Способ определения динамических погрешностей микромеханических инерциальных датчиков и инерциальных измерительных модулей на их основе

Изобретение относится к метрологии. Способ определения динамических погрешностей микромеханических инерциальных датчиков заключается в том, что определение динамической погрешности производится путем сравнения характеристик, задаваемых стендом колебаний, с характеристиками, воспроизводимыми микромеханическим датчиком или модулем. При этом колебания воспроизводятся стендом и регистрируются микромеханическим датчиком или инерциальным измерительным модулем в спектре частот, охватывающем весь частотный диапазон работы объекта и соответствующем конкретным условиям эксплуатации, с последующей обработкой по формуле S в ы х ( ω ) = | W ( j ω ) | 2 ⋅ S в х ( ω ) , где S в ы х ( ω ) - спектральная плотность мощности сигнала микромеханического датчика или модуля, S в х ( ω ) - спектральная плотность мощности входного сигнала со стенда, | W ( j ω ) | - амплитудно-частотная характеристика исследуемого датчика или модуля. Расчет спектральных плотностей мощности входного и выходного сигналов осуществляется путем перехода из временной области в частотную с помощью преобразования Фурье, при этом экспериментально определенная амплитудно-частотная характеристика | W ( j ω ) | датчика или модуля характеризует дисперсию D погрешности исследуемого объекта в заданном спектре частот, а среднеквадратичное отклонение динамической погрешности микромеханического датчика находится в соответствии с выражением σ = D . Технический результат - повышение точности.

Реферат

Изобретение относится к области измерительной техники и может быть использовано для определения динамических погрешностей микромеханических инерциальных датчиков (гироскопов и акселерометров) и инерциальных измерительных модулей на их основе.

Известен способ определения динамических погрешностей микромеханических инерциальных датчиков (гироскопов и акселерометров) и инерциальных измерительных модулей на основе задания гармонических колебаний с помощью испытательного стенда. Исследуемый объект устанавливается на испытательный стенд и задаются колебания с фиксированной частотой. Для оценки динамических погрешностей в частотном диапазоне работы датчика или модуля проводится серия испытаний на различных фиксированных значениях частоты колебаний, задаваемых испытательным стендом, и сравнение характеристик, задаваемых стендом, и характеристик, воспроизводимых инерциальным датчиком или измерительным модулем [Иванов В.А. Метрологическое обеспечение гироприбров. - Л.: Судостроение, 1983, с. 134].

Кроме того, существует способ, реализованный в испытательном стенде для снятия статических и динамических характеристик датчиков линейной скорости, при котором одновременно производится сравнение характеристик испытуемого датчика с эталонными характеристиками ползуна механизма стенда [авторское свидетельство SU 1024856 А1 (Пивоваров Л.В.)].

Указанные способы определения динамических погрешностей датчиков или модулей требуют значительных временных затрат и не обеспечивают достоверного определения погрешностей применительно к конкретным условиям эксплуатации исследуемых датчиков или модулей.

Известен способ определения динамических погрешностей микромеханических инерциальных датчиков (гироскопов и акселерометров) и инерциальных модулей на их основе. Способ заключается в том, что колебания воспроизводятся стендом и регистрируются микромеханическим датчиком или инерциальным модулем в спектре частот, охватывающем весь частотный диапазон работы исследуемого объекта и соответствующем конкретным условиям эксплуатации. Последующая обработка производится по формуле S в ы х ( ω ) = | W ( j ω ) | 2 ⋅ S в х ( ω ) , где S в ы х ( ω ) - спектральная плотность мощности сигнала микромеханического датчика или модуля, S в х ( ω ) - спектральная плотность мощности входного сигнала со стенда, | W ( j ω ) | - амплитудно-частотная характеристика исследуемого датчика или модуля. Указанный способ позволяет экспериментально определить амплитудно-частотную характеристику исследуемого датчика или модуля [Грязин Д.Г. и др. Метрологическое обеспечение испытаний микромеханических датчиков и модулей // Известия Тульского государственного университета. Технические науки, 2012, №7, с. 67-76].

Данный способ выбран за прототип изобретения.

Указанный способ применим для определения частотных характеристик датчиков или модулей, но не позволяет определить динамическую погрешность датчика или модуля в частотном диапазоне его работы.

Задачей изобретения является определение динамических погрешностей датчиков в реальных условиях эксплуатации.

Поставленная задача решается следующим образом.

