Высокопрочный легкий фибробетон
Изобретение относится к составу высокопрочного фибробетона и может найти применение в промышленности строительных материалов. Высокопрочный легкий фибробетон, полученный из смеси, содержащей цемент, микрокремнезем со средним размером частиц 0,01-1 мкм, каменную муку, продукт измельчения кварцевого песка с удельной поверхностью 700-800 м2/кг, кварцевый песок фракции 0,16-0,63 мм, гиперпластификатор на поликарбоксилатной основе, базальтовое и/или полипропиленовое волокно и воду, дополнительно содержит наполнитель микросферы при следующем соотношении компонентов, мас.%: портландцемент - 34,5-52,7, микрокремнезем - 7,0-13,65, указанная каменная мука - 1,5-11,9, указанный кварцевый песок - 5,1-31,3, микросферы - 4,3-19,2, указанный гиперпластификатор - 0,3-0,48, указанное волокно - 0,3-1,5, вода - остальное. Технический результат - повышение прочности при изгибе и сжатии, улучшение деформативных свойств. 2 табл.
Реферат
Изобретение относится к промышленности строительных материалов и может быть использовано для изготовления изделий в гражданском и промышленном строительстве, монолитном строительстве, при возведении сооружений специального назначения.
Наиболее близким по технической сущности является состав высокоэффективных реакционно-порошковых высокопрочных и сверхпрочных бетонов и фибробетонов (Патент RU 2012113330 А, опубликовано 10.10.2013), включающих портландцемент (серый или белый) марки не ниже ПЦ 500 Д0 - 30,9…34%; суперпластификатор на основе поликарбоксилатного эфира - 0,2…0,5%; микрокремнезем - 3,2…6,8%; молотый кварцевый песок (микрокварц) или каменная мука - 12,3…17,2%; тонкозернистый кварцевый песок - 41,5…53,4%; фибра стальная металлокорд 1,5…5,0% по объему бетона; фибра базальтовая и углеродные волокна 0,2…3,0% по объему бетона; вода - В/Т=0,12…0,95.
Недостатком такого бетона является высокая средняя плотность, в многоэтажном строительстве повышает требования по прочности и трещиностойкости к конструкциям первых этажей. Кроме того, ограничивается изделиями небольшого объема по причине сложности производства и монтажа массивных и многотоннажных конструкций из такого бетона.
Цель изобретения - получение легкого бетона высокой прочности с повышенными показателями деформативных свойств.
Высокопрочный легкий фибробетон, полученный из смеси, содержащей цемент, микрокремнезем со средним размером частиц 0,01…1 мкм, каменную муку, продукт измельчения кварцевого песка с удельной поверхностью 700…800 м2/кг, гиперпластификатор на поликарбоксилатной основе, базальтовое и/или полипропиленовое волокно и воду, и отличающийся тем, что дополнительно содержит наполнитель - микросферы при следующем соотношении компонентов, мас.%:
Портландцемент | 34,5…52,7 |
Микрокремнезем | 7,0…13,65 |
Указанная каменная мука | 1,5…11,9 |
Указанный кварцевый песок | 5,1…31,3 |
Микросферы | 4,3…19,2 |
Указанный гиперпластификатор | 0,3…0,48 |
Указанное волокно | 0,3…1,5 |
Вода | остальное |
Для приготовления фибробетона использовали портландцемент, например, марки М-500 Д0 по ГОСТ 31108-2003. Минеральная часть, в состав которой входит кварцевый песок фракционированный (фр. 0,16…0,63 мм), соответствующий ГОСТ 8739-93, каменная мука - продукт измельчения кварцевого песка с удельной поверхностью 700…800 м2/кг и микрокремнезем, обеспечивает заполнение межзерновых пустот наполнителя, образуя плотную структуру.
В качестве наполнителя используются стеклянные или алюмосиликатные полные микросферы, индивидуальные свойства которых обеспечивают снижение средней плотности при обеспечении высокой прочности высокопрочного легкого фибробетона.
Для снижения величины продольных и поперечных деформаций при осевом нагружении используется дисперсно-армирующая добавка, представляющая собой базальтовые или полипропиленовые волокна. Введение базальтовой фибры способствует повышению стойкости к образованию и распространению трещин. Кроме того, наличие более крупной по отношению к наполнителю (микросферам) минеральной составляющей - кварцевого песка фр. 0,16-0,63, обладающей большей прочностью и модулем упругости, обуславливается дополнительным влиянием на повышение способности фибробетона сопротивляться трещинообразованию и повышение модуля упругости и коэффициенту Пуансона.
