Способ и система для определения цвета из изображения

Иллюстрации

Показать все

Изобретение относится к способу определения цвета образца цвета из изображения, например, при выборе цвета краски. Техническим результатом является обеспечение точной идентификации цвета неизвестного образца цвета и надежной калибровки в условиях изменения освещенности. Предложена карта захвата образца цвета, имеющая отпечатанные на ней образцы цвета известного цвета (например, XYZ-координаты цвета), изображение испытательного образца цвета захватывается с использованием бытового оборудования с цифровой камерой. Изображение затем передается удаленной услуге определения цвета для определения цвета образца цвета и выполняется регрессионный анализ, использующий образцы RGB-цвета в изображении и его известные XYZ-цвета для характеризации отклика захвата цвета устройства захвата изображения с учетом изменений пространственной яркости по изображению. На основе характеризации устройства захвата изображения XYZ-цвет неизвестного образца цвета может быть определен из его RGB-цвета в изображении. 3 н. и 10 з.п. ф-лы, 21 ил.

Реферат

Область техники, к которой относится изобретение

Варианты осуществления изобретения относятся к способу и системе для определения цвета образца цвета из изображения образца цвета.

Уровень техники

При выборе цвета краски для косметического ремонта комнаты часто бывает так, что заказчик желает подобрать цвет краски к цвету конкретного предмета, содержащегося в комнате, такого как предмет мебели, или декоративной ткани, такого как диванные подушки, диваны, шторы и т.п. Изготовители краски обычно предоставляют большие цветовые палитры, и подробные цветовые изображения предоставляются у розничных продавцов краски, чтобы заказчики имели возможность выбора цвета. Карты образцов цвета доступны для того, чтобы пользователь взял их домой и подобрал к предмету, к которому должен быть подобран цвет. Однако обычно для этого необходимо посещение заказчиком розничного магазина красок, сбора карт цветов, взятие карт цветов домой и затем попытка сравнить образцы цвета на картах цветов с подбираемым цветом предмета. Заказчик затем должен вернуть магазину, обычно купить цветовые пробники краски, возвратиться домой, использовать цветовые пробники краски и затем, наконец, принять решение о покупке. Кроме того, такие обычные методы основываются на восприятии индивидуального заказчика в отношении того, какой является наиболее сочетающимся цветом краски. Однако хорошо известно, что восприятие цветов существенно изменяется от человека к человеку, так что цвет, сочетающийся с образцом, выбранным одним человеком, не будет казаться сочетающимся цветом для другого человека.

Одним потенциальным решением данной проблемы является попытка подбора цветов электронным образом, используя цифровое изображение. В этом отношении в настоящее время домашние пользователи обычно имеют в своем распоряжении многочисленные цифровые устройства захвата (съемки) изображения в виде цифровых камер или оснащенных камерой мобильных телефонов.

Однако характеристики захвата цвета обычных бытовых устройств захвата изображения, таких как цифровые камеры, мобильные телефоны или т.п., значительно изменяются от устройства к устройству и, следовательно, обычно невозможен очный захват цвета. Доступны специальные устройства спектрофотометров, которые могут точно измерять цвет, но они не по средствам для большинства домашних заказчиков. Обычные бытовые устройства съемки изображения выполняют съемку изображения и представляют цвет, используя значения RGB (красный, зеленый, синий) пикселей. Обычно используется 16 битов или 24 бита RGB. Когда используются значения с 16 битами, каждый из красного и синего каналов обычно имеет пять битов, ассоциированных с ними, тогда как зеленый канал имеет шесть битов, ассоциированных с ним. В этом отношении глаз человека является более чувствительным к зеленым цветам, чем к красным и синим цветам, и, следовательно, обнаруживается большее количество зеленых цветов. Когда используется 24-битовый цвет, тогда он равен восьми битам, или 256 цветам, на цветовой канал.

