Способ согласования несимметричной трехфазной трехпроходной линии электропередачи с электрической нагрузкой

Иллюстрации

Показать все

Изобретение относится к электротехнике и может быть использовано при передаче электрической энергии потребителю с помощью несимметричной трехфазной трехпроводной линии электропередачи. Технический результат - согласование несимметричной трехфазной трехпроводной линии электропередачи с электрической нагрузкой достигается в результате выполнения определенных условий, заключающихся в сопоставлении действительного и эталонного сопротивлений нагрузки, напряжений в конце линии или токов, поступающих в нагрузку. Исходные данные о напряжениях и токах в линии могут быть получены через устройства сопряжения, или датчики, выполненные в виде трансформаторов напряжения и тока, спектроанализаторов, делителей напряжения и шунтов переменного тока. В результате обработки исходных данных в процессоре формируются управляющие сигналы для корректирующих органов, в качестве которых могут быть использованы устройства РПН силовых трансформаторов, автоматизированные технологические комплексы, накопители электроэнергии, источники активной мощности, такие как маломощные гидроэлектростанции или электростанции других типов. 3 ил.

Реферат

Изобретение относится к электротехнике и может быть использовано при проектировании, монтаже, наладке и эксплуатации линий электропередачи (ЛЭП) при передаче электрической энергии к потребителю.

Передача электрической энергии по протяженным ЛЭП, а также электрической энергии повышенной частоты по сравнительно непротяженным ЛЭП обеспечивается: по одно- и двухпроводным ЛЭП одной парой волн электромагнитного поля (падающей и отраженной); по трехпроводным - тремя парами; по четырехпроводной четырьмя и т.д. [1]. В результате согласования ЛЭП с электрической нагрузкой пропускная способность линии электропередачи повышается из-за исключения отраженной волны. Кроме того, уменьшается степень искажения кривых напряжения и тока, увеличивается надежность работы электрического оборудования, нормализуется работа релейной защиты, автоматики и связи, улучшается экологическая обстановка в районе эксплуатации ЛЭП.

Известно условие согласованного режима работы однопроводной ЛЭП [2], на основании которого работает устройство [RU 2390924], где реализован согласованный режим работы однопроводной протяженной ЛЭП. Однако несимметричная трехфазная трехпроводная ЛЭП не может быть согласована одним лишь условием согласованного режима [2] из-за специфичности распространения напряжений и токов по трехпроводным ЛЭП [3].

Известны способы согласования линий связи с нагрузкой [4]. Однако применяемые здесь технические элементы, такие как дифференциальный усилитель, не предназначены для работы на высоком напряжении, к при меру 1 кВ, а это значит, что специфика реализации способов [4] достаточно своеобразна и неприменима в протяженных линиях электропередачи высокого и сверхвысокого напряжения.

Задача изобретения - формирование способа согласования несимметричной трехфазной трехпроводной ЛЭП с электрической нагрузкой.

Технический результат заключается в обеспечении условий согласования несимметричной трехфазной трехпроводной высоковольтной линии электропередачи с электрической нагрузкой, выполнение которых повлечет за собой снижение потерь электрической энергии, повышение пропускной способности линии, уменьшение степени искажения кривых напряжения и тока.

Технический результат достигается тем, что способ согласования несимметричной трехфазной трехпроводной линии электропередачи с электрической нагрузкой, заключающийся в том, что исходная информация о напряжениях и токах в линии через устройства сопряжения или датчики поступает в процессор, отличающийся тем, что в процессоре проверяются условия согласования несимметричной трехфазной трехпроводной линии электропередачи с электрической нагрузкой для каждого провода линии в результате сравнения действительного и эталонного значений сопротивлений нагрузки, напряжений в конце линии или токов, поступающих в нагрузку, и формируются управляющие сигналы для корректирующих органов, в качестве которых могут быть использованы устройства РПН силовых трансформаторов, автоматизированные технологические комплексы, накопители электроэнергии, источники активной мощности, такие как малые гидроэлектростанции или электростанции других типов.

Сущность изобретения поясняется схемами: на рис.1 показан алгоритм обеспечения и поддержания согласования несимметричной трехфазной трехпроводной неизолированной ЛЭП с электрической нагрузкой, на рис.2 представлен алгоритм работы процессора, на рис.3 в блоке А выполняются логические операции.

