Полимеры, полимерные мембраны и способы их изготовления

Иллюстрации

Показать все

Группа изобретений относится к получению полимерного материала, такого как полимерные мембраны, газоразделительные мембраны, а также к разделению компонентов текучей среды. Получают полимерную матрицу, содержащую, по меньшей мере, один полимер и, по меньшей мере, один порообразователь. Посредством разложения, по меньшей мере, одного порообразователя при температуре менее или равной Tg, где Tg представляет собой температуру стеклования полимерной матрицы, образуется полимерный материал. Стадия разложения включает направление полимерной матрицы на термическое разложение, химическое разложение, электрическое разложение и радиационное разложение. Проницаемость полимерного материала составляет, по меньшей мере, в 1,2 раза больше, чем проницаемость полимерной матрицы для газа, а селективность полимерного материала составляет для данной пары газов, по меньшей мере, 0,35-кратную селективность полимерной матрицы. Способ предусматривает газоразделительные мембраны, которые превышают верхнюю границу соотношения Робсона, по меньшей мере, для одной пары разделяемых газов. Описаны также новые полимерные материалы, газоразделительные мембраны и способы разделения текучих компонентов. 4 н. и 22 з.п. ф-лы, 8 ил., 4 табл., 13 пр.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящая группа изобретений относится к разделению многокомпонентной текучей смеси, такой как, например, воздух, с использованием полимерных мембран. Более конкретно, настоящее изобретение относится к способу изготовления полимерных мембран, имеющих увеличенный свободный объем и суженное распределение пор по размерам и, таким образом, проявляющих полезные свойства проницаемости/селективности по сравнению с типичными свойствами, которые обеспечивали способы предшествующего уровня техники.

УРОВЕНЬ ТЕХНИКИ

Полимерные мембраны используют для разнообразных процессов разделения, включая разделение газов, а также разделение жидкостей. Разделение газов с помощью мембран стало важной альтернативой хорошо разработанным операциям разделения, таким как процессы криогенной дистилляции и адсорбции. Разделение газов с помощью мембран представляет собой процесс, осуществляемый под действием давления, в котором не требуется расходующее много энергии изменение фазового состояния исходной смеси газов, в отличие от других операций разделения. Кроме того, механическая простота и малое воздействие на окружающую среду газоразделительных установок на мембранной основе обеспечивают значительную гибкость в сооружении и эксплуатации.

Такие преимущества привели к широкому разнообразию приложений для способов разделения газов с помощью мембран. Этими способами разделяют следующие пары газов (т.е. смеси, по меньшей мере, двух разделяемых газов): O2/N2, H2/N2, H2/CH4, CO2/CH4, H2O/воздух, He/воздух, He/N2, He/CH4, He/H2, He/CO2, H2/CO2, H2S/природный газ и H2O/природный газ. Вследствие роста стоимости энергии и охраны окружающей среды в связи с отделением, извлечением и очисткой CO2, разделение газов с помощью мембран открывает значительные перспективы для существующих и развивающихся отраслей промышленности. Одно такое благоприятное для окружающей среды приложение может включать использование мембраны для разделения CO2/N2 из топочного газа, что обеспечивает выделение и очистку CO2.

Выбор материала мембраны для применения в разделении газов основан на конкретных физических и химических свойствах, поскольку данные материалы должны быть приспособлены наилучшим образом для разделения определенных смесей газов. В промышленных газоразделительных установках обычно используют органические полимеры в качестве асимметричных непористых мембран. Полимерные мембранные материалы, как правило, используют в процессах, в которых исходная смесь газов вступает в контакт с мембраной со стороны впуска, в результате чего смесь, проникающая через мембрану на сторону выпуска, содержит более высокую мольную долю одного из компонентов по сравнению с составом исходной смеси газов. Между сторонами впуска и выпуска поддерживается разность давлений, обеспечивая движущую силу для проникновения. На стороне выпуска можно поддерживать вакуум или любое давление ниже давления на стороне впуска.