Однако из-за вышеотмеченных различий в устройствах съемки изображения при точном захвате цвета и также в устройствах воспроизведения изображения, таких как мониторы и т.п., при воспроизведении цветов RGB-значения цвета не рассматриваются в качестве эталонных значений. Вместо этого имеются фиксированные эталоны, определяющие цвета, составленные Международной комиссией по освещению (CIE), такие как координаты X, Y, Z цвета CIE или так называемые значения CIELAB (L*, a*, b*). Значения CIELAB связаны с координатами X, Y, Z цвета, используя известную математическую формулу. XYZ-координаты цвета сами связаны с длинами волн, присутствующими в конкретном цвете.

Предшествующий уровень техники

Вопрос калибровки устройства съемки изображения посредством связывания RGB-значений, полученных при съемке, с эталонными значениями, такими как XYZ-координаты цвета, или значения CIELAB, был ранее предложен в US 5150199 и WO 01/25737.

Более конкретно, US 5150199 (Megatronics, Inc.) описывает способ для преобразования или корреляции числовых RGB-значений, созданных разными приборами, в эталонные координаты цвета. В этом отношении используется итерационный регрессионный анализ для определения исходных функций, которые преобразуют RGB-значения, сгенерированные видеокамерой, из исходных цветов в эталонные XYZ-координаты цвета. Затем используется регрессионный анализ для определения дополнительных функций, которые преобразуют RGB-значения, сгенерированные видеокамерой, представляющей дополнительные цвета отличными от исходных цветов, в эталонные XYZ-значения. Функции, сгенерированные для видеокамеры, затем используются для преобразования RGB-значений, сгенерированных видеокамерой при формировании изображения цветного объекта, в эталонные XYZ-значения.

Более конкретно, в US 5150199 как RGB-значения, так и XYZ-значения определяются из набора образцов цвета. RGB-значения определяются с использованием обычной видеокамеры и оцифровывающего оборудования, способного обнаруживать и записывать числовые значения для RGB-составляющих каждого цвета. XYZ-значения образцов цвета определяются посредством использования обычного колориметра или спектрофотометра.

Выполнив захват этих данных, в качестве первого этапа в анализе, итерационный регрессионный анализ выполняется для нахождения X в качестве функции R, Y в качестве функции G и Z в качестве функции B. Этот регрессионный анализ использует так называемые значения «серой шкалы» в образцах цвета, где R-, G- и B-значения приблизительно равны. Результирующими функциями являются степенные функции. После этого на этапе 2 выполняется многомерный анализ степенных функций, определяя функции, которые связывают каждый из X, Y и Z индивидуально со всеми из R, G и B. В US 5150199 также описывается другой метод, который адаптирует Y функцию в качестве функции насыщенности красного цвета, хотя он не является уместным в данном документе.

Таким образом, US 5150199 описывает базовый метод для характеризации передаточной функции захвата цвета устройства захвата изображения, чтобы RGB-значения, захваченные устройством, преобразовывать в XYZ-координаты цвета. Однако, как отмечается, чтобы использовать устройство по US 5150199 для определения характеристик захватываемого изображения, пользователь должен иметь доступ к колориметру или спектрофотометру для измерения цвета образцов цвета, изображение которых также формируются характеризуемым устройством захвата изображения. Обычно при сценарии использования, представленном в общих чертах выше в разделе уровня техники, пользователь не имеет доступа к специальному оборудованию, такому как колориметр или спектрофотометр. Следовательно, способ по US 5150199 является преимущественно экспериментальным.