На рисунках используются следующие обозначения:

1 - корректирующий орган, такой как РПН трансформатора (KO1);

2 - трансформатор, питающий ЛЭП напряжением 35 кВ или выше (Т1);

3 - устройства сопряжения, каковыми являются датчики напряжения и тока, установленные в начале ЛЭП напряжением 35кВ или выше ( ∑ i = 1 n Д 1 ) ;

4 - аналого-цифровой преобразователь (АЦП);

5 - процессор (П);

6 - цифроаналоговый преобразователь (ЦАП);

7 - показывающий или самопишущий прибор (РО);

8 - ЛЭП напряжением 35 кВ или выше (ЛЭП 35 кВ ИЛИ ВЫШЕ);

9 - понижающий трансформатор, напряжением 220 кВ/10 кВ (Т2);

10 - устройства сопряжения, каковыми являются датчики напряжения и тока установленные в конце ЛЭП напряжением 35 кВ или выше ( ∑ i = 1 n Д 2 ) ;

11 - понижающий трансформатор, напряжением 10 кВ/0,85 кВ (Т3);

12 - корректирующий орган, такой как РПН понижающего трансформатора напряжением 220 кВ/10 кВ (КО2);

13 - блок преобразователей, выполненный в виде выпрямительных установок для электролиза, фаза A, (VD1);

14 - корректирующий орган, такой как РПН понижающего трансформатора напряжением 10 кВ/0,85 кВ (КО3);

15 - обобщенная электрическая нагрузка ( z _ Н А Г Р . ) ;

16 - корректирующий орган (КО4), такой как система электролиза алюминия ТРОЛЛЬ, накопители электроэнергии, источники активной мощности, такие как малые гидроэлектростанции;

17 - обобщенное сопротивление нагрузки ( Z _ Н . А = U ˙ Н . А I ˙ 2 . А ) ;

18 - обобщенное сопротивление нагрузки с учетом реализации согласования ЛЭП напряжением 35кВ или выше 8 (ЛЭП 35 кВ ИЛИ ВЫШЕ), ( Z _ В О Л Н . А = U ˙ В О Л Н . А I ˙ 2 Н . А ) ;

19 - амплитудное значение напряжения нагрузки ( U ˙ Н . А ) ;

20 - амплитудное значение тока нагрузки ( I ˙ 2 . А ) ;

21 - специализированная программа для прогнозирования величины основных характеристик электрической энергии в линии электропередачи трехпроводного исполнения (LEP3 v.1.00);

22 - величина тока, каким должна характеризоваться электрическая энергия, передаваемая по ЛЭП, согласованной с электрической нагрузкой ( I ˙ 2 Н . А ) ;

23 - величина напряжения, каким должна характеризоваться электрическая энергия, передаваемая по ЛЭП, согласованной с электрической нагрузкой ( U ˙ В О Л Н . А ) ;

24 - логический блок (A).

Суть предлагаемой разработки заключается в реализации при помощи технических средств условий согласования несимметричной трехфазной трехпроводной высоковольтной линии электропередачи с электрической нагрузкой [5-8], в формировании алгоритма обеспечения и поддержания согласованного режима работы протяженной несимметричной трехфазной трехпроводной ЛЭП.

Пусть будет необходимо выполнить согласование фазы A с электрической нагрузкой. Для фаз B и C алгоритм согласования с электрической нагрузкой будет аналогичным.

На рис.1 показан алгоритм обеспечения и поддержания согласования несимметричной трехфазной трехпроводной неизолированной ЛЭП с электрической нагрузкой. Здесь в качестве объекта согласования использована ЛЭП напряжением 35 кВ или выше 8 (ЛЭП 35 кВ ИЛИ ВЫШЕ). Кроме того, реализовано использование следующего электротехнического оборудования: трансформатора 2 (T1) - трансформатора, питающего ЛЭП напряжением 35 кВ или выше 8 (ЛЭП 35 кВ ИЛИ ВЫШЕ); трансформаторов 9 (T2) и 11 (T3) - двух различных групп понижающих трансформаторов, имеющих отличные друг от друга номинальные характеристики; блока преобразователей 13 (VD1) - преобразователей, выполненных в виде выпрямительных установок для электролиза, фаза A, представляющих в данном случае обобщенную электрическую нагрузку 15 ( Z _ Н А Г Р . ) . Блоки 9 (T2), 11 (Т3), 13 (VD1) и 15 ( Z _ Н А Г Р . ) образуют общий блок, полное сопротивление которого при достижении согласованного режима работы ЛЭП 8 (ЛЭП 35 кВ ИЛИ ВЫШЕ) определяется величиной 18 ( Z _ В О Л Н . А = U ˙ В О Л Н . А I ˙ 2 Н . А ) , а в иных случаях - 17 ( Z _ Н . А = U ˙ Н . А I ˙ 2 . А ) . В данном случае полное сопротивление 18 ( Z _ В О Л Н . А = U ˙ В О Л Н . А I ˙ 2 Н . А ) является эталонной величиной, к которой должно стремиться значение 17 ( Z _ Н . А = U ˙ Н . А I ˙ 2 . А ) в процессе исполнения предлагаемого алгоритма.