Воспроизводимые с помощью стенда гармонические колебания задаются в спектре частот, охватывающем весь частотный диапазон работы исследуемого объекта и соответствующем конкретным условиям эксплуатации. Исследуемый модуль устанавливается на стенд колебаний, способный воспроизводить колебания с заданным спектром частот, и производится запись характеристик, задаваемых стендом, и характеристик, воспроизводимых микромеханическим датчиком или инерциальным измерительным модулем. На основе полученных данных осуществляется расчет спектральных плотностей мощности (далее - спектры) входного и выходного сигналов путем перехода из временной области в частотную с помощью преобразования Фурье. Полученный спектр выходного сигнала модуля сравнивается со спектром входного сигнала стенда, соответствующим конкретным условиям эксплуатации, в соответствии с выражением S в ы х ( ω ) = | W ( j ω ) | 2 ⋅ S в х ( ω ) , где S в ы х ( ω ) - спектральная плотность мощности сигнала микромеханического датчика или модуля, S в х ( ω ) - спектральная плотность мощности входного сигнала со стенда, | W ( j ω ) | - амплитудно-частотная характеристика исследуемого датчика или модуля. Экспериментально определенная амплитудно-частотная характеристика | W ( j ω ) | датчика или модуля характеризует дисперсию D погрешности исследуемого объекта в заданном спектре частот. Среднеквадратичное отклонение динамической погрешности σ микромеханического датчика или инерциального измерительного модуля находится в соответствии с выражением σ = D . Рассчитанное значение характеризует погрешность исследуемого прибора применительно к конкретным условиям эксплуатации, соответствующим задаваемому спектру входного воздействия.

Способ реализуется следующим образом. Исследуемый микромеханический инерциальный датчик или измерительный модуль устанавливается на стенд, способный воспроизводить колебания в спектре частот, охватывающем весь частотный диапазон работы исследуемого объекта. Задаются колебания со спектром, соответствующим конкретным условиям эксплуатации. Производится запись характеристик, задаваемых стендом, и характеристик, воспроизводимых датчиком или модулем. Полученные данные с помощью преобразования Фурье переводятся в частотную область для вычисления спектральной плотности мощности сигналов. Спектры входного сигнала стенда и выходного сигнала датчика или модуля сравниваются в соответствии с выражением S в ы х ( ω ) = | W ( j ω ) | 2 ⋅ S в х ( ω ) , для экспериментального определения частотной передаточной функции | W ( j ω ) | исследуемого объекта, которая определяет динамическую погрешность датчика или модуля во всем частотном диапазоне его работы.

Достигаемый технический результат - определение динамических погрешностей микромеханических инерциальных датчиков и инерциальных измерительных модулей на их основе в режиме их функционирования, повышение достоверности определения динамических погрешностей применительно к конкретным условиям эксплуатации, сокращение времени определения динамических погрешностей при серийном производстве микромеханических датчиков и модулей.

Исследуемый объект устанавливается на стенд, способный воспроизводить колебания в спектре частот. Задаются колебания со спектром, соответствующим реальным условиям эксплуатации. Производится запись характеристик, задаваемых стендом, и характеристик, воспроизводимых микромеханическим датчиком или инерциальным модулем. Последующая обработка входного и выходного сигналов по вышеприведенным формулам позволяет определить динамическую погрешность исследуемого объекта в режиме функционирования. Задание колебаний в спектре частот позволяет сократить время и повысить достоверность определения динамических погрешностей исследуемых объектов применительно к конкретным условиям эксплуатации.

Способ определения динамических погрешностей микромеханических инерциальных датчиков (гироскопов и акселерометров) и инерциальных измерительных модулей на их основе, заключающийся в том, что определение динамической погрешности производится путем сравнения характеристик, задаваемых стендом колебаний, с характеристиками, воспроизводимыми микромеханическим датчиком или модулем, при этом колебания воспроизводятся стендом и регистрируются микромеханическим датчиком или инерциальным измерительным модулем в спектре частот, охватывающем весь частотный диапазон работы объекта и соответствующем конкретным условиям эксплуатации, с последующей обработкой по формуле S в ы х ( ω ) = | W ( j ω ) | 2 ⋅ S в х ( ω ) , где S в ы х ( ω ) - спектральная плотность мощности сигнала микромеханического датчика или модуля, S в х ( ω ) - спектральная плотность мощности входного сигнала со стенда, | W ( j ω ) | - амплитудно-частотная характеристика исследуемого датчика или модуля, отличающийся тем, что расчет спектральных плотностей мощности входного и выходного сигналов осуществляется путем перехода из временной области в частотную с помощью преобразования Фурье, при этом экспериментально определенная амплитудно-частотная характеристика | W ( j ω ) | датчика или модуля характеризует дисперсию D погрешности исследуемого объекта в заданном спектре частот, при этом среднеквадратичное отклонение динамической погрешности σ микромеханического датчика или инерциального измерительного модуля находится в соответствии с выражением σ = D и определяет погрешность исследуемого прибора применительно к конкретным условиям эксплуатации, соответствующим задаваемому спектру входного воздействия.