Эффективность мембраны характеризуют ее проницаемость и селективность. Проницаемость (P) представляет собой скорость, при которой любой газообразный компонент проникает через мембрану. Разделение смеси газов осуществляет мембранный материал, который обеспечивает более высокую скорость проникновения (т.е. более высокую проницаемость) для одного компонента по сравнению с другим компонентом. Эффективность мембраны в обогащении смеси одним компонентом относительно другого компонента в проникающем потоке можно выразить величиной, которую называют термином «селективность». Селективность (S) можно определить как соотношение величин проницаемости газообразных компонентов через мембрану. Селективность представляет собой ключевой параметр для достижения высокой чистоты продукта при высоких уровнях его извлечения. Проницаемость и селективность мембраны представляют собой свойства материала мембраны, и, таким образом, в идеальном случае данные свойства не зависят от давления исходного газа, скорости потока и других технологических условий. Однако как проницаемость, так и селективность зависят от температуры. Предпочтительно разрабатывать мембранные материалы, обладающие высокой селективностью (эффективностью) для желательного компонента и сохраняющие при этом высокую проницаемость (производительность) для желательного компонента.

Как правило, полимерные мембраны проявляют высокую селективность и низкую проницаемость (производительность) по сравнению с пористыми материалами вследствие своего низкого свободного объема. Свободный объем полимера, то есть доля объема, не занятого электронными оболочками атомов полимера, играет важную роль для свойств переноса низкомолекулярных частиц и газов.

Аморфный полимер находится в каучукоподобном состоянии при температуре выше температуры его стеклования (Tg). Он характеризуется относительно большой величиной свободного объема вследствие переходных пустот между высокоподвижными полимерными цепями. Когда температура полимера уменьшается ниже уровня Tg, он переходит в стеклообразное состояние и ведет себя подобно жесткому стеклу: доля свободного объема уменьшается, приводя к недостаточности пространства для крупномасштабных совместных движений основных цепей полимера.

Стеклообразные полимеры отличаются от каучукоподобных полимеров скоростью сегментного движения полимерных цепей. Полимеры в стеклообразном состоянии не обладают быстрым молекулярным движением, которое придает каучукоподобным полимерам их жидкоподобную природу и способность быстрого изменения сегментных конфигураций на расстояниях, превышающих 0,5 нм. Стеклообразные полимеры существуют в неравновесном состоянии с переплетением молекулярных цепей, которое иммобилизует основные цепи молекул в замороженных конформациях. Как правило, стеклообразные полимеры представляют собой среду для селективной диффузии газов и являются благоприятными в применении для разделения газов. Жесткие стеклообразные полимеры являются предпочтительными в качестве полимеров с жесткими основными полимерными цепями, которые обладают ограниченной внутримолекулярной вращательной подвижностью и часто характеризуются высокой температурой стеклования, превышающей 100°C.

Почти во всех промышленных процессах, где используют газоразделительные мембраны, они содержат стеклообразные полимеры вследствие их высокой селективности по отношению к газам и хороших механических свойств. Стеклообразные полимеры являются более проницаемыми для частиц с малым молекулярным диаметром, и селективность обусловлена различиями размеров молекул. Стеклообразное состояние характеризуется относительно малой долей свободного объема. Более высокую долю свободного объема (до 20%) можно «заморозить» путем быстрого охлаждения или быстрого удаления растворителя в случае некоторых полимеров с жесткими молекулярными структурами. Свободный объем запирается внутри структуры, поскольку молекулярная подвижность не обеспечивает релаксации для заполнения пустого пространства, создаваемого при уменьшении температуры. Избыточный свободный объем рассматривают как неравновесное состояние, для которого кинетически предотвращается переход в равновесное состояние вследствие ограничения движения полимерных цепей при температуре ниже температуры стеклования. Стеклообразные полимеры, имеющие свободный объем от среднего до высокого, например полиимиды, полифениленоксиды, политриметилсилилпропин и т.д., используют для изготовления мембран, поскольку пустоты способствуют переносу газа или жидкости через материал.

Помимо суммарной величины свободного объема на свойства полимеров также влияет распределение микропор, в частности, когда элементы свободного объема являются взаимосвязанными. Полимерные мембраны обычно характеризуют компромиссное соотношение между проницаемостью и селективностью: когда селективность увеличивается, проницаемость уменьшается, и наоборот. Robeson показал в нескольких работах (L. M. Robeson, J. Membr. Sci., 1991 г., т. 62, с. 195; B. D. Freeman, Macromolecules, 1999 г., т. 32, с. 375; L. M. Robeson, J. Membr. Sci., 2008 г., т. 320, с. 375), что для низкомолекулярных газов (например, O2, N2, CO2 и CH4) на диаграмме соотношения селективности и проницаемости существует верхний предел или «верхняя граница». Чтобы получить сочетания повышенной селективности и проницаемости, требуются материалы, которые не подчиняются этим простым правилам.