Основным блоком работы алгоритма способа согласования несимметричной трехфазной трехпроводной ЛЭП 8 (ЛЭП 35 кВ ИЛИ ВЫШЕ) с электрической нагрузкой является процессор 5 (П) рис.1, где выполняется анализ сведений о состоянии обобщенного сопротивления нагрузки 17 ( Z _ Н . А = U ˙ Н . А I ˙ 2 . А ) или 18 ( Z _ В О Л Н . А = U ˙ В О Л Н . А I ˙ 2 Н . А ) . Эти сведения в процессор поступают от устройств сопряжения, каковыми являются датчики тока и напряжения 3 ( ∑ i = 1 n Д 1 ) и 10 ( ∑ i = 1 n Д 2 ) , где анализируемые характеристики электрической энергии доводятся до величин, воспринимаемых компьютерной техникой. Датчики 3 ( ∑ i = 1 n Д 1 ) устанавливаются и используются для сбора сведений о напряжениях и токах в начале исследуемой протяженной несимметричной трехфазной трехпроводной ЛЭП 8 (ЛЭП 35 кВ ИЛИ ВЫШЕ), а датчики 10 ( ∑ i = 1 n Д 2 ) - в конце этой линии электропередачи 8 (ЛЭП 35 кВ ИЛИ ВЫШЕ). В качестве датчиков 3 ( ∑ i = 1 n Д 1 ) и 10 ( ∑ i = 1 n Д 2 ) могут быть использованы трансформаторы напряжения и тока, спектроанализаторы, а также делители напряжения и шунты переменного тока.

Аналого-цифровой преобразователь 4 (АЦП) рис.1 позволяет сформированные в датчиках 3 ( ∑ i = 1 n Д 1 ) и 10 ( ∑ i = 1 n Д 2 ) аналоговые сигналы преобразовать в дискретные. Цифроаналоговый преобразователь 6 (ЦАП) позволяет сформированные в виде дискретных сигналов в процессоре 5 (П) команды корректирующим органам 1 (КО1), 12 (КО2), 14 (КО3) и 16 (КО4) преобразовать в аналоговые. В данном случае в качестве корректирующих органов 1 (КО1), 12 (КО2) и 14 (КО3) использованы устройства РПН силовых трансформаторов, а в качестве корректирующего органа 16 (KO4) - система электролиза алюминия ТРОЛЛЬ [9, 10], накопители электроэнергии, источники активной мощности, такие как малые гидроэлектростанции, позволяющие изменять величину полного сопротивления обобщенной нагрузки 17 ( Z _ Н . А = U ˙ Н . А I ˙ 2 . А ) путем воздействия на технологический процесс. На рис.1 это сопротивление обозначено символом 15 ( Z _ Н А Г Р . ) . Результаты действия описываемого алгоритма выводятся на показывающий или самопишущий прибор 7 (РО).

Алгоритм работы процессора 5 (П) представлен на рис.2: из 4 (АЦП) в процессор 5 (П) поступают амплитудные значения тока 20 ( I ˙ 2 . А ) и напряжения 19 ( U ˙ Н . А ) нагрузки, затем определяется величина 17 ( Z _ Н . А = U ˙ Н . А I ˙ 2 . А ) . Определенные таким образом величины 20 ( I ˙ 2 . А ) , 19 ( U ˙ Н . А ) , 17 ( Z _ Н . А = U ˙ Н . А I ˙ 2 . А ) подаются в следующий блок 24 (A).

Блок 21 (LEP3 v.1.00) на рис.2 иллюстрирует использование в предлагаемом способе согласования несимметричной трехфазной трехпроводной ЛЭП с электрической нагрузкой специализированной программы для прогнозирования величины основных характеристик электрической энергии в несимметричной линии электропередачи трехфазного трехпроводного исполнения [11]. При помощи программы определяются действующие значения комплексных величин токов и напряжений, постоянные распространения волн электромагнитного поля по проводам ЛЭП, величины собственных и взаимных волновых сопротивлений. В блоках 22 ( I ˙ 2 Н . А ) и 23 ( U ˙ В О Л Н . А ) формируются величины тока и напряжения в конце рассматриваемой линии, какими должна характеризоваться электрическая энергия, передаваемая по несимметричной ЛЭП 8 (ЛЭП 35 кВ ИЛИ ВЫШЕ), согласованной с электрической нагрузкой. Эти величины тока и напряжения определяются следующим образом [5-8]:

1 случай (для первой постоянной распространения, первая пара волн электромагнитного поля):

U ˙ В О Л Н . А I ˙ 2 Н . А = U ˙ Н . А I ˙ 2 . А ; U ˙ В О Л Н . В I ˙ 2 Н . В = U ˙ Н . В I ˙ 2 . В ; U ˙ В О Л Н . С I ˙ 2 Н . С = U ˙ Н . С I ˙ 2 . С ,

