данные:

Температура Гидротермальное старение Температура Старение при колебаниях бедной/богатой смеси %
150 9 150 9 -2%
200 50 198 52 -2%
250 76 250 75 1%
350 72 350 69 4%
450 62 450 58 6%
550 45 550 43 3%
650 27 650 26 2%

Таким образом, процентная доля восстановления NOx при старении в условиях колебания состава бедной/богатый смеси была в пределах около 6% от процентной доли восстановления NOx при старении вследствие гидротермального воздействия. Соответственно, катализатор оставался устойчивым и имел хорошую активность после повторяющегося воздействия восстановительных условий по всему температурному диапазону от около 150 до около 650°С.

Для воплощения, применяющего Cu/SSZ-13, были получены следующие данные:

Температура Гидротермальное старение Температура Старение при колебаниях бедной/богатой смеси %
164 61 160 19 68%
218 100 216 71 29%
269 100 269 97 3%
373 97 372 86 12%
473 86 474 68 20%
572 64 573 41 36%
668 22 669 -7 134%

Таким образом, процентная доля восстановления NOx при старении в условиях колебаний состава бедной/богатый смеси была в пределах около 30% от процентной доли восстановления NOx при старении вследствие гидротермального воздействия по всему температурному диапазону от около 200 до около 500°С.

Для воплощения, применяющего Cu/SAPО-34, были получены следующие данные:

Температура Гидротермальное старение Температура Старение при колебаниях бедной/богатой смеси %
156 33 156 47 -41%
211 95 212 97 -3%
264 99 265 99 0,04%
366 89 366 89 -0,01%
464 86 465 83 3%
661 70 564 62 11%
658 34 662 26 22%

Таким образом, процентная доля восстановления NOx при старении в условиях колебаний состава бедной/богатый смеси была в пределах около 3% от процентной доли восстановления NOx при старении вследствие гидротермального воздействия по всему температурному диапазону от около 200 до около 500°С и в пределах около 10% при температурах в интервале от около 200 до 560°С.

В качестве сравнительного примера сравнивался катализатор на молекулярном сите с большими порами Сu/бета:

Температура Гидротермальное старение Температура Старение при колебаниях бедной/богатой смеси %
150 21 152 9 57%
200 72 199 24 67%
250 93 250 30 67%
350 93 351 26 72%
450 82 450 37 56%
550 82 550 54 35%
650 64 650 49 24%

Сравнительный пример с Cu/бета показал слабую активность после выдерживания циклических колебаний состава бедной/богатой смеси. Таким образом, воздействие восстановительной газовой среды на катализаторы из меди на молекулярных ситах приводит к слабой стабильности и активности, которая предполагалась до открытия настоящего изобретения.

Согласно другому воплощению настоящего изобретения, способ применения катализатора содержит подвергание катализатора воздействию по меньшей мере одного реагента, содержащего оксиды азота в ходе химического процесса, содержащего очистку отработавших газов. Катализатор содержит медь и мелкопористое молекулярное сито, имеющее максимальный размер кольца в восемь тетраэдрических атомов и выбранное из группы Кодов типов каркаса, состоящей из СНА, LEV, ERI и DDR. Химический способ подразумевает подвергание по меньшей мере одному периоду воздействия восстановительной газовой среды. Катализатор имеет начальную активность, а также катализатор имеет конечную активность после по меньшей мере одного периода воздействия восстановительной газовой среды. Показатель конечной активности находится в пределах 10% начальной активности при температуре между 250 и 350°С. В одном предпочтительном воплощении катализатор имеет показатель конечной активности, находящийся в пределах 3% начальной активности при температуре между 250 и 350°С.

В одном воплощении изобретения катализаторы объединялись с NAC (катализатор-поглотитель NOx) и исследовались в виде систем NAC+SCR. На Фигуре 4 сравнивается эффективность восстановления NOx на индивидуальном NAC и системах NAC+SCR с различными SCR-катализаторами на мелкопористых молекулярных ситах (Cu/SAPO-34 и Cu/SSZ-13), а также на катализаторе Fe/бета из сравнительного примера. Объединение SCR, представленного железом на молекулярном сите, с катализатором NAC показало, что такая система улучшает конверсию NOx по сравнению с индивидуальным NAC. Однако замечательным является то, что другие две системы с содержащим медь мелкопористым молекулярным ситом, то есть Cu/SAPO-34 и Cu/SSZ-13, также показали дальнейшее улучшение эффективности удаления NOx. Это особенно заметно при низких (200-350°С) температурах. Эти результаты дают возможность ясно предположить, что катализаторы на основе меди и мелкопористых молекулярных сит придают новый импульс дальнейшему улучшению производительности систем NAC+SCR.

В дополнение к применениям NAC+SCR, катализаторы на основе меди и мелкопористых молекулярных сит предлагают значительное улучшение рабочих характеристик и для других применений, в которых может происходить подвергание воздействию высокотемпературной восстановительной газовой среды. Например, катализатор из нанесенной на мелкопористое молекулярное сито меди может применяться в восстановительной газовой среде, которая наблюдается в ходе регенерации активности SCR/DPF (дизельный пылепоглощающий фильтр). Катализаторы из нанесенной на мелкопористые молекулярные сита меди обеспечивают превосходную теплостойкость и исключительную стабильность к восстановительным условиям, например, к выдерживанию в условиях богатой смеси, которые встречаются в системах очистки отработавших газов.

Следует понимать, что, определяя молекулярные сита по кодам типов каркаса, авторы изобретения намереваются включить «типический материал» и все и любые материалы с изотипическим Каракасом. («Типический материал» является видом, первоначально примененным для установления данного типа каркаса). Ссылка делается на Таблицу 1, в которой представляется ряд иллюстративных материалов молекулярных сит, пригодных для применения в настоящем изобретении. Во избежание недоразумений, если это не поясняется иным образом, представляемая здесь ссылка на молекулярное сито под названием, например «шабазит» относится к материалу молекулярного сита per se (как таковому) (в этом примере к встречающемуся в природе материалу типа шабазит), а не к любому другому материалу, определяемому т