В недавней публикации отмечено, что верхняя граница может быть превышена в полимерной системе, в которой происходит термическая перегруппировка, создающая в основной цепи гетероциклические структуры, не присутствующие в полимере-предшественнике (Park и др., Science, 2007, т. 318, с. 254). Было отмечено, что распределение пор по размерам в термически перегруппированном полимере является значительно более узким, чем в полимере-предшественнике, в результате чего возникают подобные молекулярному ситу свойства проницаемости и селективности. Увеличение свободного объема приводит к увеличению проницаемости, и сужение распределения пор по размерам в полимерах приводит к увеличению селективности. Способы одновременного достижения обоих свойств являются в высокой степени желательными.

Описано образование пустот в полимерных системах. Соответствующие способы включают селективное разложение термически лабильного блока в блок-сополимере или термически неустойчивого компонента в полимерной смеси, или введение порообразователя во время полимеризации. Однако все эти способы приводят к пористым полимерам, у которых размеры пор значительно превышают уровень, желательный для разделения газов. Значительно менее распространенными являются порообразователи, создающие пустоты с размерами молекулярного масштаба.

Отмечено, что разложение боковых лабильных групп увеличивает свободный объем полимеров. Zhou и др. (Chem. Lett., 2002 г., с. 534) и Islam и др. (H. Mem. Sci., 2005 г., т. 261, с. 17) описали термическое разложение боковых групп сульфоновой кислоты полиимида для увеличения свободного объема полимерной мембраны. Разложение сульфоновой кислоты индуцировало образование микропор и привело к увеличению свободного объема. Увеличение свободного объема повысило проницаемость газов. Термическое разложение осуществляли при температурах, превышающих температуры стеклования полимеров, что привело к релаксации полимерных цепей и исчезновению некоторых из образовавшихся микропор.

Несмотря на перечисленные выше достижения, по-прежнему в области техники мембранного разделения остается место для дальнейшего усовершенствования.

Таким образом, при проектировании полимерных мембран для разделения газов желательно увеличивать свободный объем, создавая поры с более узким распределением по размерам, чем поры, которые, как правило, образуются в процессе литья из растворов или плавления полимеров.

Таким образом, желательно предложить полимер с увеличенным свободным объемом.

Кроме того, желательно предложить способ получения полимера с увеличенным свободным объемом.

Кроме того, желательно предложить газоразделительную мембрану, изготовленную из полимера с увеличенным свободным объемом.

Кроме того, желательно предложить способ изготовления газоразделительной мембраны, состоящей из полимера с увеличенным свободным объемом.

Все документы, цитируемые в настоящем документе, во всей своей полноте включены в него посредством ссылки.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Соответственно, первый аспект настоящего изобретения представляет собой способ изготовления полимерного материала, причем указанный способ включает:

получение полимерной матрицы, содержащей, по меньшей мере, один полимер и, по меньшей мере, один порообразователь; и

разложение, по меньшей мере, одного порообразователя при температуре T, составляющей менее чем или равной 1,1Tg, где Tg представляет собой температуру стеклования полимерной матрицы, причем указанная стадия разложения включает воздействие на полимерную матрицу, по меньшей мере, одной обработки, выбранной из группы, которую составляют термическое разложение, химическое разложение, электрическое разложение и радиационное разложение,

где проницаемость полимерного материала составляет, по меньшей мере, в 1,2 раза больше, чем проницаемость полимерной матрицы для газа, а селективность полимерного материала составляет, по меньшей мере, 0,35-кратную селективность полимерной матрицы для пары газов.

Второй аспект настоящего изобретения представляет собой способ изготовления полимерного материала, причем указанный способ включает:

получение полимерной матрицы, содержащей, по меньшей мере, один полимер и, по меньшей мере, один порообразователь; и

разложение, по меньшей мере, одного порообразователя при температуре T, составляющей менее чем или равной 1,1Tg, где Tg представляет собой температуру стеклования полимерной матрицы, причем указанная стадия разложения включает воздействие на полимерную матрицу, по меньшей мере, одной обработки, выбранной из группы, которую составляют термическое разложение, химическое разложение, электрическое разложение и радиационное разложение,

где полимерный материал представляет собой газоразделительную мембрану, которая превышает верхнюю границу соотношения Робсона (Robeson), по меньшей мере, для одной пары разделяемых газов, выбранных из группы, которую составляют O2/N2, CO2/CH4, CO2/N2, H2/N2, He/N2, H2/CH4, He/CH4, He/H2, H2/CO2 и He/CO2.