где

U ˙ В О Л Н . А = U ˙ 1 a n e − γ 1 n l + I ˙ 1 B n ⋅ Z _ c B 1 n ⋅ Z _ c A ln Z _ c A B 1 n e − γ 1 n l + I ˙ 1 C n ⋅ Z _ c C 1 n ⋅ Z _ c A ln Z _ c C A ln e − γ 1 n l ;

U ˙ В О Л Н . B = U ˙ 1 B n e − γ 1 n l + I ˙ 1 A n ⋅ Z _ c A 1 n ⋅ Z _ c B ln Z _ c A B 1 n e − γ 1 n l + I ˙ 1 C n ⋅ Z _ c C 1 n ⋅ Z _ c B ln Z _ c B C ln e − γ 1 n l ;

U ˙ В О Л Н . C = U ˙ 1 C n e − γ 1 n l + I ˙ 1 A n ⋅ Z _ c A 1 n ⋅ Z _ c C ln Z _ c C A 1 n e − γ 1 n l + I ˙ 1 B n ⋅ Z _ c B 1 n ⋅ Z _ c C ln Z _ c B C ln e − γ 1 n l ;

I ˙ 2 Н . А = I ˙ 1 A n e − γ 1 n l + I ˙ 1 B n ⋅ Z _ c B 1 n Z _ c A B ln e − γ 1 n l + I ˙ 1 C n ⋅ Z _ c C 1 n Z _ c C A ln e − γ 1 n l ;

I ˙ 2 Н . B = I ˙ 1 B n e − γ 1 n l + I ˙ 1 A n ⋅ Z _ c A 1 n Z _ c A B ln e − γ 1 n l + I ˙ 1 C n ⋅ Z _ c C 1 n Z _ c B C ln e − γ 1 n l ;

I ˙ 2 Н . C = I ˙ 1 C n e − γ 1 n l + I ˙ 1 A n ⋅ Z _ c A 1 n Z _ c C A ln e − γ 1 n l + I ˙ 1 B n ⋅ Z _ c B 1 n Z _ c B C ln e − γ 1 n l ;

U ˙ H . A , U ˙ H . B , U ˙ H . C - комплексные значения действующих величин фазных напряжений на клеммах электрической нагрузки (конец линии); I ˙ 2 . A , I ˙ 2 . B , I ˙ 2 . C - комплексные значения действующих величин линейных токов электрической нагрузки (конец линии); U ˙ В О Л Н . А , U ˙ В О Л Н . B , U ˙ В О Л Н . C - комплексные значения действующих величин фазных напряжений на клеммах источника питания (начало линии) от первой пары (условно) волн (падающей и отраженной) электромагнитного поля; γ1n - первая (условно) постоянная распространения волн электромагнитного поля; l - длина рассматриваемого участка ЛЭП; I ˙ 2 H . A , I ˙ 2 H . B , I ˙ 2 H . C - комплексные значения действующих величин линейных токов от источника питания (начало линии) от первой пары (условно) волн электромагнитного поля; U ˙ 1 A n , U ˙ 1 B n , U ˙ 1 C n - комплексные значения действующих величин фазных напряжений в начале рассматриваемого участка, B; I ˙ 1 A n , I ˙ 1 B n , I ˙ 1 C n - комплексные значения действующих величин фазных токов в начале рассматриваемого участка ЛЭП, A; Z _ c A ln , Z _ c B ln , Z _ c C ln - собственные волновые сопротивления, Ом; Z _ c A B ln , Z _ c B C ln , Z _ c C A ln - взаимные волновые сопротивления, Ом.

2 случай (для второй постоянной распространения, вторая пара волн электромагнитного поля):

U ˙ В О Л Н . А I ˙ 2 Н . А = U ˙ Н . А I ˙ 2 . А ; U ˙ В О Л Н . В I ˙ 2 Н . В = U ˙ Н . В I ˙ 2 . В ; U ˙ В О Л Н . С I ˙ 2 Н . С = U ˙ Н . С I ˙ 2 . С ,

где

U ˙ В О Л Н . А = U ˙ 1 a n e − γ 2 n l + I ˙ 1 B n ⋅ Z _ c B 2 n ⋅ Z _ c A 2 n Z _ c A B 2 n e − γ 2 n l + I ˙ 1 C n ⋅ Z _ c C 2 n ⋅ Z _ c A 2 n Z _ c C A 2 n e − γ 2 n l ;

U ˙ В О Л Н . B = U ˙ 1 B n e − γ 2 n l + I ˙ 1 A n ⋅ Z _ c A 2 n ⋅ Z