Применение поликарбоксилатного гиперпластификатора типа «Melflux 1641F», «Melflux 2651F», «Sika Viscocrete 5 new» или «Одолит-Т» позволяет увеличить подвижность и снизить водопотребность бетонной смеси.
Высокопрочный легкий фибробетон готовят следующим образом. Предварительно перемешивают портландцемент, каменную муку и микрокремнезем с микросферами для образования равномерного слоя на их поверхности. Компоненты загружают в смеситель, добавляют дисперсно-армирующую добавку, перемешивают и вводят растворенный в воде гиперпластификатор, перемешивая до получения однородной смеси, после чего добавляют фракционированный песок и перемешивают в соответствии с EN 196-1-ASTM С305. Из полученной смеси изготавливают образцы для испытаний: балочки размером 40×40×160 мм, кубы 70×70×70 мм и призмы 70×70×280 мм.
Испытания проводятся по следующим методикам:
- ГОСТ 12730.1-78. Бетоны. Методы для определения плотности;
- ГОСТ 10180-90. Бетоны. Методы для определения прочности по контрольным образцам;
- ГОСТ 24452-80. Бетоны. Методы определения призменной прочности, модуля упругости и коэффициента Пуассона.
Составы предлагаемого легкого фибробетона приведены в таблице 1, а его физико-механические и деформативные свойства - в таблице 2.
Таблица 2 | ||||||||
Показатель | Состав | Прототип | ||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
Средняя плотность рср, т/м3 | 1,40 | 1,32 | 1,43 | 1,49 | 1,28 | 1,35 | 1,79 | 2,34 |
Предел прочности при изгибе Rизг, МПа | 3,9 | 3,9 | 4,1 | 5,5 | 3,2 | 4,4 | 7,6 | 14,3 |
Предел прочности при сжатии Rсж, МПа | 46,1 | 45,2 | 47,9 | 59,9 | 39,3 | 57,1 | 63,8 | 104,5 |
Удельная прочность Rуд, МПа | 32,9 | 34,2 | 33,5 | 40,1 | 30,7 | 42,3 | 35,7 | 44,5 |
Модуль упругости Е, ГПа | 6,48 | 5,77 | 6,99 | 8,08 | 5,51 | 5,85 | - | 4,6 |
Коэффициент Пуассона µ | 0,134 | 0,128 | 0,135 | 0,109 | 0,140 | 0,13 | 0,26 | |
Коэффициент трещиностойокости kтр | 0,086 | 0,087 | 0,086 | 0,092 | 0,083 | 0,086 | 0,120 | 0,137 |
Примечания. Удельная прочность, рассчитывается по формуле Rуд=Rсж/Ротн, где Rсж - предел прочности при сжатии, МПа, Pотн - относительная плотность; коэффициент трещиностойкости - отношение предела прочности при изгибе к пределу прочности при сжатии.
Как видно из таблицы 2, предлагаемый высокопрочный легкий фибробетон обладает высокими показателями прочностных и деформативных свойств, соотносимыми со значениями для тяжелого бетонов, но при этом обладает меньшей на 23,5…45,3% средней плотностью.
Высокопрочный легкий фибробетон, полученный из смеси, содержащей цемент, микрокремнезем со средним размером частиц 0,01…1 мкм, каменную муку, продукт измельчения кварцевого песка с удельной поверхностью 700…800 м2/кг, кварцевый песок фракции 0,16…0,63 мм, гиперпластификатор на поликарбоксилатной основе, базальтовое и/или полипропиленовое волокно и воду, отличающийся тем, что дополнительно содержит наполнитель микросферы при следующем соотношении компонентов, мас.%:
Портландцемент | 34,5…52,7 |
Микрокремнезем | 7,0…13,65 |
Указанная каменная мука | 1,5…11,9 |
Указанный кварцевый песок | 5,1…31,3 |
Микросферы | 4,3…19,2 |
Указанный гиперпластификатор | 0,3...0,48 |
Указанное волокно | 0,3…1,5 |
Вода | остальное |