Третий аспект настоящего изобретения представляет собой полимерный материал, полученный способом согласно настоящему изобретению, где полимерный материал приспособлен для использования в качестве газоразделительной мембраны.

Четвертый аспект настоящего изобретения представляет собой газоразделительную мембрану, содержащую полимерный материал согласно настоящему изобретению.

Пятый аспект настоящего изобретения представляет собой способ разделения компонентов текучей среды, причем указанный способ включает:

изготовление разделительного устройства, содержащего полимерный материал согласно настоящему изобретению в качестве разделительной мембраны;

направление исходной текучей среды в разделительное устройство, где исходная текучая среда представляет собой смесь первой текучей среды и, по меньшей мере, одной второй текучей среды; и

извлечение продукта из разделительного устройства, где продукт содержит первую текучую среду, имеющую более высокую чистоту, чем исходная текучая среда.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 представляет термогравиметрический анализ (TGA) малоновой кислоты.

Фиг. 2 представляет термогравиметрический анализ (TGA) щавелевой кислоты.

Фиг. 3 представляет термогравиметрический анализ (TGA) контрольной пленки после вакуумной сушки при 100°C.

Фиг. 4 представляет термогравиметрический анализ (TGA) контрольной пленки после термического отверждения при 250°C в течение 2 часов.

Фиг. 5 представляет термогравиметрический анализ (TGA) пленки F1 после вакуумной сушки при 100°C.

Фиг. 6 представляет термогравиметрический анализ (TGA) пленки F1 после термического отверждения при 250°C в течение 2 часов.

Фиг. 7 представляет термогравиметрический анализ (TGA) пленки F3 после вакуумной сушки при 100°C.

Фиг. 8 представляет термогравиметрический анализ (TGA) пленки F3 после термического отверждения при 250°C в течение 2 часов

ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

На создание настоящего изобретение в значительной степени повлияло обнаружение того, что полимеры, обладающие одной или более из вышеупомянутых желательный характеристик, можно получать способом, включающим введение лабильных групп или смешивающихся добавок в имеющую высокую температуру стеклования жесткую полимерную матрицу, после чего следует стадия разложения для удаления данных групп или добавок при температуре ниже температуры стеклования полимерной смеси. Стадия разложения приводит к образованию пор (свободный объем молекулярного масштаба) и неравновесному распределению пор по размерам в матрице. Выражение «неравновесное распределение пор по размерам» означает, что распределение становится неустойчивым и достигает равновесия при увеличении температуры выше температуры стеклования полимера.

В способе согласно настоящему изобретению, по меньшей мере, одна лабильная группа находится в химической связи или ионной ассоциации с основной цепью полимера, и/или, по меньшей мере, одна смешивающаяся добавка введена в полимерную матрицу. Термические, химические, электрические и/или радиационные процессы используют на стадии образования пор для разложения и удаления лабильных групп и/или смешивающихся добавок, чтобы получить пустоты (или поры) молекулярного масштаба. В настоящем документе порообразующие лабильные группы и добавки называются общим термином «порообразователи».

В предпочтительных вариантах осуществления полимерный носитель, на котором проводят стадию порообразования, представляет собой мембрану. Полученную в результате мембрану (например, полое волокно или плоский лист) после этого устанавливают в соответствующие устройства, применяемые для разделения газов.

Для изготовления усовершенствованных газоразделительных мембран, проявляющих эффективность на уровне верхней границы или выше нее (т.е., по меньшей мере, одной из верхних границ, которые определил Robeson в указанной выше работе 2008 г.), требуются мембраны из стеклообразных полимеров, которые проявляют более узкое распределение пор по размерам, чем распределение, которое, как правило, проявляют полученные растворными технологиями стеклообразные полимеры при использовании обычных способов изготовления мембран. Процесс термической перегруппировки, как показали Park и др., Science 318, 254 (2007), производит более узкое распределение пор по размерам по сравнению с исходной мембраной, в результате чего возможно повышение эффективности с подобными молекулярному ситу характеристиками разделения. Как полагают Park и др., именно процесс термической перегруппировки, а не удаление летучего газа CO2, приводит к более узкому распределению пор по размерам по сравнению с исходной мембраной. Желательно увеличивать проницаемость мембран, а также обеспечивать высокую селективность. Увеличение свободного объема стеклообразного полимера приводит к повышению проницаемости. Неравновесное распределение пор по размерам не признано в патентной или опубликованной литературе в качестве методологии для достижения повышенной селективности.