Однако WO 01/25737 частично преодолевает эти недостатки US 5150199. WO 01/25737 также описывает согласование захваченных RGB-значений с эталонными колориметрическими данными и, в частности, согласование с значениями CIELAB. Математический анализ, описанный в WO 01/25737, по существу, является таким же, что и описанный в US 5150199, хотя WO 01/25737 вводит принцип шаблона калибровки известных цветов, колориметрические данные для которых известны. Затем формируется изображение измеряемого неизвестного цвета одновременно с шаблоном калибровки. Шаблон калибровки содержит в одном примере 65 известных цветов и в другом примере 37 известных цветов, распределенных по цветовому пространству. Посредством захвата RGB-значений цветов калибровки можно вычислить математическую модель, необходимую для того, чтобы преобразовать измеренные сигналы известных цветов в колориметрические данные (например, значения CIELab). Если данная модель получена, тогда цвета (в цветовом пространстве CIELab) любых неизвестных цветов в изображении могут определяться из его RGB-значений.

WO 01/25737 описывает, что изображение образца цвета, подлежащего определению, захватывается одновременно с изображением шаблона калибровки, используя, например, планшетный сканер или цифровую камеру. Захваченное изображение затем обрабатывается для определения неизвестных цветов в изображении. Устройство описывается как особенно полезное в отрасли ремонта автомобилей. В этом отношении цвет автомобиля, подлежащего ремонту, измеряется с использованием электронного устройства формирования изображения. Перед этим или одновременно выполняется запись панели, на которой были нанесены разные цвета калибровки. Колориметрические данные цвета автомобиля затем вычисляются, и затем находится цветовая формула, которая дает цвет, идентичный цвету автомобиля, подлежащего ремонту. Цветовая формула подготавливается в дозирующем устройстве и затем применяется.

Поэтому WO 01/25737 описывает устройство, подлежащее использованию в профессиональных ситуациях, таких как при ремонте автомобилей или в малярных цехах. По существу, WO 01/25737 совсем не рассматривает проблемы, относящиеся к вопросам, где освещение меняется по захватываемому изображению, где изображение не находится в правильной ориентации или где образец цвета фактически содержит другие цвета, пространственно смешанные по образцу. И наоборот, в домашней ситуации могут иметь место все из этих аномальных ситуаций.

Другой предшествующий уровень техники для изобретения включает в себя WO 02/13136, WO 2008/108763 и WO 2004/028144.

Краткое изложение примеров изобретения

Варианты осуществления изобретения направлены на решение некоторых из вышеотмеченных вопросов и относятся к определению цвета образца цвета из изображения образца цвета, причем съемка изображения обычно (хотя не исключительно) выполняется неквалифицированным пользователем, использующим неспециальное оборудование. В одном варианте осуществления обеспечивается карта захвата образца цвета, имеющая отпечатанные на ней образцы цвета известного цвета (например, XYZ-координаты цвета). Изображение испытываемого образца цвета затем захватывается с использованием имеющегося дома оборудования, такого как бытовая цифровая камера или оснащенный камерой мобильный телефон, причем изображение также содержит карту захвата образца цвета. В одном варианте осуществления изображение затем передается удаленной службе определения цвета для определения цвета образца цвета. Регрессионный анализ выполняется с использованием образцов RGB-цвета в изображении и известные его XYZ-цвета для характеризации отклика захвата цвета устройства захвата изображения. На основе характеризации устройства захвата изображения XYZ-цвет образца неизвестного цвета может быть определен из его RGB-цвета в изображении. В одном варианте осуществления, зная XYZ-цвет, цвет затем может быть точно подобран по палитре цветов краски для определения цвета краски для соответствия неизвестному цвету. Кроме того, могут идентифицироваться дополнительные цвета в палитре краски.

При выполнении вышеописанного в одном варианте осуществления могут учитываться различия в пространственной яркости по изображению. В другом варианте осуществления ошибки размещения карты в изображении также корректируются перед обработкой, используя устранение наклона изображения и вращательные преобразования. В другом варианте осуществления XYZ-цвет вычисляется за два прохода, используя информацию из первого прохода для информирования второго прохода. В еще одном варианте осуществления, где образец цвета фактически содержит более одного цвета, определяются индивидуальные цвета, используя методы кластеризации, для идентификации преобладающих цветов в образце.