Способ согласно настоящему изобретению обеспечивает повышенную проницаемость и селективность мембраны путем воздействия на стеклообразную полимерную мембрану термических, химических, электрических или радиационных факторов для удаления лабильных групп или смешивающихся добавок в целях создания свободного объема. В определенных вариантах осуществления проницаемость полимерных материалов, обработанных способом согласно настоящему изобретению, превышает, по меньшей мере, в 1,2, 5, 50 или 100 раз проницаемость необработанных полимерных материалов по отношению к данному газу, и селективность обработанных полимерных материалов составляет, по меньшей мере, 0,35, 0,5 или 0,75 от селективности необработанных полимерных материалов для пары газов, включающей данный газ.

Данный процесс осуществляют ниже, на уровне или слегка выше температуры стеклования полимера в течение такого периода времени, что не успевает произойти равновесное перераспределение полученного в результате распределения пор по размерам, и образующиеся поры не исчезают в заметной степени. Данный процесс способствует образованию и сохранению как увеличенного свободного объема, так и неравновесного распределения пор по размерам, в результате чего одновременно оптимизируются проницаемость и селективность.

Стеклообразные полимеры, используемые в настоящем изобретении, включают, но не ограничиваются этим, полисульфоны; полистиролы, в том числе стиролсодержащие сополимеры, такие как сополимеры акрилонитрила и стирола, сополимеры стирола и бутадиена и сополимеры стирола и винилбензилгалогенида; поликарбонаты; целлюлозные полимеры, такие как ацетат-бутират целлюлозы, пропионат целлюлозы, этилцеллюлоза, метилцеллюлоза, нитроцеллюлоза и т.д.; полиамиды и полиимиды, в том числе арилполиамиды и арилполиимиды; полиамидимиды; простые полиэфиры; простые полиэфиримиды; простые полиэфиркетоны; простые полиэфирсульфоны; полиариленоксиды, такие как полифениленоксид и поликсилиленоксид; полиэфирамид-диизоцианат; полиуретаны; сложные полиэфиры, в том числе полиарилаты, такие как полиэтилентерефталат, полиалкилметакрилаты, полиакрилаты, полифенилентерефталаты и т.д.; полипирролоны; полисульфиды; полимеры из мономеров, содержащих α-олефиновое ненасыщение, помимо вышеупомянутых соединений, таких как полиэтилен, полипропилен, полибутен-1, поли-4-метилпентен-1, поливинилы, например поливинилхлорид, поливинилфторид, поливинилиденхлорид, поливинилиденфторид, поливиниловый спирт, сложные эфиры поливинилового спирта, такой как поливинилацетат и поливинилпропионат, поливинилпиридины, поливинилпирролидоны, простые эфиры поливинилового спирта, поливиниловые кетоны, поливиниловые альдегиды, такие как поливинилформаль и поливинилбутираль, поливиниламиды, поливиниламины, поливинилуретаны, поливинилмочевины, поливинилфосфаты и поливинилсульфаты; полиаллилы; полибензобензимидазол; полигидразиды; полиоксадиазолы; политриазолы; полибензоксазолы; полибензтиазолы; полибензимидазол; поликарбодиимиды; полифенилхиноксалин, полиамидимиды, полиоксадиазолимиды, полифосфазены и полифосфазины; полиуретаны, полимочевины, политриалкилсилилацетилены, а также их смеси. Типичные заместители, образующие замещенные полимеры, включают галогены, такие как фтор, хлор и бром; гидроксильные группы; низшие алкильные группы; низшие алкоксигруппы; моноциклические арильные группы; низшие ацильные группы и т. п.

Стеклообразные полимеры согласно настоящему изобретению можно синтезировать, например, свободнорадикальной, катионной или анионной полимеризацией виниловых соединений, полимеризацией с раскрытием цикла циклических соединений, обменной полимеризацией с раскрытием цикла или конденсационной полимеризацией. Конденсационная полимеризация включает, но не ограничивается этим, реакции сочетания, такие как катализируемое палладием сочетание Сузуки (Suzuki), сочетание Стилле (Stille) или сочетание Хека (Heck), или катализируемое никелем сочетание Ямамото (Yamamoto), реакции конденсации диацилхлоридов и диаминов или дикарбоновых кислот и диаминов для синтеза полиамидов диацилхлоридов и двухатомных спиртов или двухатомных фенолов для синтеза сложных полиэфиров, диаминов и диангидридов для синтеза полиимидов, и другие реакции конденсации, такие как реакция Виттига (Wittig), реакция Хорнера-Эммонса (Horner-Emmons) или реакция Кневенагеля (Knoevenagel). Стеклообразный полимер можно также синтезировать полимеризацией диизоцианатов и двухатомных спиртов или полиолов с образованием полиуретана или полимеризацией диизоцианатов и диаминов или полиаминов с образованием полимочевины. Предпочтительно полимеры синтезируют конденсационной полимеризацией.

Стеклообразные полимеры, используемые в настоящем изобретении, включают гомополимеры, статистические и блок-сополимеры; линейные и разветвленные полимеры. Разветвленные полимеры включают привитые полимеры, звездообразные полимеры, дендримеры и гиперразветвленные полимеры. В настоящем изобретении можно также использовать смеси полимеров.

Предпочтительные полимеры, подходящие для мембраны согласно настоящему изобретению, включают полиимиды, простые полиэфиримиды, простые полиэфирсульфоны, полисульфоны, полибензимидазолы, полибензобензимидазолы, простые полиарилэфиркетоны, простые полиарилэфиры, ароматические полиарилаты, ароматические поликарбонаты, полибензоксазолы, полиамидимиды, полиоксадиазолимиды, простые полиэфиримиды, полиарилсульфиды, полибензотиазолы, полипирролоны, полиоксадиазолы, политриазолы, сложные полиэфиримиды, полифенилхиноксалин, полифенилены, а также их сополимеры и смеси. Более предпочтительные полимеры, пригодные для использования в качестве мембранного материала согласно настоящему изобретению, включают полиимиды, полиамиды, простые полиэфиримиды и полисульфоны. В определенных вариантах осуществления не используют полиимиды, в то время как в других определенных вариантах осуществления используют полиимиды, в которых порообразователь не представляет собой карбоновую кислоту или сульфоновую кислоту. В следующих вариантах осуществления порообразователь представляет собой карбоновую кислоту, и пленка содержит полиимид.

Выбор полимера зависит от способа, используемого для удаления лабильных групп или добавок. В качестве примера, ароматические поликарбонаты и полиарилаты являются менее устойчивыми в термических процессах, чем многие другие полимеры, и не являются пригодными для удаления путем гидролиза, но их можно использовать в радиационных процессах. Предпочтительный вариант осуществления включает стеклообразные полимеры, содержащие боковые лабильные группы, которые разрушаются при термическом, химическом, электрическом или радиационном воздействии, образуя продукты, которые способны к диффузии из стеклообразного полимера. Поскольку разрушаются только боковые лабильные группы, структура основной цепи полимера остается неизменной, таким образом сохраняются механические свойства мембраны.

Еще один предпочтительный вариант осуществления включает стеклообразные полимеры, содержащие лабильные группы, которые составляют часть основной цепи полимера, и эти лабильные группы удаляются посредством термического, химического, электрического или радиационного воздействия без изменения основной цепи полимера. При разложении лабильных групп образуются продукты, которые способны к диффузии из стеклообразного полимера. Стеклообразные полимеры согласно двум предпочтительным вариантам осуществления представлены, соответственно, следующими структурами I и II:

,

где LG представляет собой лабильную группу, которая может разлагаться посредством термического, химического, электрического или радиационного воздействия, образуя продукты, которые способны к диффузии из стеклообразного полимера, и

L представляет собой непосредственную связь между LG и основной цепью полимера или углеродную соединительную группу, содержащую от 1 до 40 атомов углерода, или неуглеродную соединительную группу, содержащую от 0 до 40 атомов углерода. Когда L представляет собой соединительную группу, она включает алкил, алкенил, алкинил, арил или гетероарил; L может также содержать, по меньшей мере, один из атомов O, N, S, F, Cl, Br и Si.

Подходящие лабильные группы включают, но не ограничиваются этим, алифатические углеводородные группы (такие как третичная бутильная группа и винильная группа), в том числе алифатические галогенированные углеводородные группы и циклоалифатические группы; сложные эфирные и сложные тиоэфирные группы, в том числе алифатические и ароматические сложные эфирные и сложные тиоэфирные группы; алифатические простые эфирные группы, такие как пропиленоксид, полиэтиленоксид, полипропиленоксидные олигомеры и простые эфирные группы; аддукты Дильса-Альдера (Diels-Alder); алифатические карбонатные группы; галогеновые группы; алифатические и ароматические сульфонаты; алифатические и ароматические фосфонаты; бисульфидные группы; азогруппы; блокированные изоцианатные группы; карбоксилатные группы; органические ониевые ионы, в том числе ионы фосфония, сульфония, четвертичного аммония; N-алкилированные гетероарильные группы; тиосульфаты, а также смеси двух или более перечисленных выше групп.

Неограничительные примеры групп LG представляют собой следующие группы:

a) Группа I: алифатические углеводородные группы

-R,

где R представляет собой разветвленную или неразветвленную, замещенную или незамещенную алкильную группу, содержащую от 1 до 20 атомов углерода, алкенильную или алкинильную группу, содержащую от 2 до 20 атомов углерода, циклоалкильную группу, содержащую от 3 до 20 атомов углерода. Примеры включают, но не ограничиваются этим, циклопентил, циклогексил и 4-метилциклогексил, метил, этил, н-пропил, изопропил, трет-бутил, гексил, метоксиметил, бензил, неопентил, додецил и винил. В определенных вариантах осуществления R может также содержать, по меньшей мере, один из атомов O, Si, N, F, Cl и Br. Предпочтительно R представляет собой замещенную или незамещенную, разветвленную или неразветвленную алкильную группу, содержащую от 1 до 12 атомов углерода, и наиболее предпочтительно R представляет собой трет-бутильную группу.

b) Группа II: сложные эфирные и сложные тиоэфирные группы

,

где R1 представляет собой замещенную или незамещенную алкильную группу, содержащую от 1 до 20 атомов углерода, алкенильную или алкинильную группу, содержащую от 2 до 20 атомов углерода, циклоалкильную группу, содержащую от 3 до 20 атомов углерода, замещенную или незамещенную арильную группу, содержащую от 6 до 20 атомов углерода (такую как фенил, нафтил, антранил, п-метоксифенил, ксилил и алкоксикарбонилфенил), атом галогена (такую как хлор и бром), замещенную или незамещенную циклоалкильную группу, содержащую от 5 до 8 атомов углерода (такую как циклопентил, циклогексил и 4-метилциклогексил), или замещенную или незамещенную гетероциклическую группу, содержащую от 5 до 20 атомов, в том числе, по меньшей мере, один атом азота, серы или кислорода, в кольце (таком как пиридил, пиридинил, тетрагидрофуранил и тетрагидропиранил). Группа R1 может также содержать атомы O, Si, N, F, Cl или Br. Предпочтительно R1 представляет собой замещенную или незамещенную метильную, этильную, изопропильную или трет-бутильную группу.

c) Группа III: простые эфирные или простые тиоэфирные группы

-O-R1 или -S-R1,

где группа R1 определена выше. Предпочтительно, R1 представляет собой замещенную или незамещенную метильную, этильную, изопропильную, трет-бутильную группу, этиленоксид, пропиленоксид, полиэтиленоксидный олигомер или полипропиленоксидный олигомер.

d) Группа IV: карбонатные группы

O-С(OR)=O,

где группа R определена выше.

e) Группа V: галогеновые группы

-X,

где X представляет собой атом F, Cl, Br или I.

f) Группа VI: сульфонатные группы

,

где Y представляет собой атом водорода, ион аммония или ион металла (такой как, например, ион натрия, калия, магния, кальция, цезия, бария, цинка или лития). Предпочтительно Y представляет собой атом водорода, ион натрия или ион калия. Группа R1 определена выше.

g) Группа VII: фосфонатные группы

где группы Y и R1 определены выше.

h) Группа VIII: азогруппы

-N=N-R1,

где группа R1 определена выше.

i) Группа IX: блокированные изоцианатные группы

-C(OY)=O,

где Y представляет собой атом водорода или катион, такой как, например, ион катион четвертичного аммония.)

k) Группа XI: N-алкилированные гетероароматические группы

,

где:

группа Z представляет собой атомы углерода и любые дополнительные атомы азота, кислорода или серы, которые необходимы для завершения содержащего от 5 до 10 атомов (предпочтительно 5 или 6 атомов) N-гетероароматического кольца. Данное кольцо может включать два или более атомов азота в кольце (например, N-алкилированные группы диазиния или имидазолия) или N-алкилированные азотсодержащие конденсированные кольцевые системы, в том числе, но не ограничиваясь этим, пиридиний, хинолиний, изохинолиний, акридиний, фенантрадиний и другие, которые хорошо известны специалисту в данной области техники. Предпочтительно N-алкилированная азотсодержащая ароматическая группа представляет собой имидазолий или пиридиний.

Группа W представляет собой анион. Подходящие анионы включают, но не ограничиваются этим, галогениды, карбоксилаты, сульфаты, бораты и сульфонаты. Представленные примеры анионов включают, но не ограничиваются этим, хлорид, бромид, фторид, ацетат, тетрафторборат, формиат, сульфат, п-толуолсульфонат и другие, которые хорошо известны специалисту в данной области техники. Предпочтительные анионы представляют собой галогениды и карбоксилаты. Наиболее предпочтительно W представляет собой ацетат или хлорид.

Число n представляет собой целое число от 0 до 6 и предпочтительно составляет 0 или 1. Наиболее предпочтительное число n равно 0.

l) Группа XII: тиосульфатные группы

-S-SO2-OY,

где Y такая же, как в приведенном выше определении для группы VI.

m) Группа XIII: органические ониевые группы

,

где R1, R2 и R3 имеют такие же определения, как приведенная выше группа R1. Группы R1, R2 и R3 независимо являются одинаковыми или различными. Любые две из групп R1, R2 и R3 могут объединяться, образуя замещенное или незамещенное гетероциклическое кольцо с заряженным атомом фосфора, серы или азота, причем данное кольцо содержит от 4 до 8 атомов углерода, азота, фосфора, серы или кислорода. Такие гетероциклические кольца включают, но не ограничиваются этим, замещенные или незамещенные группы морфолиния, пиперидиния и пирролидиния или группу четвертичного аммония.

n) Группа XIV: бисульфидные группы

-S-S-R1,

где группа R1 определена выше.

o) Группа XV: аддукты Дильса-Альдера

-D-A,

где D-A определены как аддукты Дильса-Альдера, которые образуют между собой диен и диенофил, и которые могут вступать в ретрореакцию Дильса-Альдера.

Лабильные группы (LG) можно внедрять в стеклообразные полимеры, например, путем полимеризации мономеров, содержащих лабильные группы, или путем модификации соответствующих полимеров для внедрения лабильных групп. Неограничительные примеры лабильных групп в качестве боковых цепей к полимерной цепи включают следующие. Циклические структуры, такие как краун-эфиры или каликсарены, ковалентно связанные в качестве боковых групп, включают дополнительные рассматриваемые лабильные группы. Боковая соединительная азогруппа (-N=N-) представляет собой потенциально лабильную группу, которая может ковалентно присоединяться к полимерной матрице и содержать на концах алкильные или арильные заместители. Алкилазосоединения известны в качестве термически лабильных соединений, выделяющих N2 при термическом или радиационном воздействии. Третичную бутильную группу или боковую олигомерную полипропиленоксидную боковую цепь полиимида или полиамида можно аналогичным образом термически удалять без уменьшения молекулярной массы основной цепи. Боковую группу, такую как карбоновая кислота и сложный эфир карбоновой кислоты, можно перевести в газообразное вещество, такое как CO2, которое обладает способностью диффузии из полимерной матрицы. Конкретный пример включает ароматический трет-бутиловый сложный эфир. Путем термического или кислотного гидролиза можно удалять трет-бутильную группу, оставляя присоединенную ароматическую карбоновую кислоту, которую можно аналогичным образом удалять при высокой температуре. Для ароматического сложного эфира полученный в результате размер пор зависит от размера (молекулярной массы) алкильной или ароматической группы, замещенной атомом водорода в предшествующей карбоновой кислоте.

Указанные выше боковые группы предпочтительно присоединены к ароматическому или гетероциклическому мономеру, используемому в полимеризации желательной имеющей высокую тем