С учетом вышеописанного первый аспект изобретения обеспечивает способ, содержащий прием первых данных изображения, относящихся к неизвестному образцу цвета, колориметрические данные для которого должны быть определены; и прием вторых данных изображения, относящихся к множеству известных образцов цвета калибровки, колориметрические данные для которых уже известны. Затем определяется множество характеристик калибровки цвета, связывающих измерения цвета известных образцов цвета калибровки из вторых данных изображения с соответствующими известными колориметрическими данными образцов цвета калибровки; и колориметрические данные неизвестного образца цвета вычисляются в зависимости от их измерений цвета из первых данных изображения и определенных характеристик калибровки цвета. Кроме того, также могут компенсироваться различия яркости по набору известных образцов цвета калибровки. Это позволяет захватывать данные изображения в условиях неконтролируемого освещения, где может быть неровное освещение по изображению. Это делает возможным легкое использование для конечного пользователя.

В данном варианте осуществления компенсация может содержать определение первого набора одной или нескольких функций, имеющих первый набор коэффициентов калибровки, причем одна или несколько функций связывают измеренные цвета известных образцов цвета калибровки из вторых данных изображения с известными колориметрическими данными образцов цвета калибровки и известным положением каждого известного образца в изображении. Определенные функции затем анализируются для нахождения второго набора функций, имеющих второй набор коэффициентов калибровки. Первый и второй наборы функций и коэффициентов калибровки затем используются при вычислении колориметрических данных неизвестного образца цвета.

В данном варианте осуществления анализ может содержать вычисление промежуточных значений цвета для, по существу, каждого известного образца цвета калибровки и затем использование вычисленных промежуточных значений цвета для определения второго набора функций, имеющих второй набор коэффициентов калибровки.

Более конкретно, вычисленные промежуточные значения цвета подвергаются многомерной подгонке для определения второго набора функций, имеющих второй набор коэффициентов калибровки. Предпочтительно, что многомерная подгонка имеет форму:

Кроме того, более предпочтительно, компенсация яркости дополнительно содержит перед определением первого набора функций определение предшествующего набора функций, имеющих предшествующий набор коэффициентов калибровки, которые связывают измеренные цвета известных образцов цвета калибровки из вторых данных изображения с известными колориметрическими данными образцов цвета калибровки без учета положения известных образцов цвета. Предшествующий набор коэффициентов калибровки затем используется в качестве части первого набора коэффициентов калибровки при определении первого набора одной или нескольких функций. В одном варианте осуществления предпочтительно находят предшествующий набор коэффициентов калибровки, используя только образцы серой шкалы.

В одном варианте осуществления определенные колориметрические данные неизвестного образца цвета затем могут сопоставляться с цветовой палитрой цветов краски для идентификации подобранного (согласующегося) цвета краски, и информации, относящейся к согласующемуся цвету краски, представляемой пользователю.

В одном варианте осуществления первые данные изображения и вторые данные изображения принимаются от удаленного пользователя по сети связи. Кроме того, информация, относящаяся к согласующемуся цвету краски, может предоставляться пользователю по сети связи. Таким образом, согласующиеся цвета краски для неизвестного образца цвета могут предоставляться с использованием удаленной услуги.

В варианте осуществления первые данные изображения и вторые данные изображения принимаются как любое из: i) сообщения электронной почты; ii) сообщения службы передачи мультимедийных сообщений (MMS); и/или iii) данных изображения на веб-странице. Кроме того, информация, относящаяся к согласующемуся цвету краски, также может предоставляться в виде любого из: i) сообщения электронной почты; ii) сообщения MMS; iii) сообщения службы коротких сообщений (SMS) и/или iv) данных на веб-странице. Такие протоколы связи способствуют удаленному предоставлению услуги подбора краски, являясь известным для пользователей и легким для использования.

В одном варианте осуществления первые данные изображения и вторые данные изображения создаются пользователем с использованием устройства захвата (съемки) изображения; причем устройство захвата изображения предпочтительно является любым из: i) цифровой камеры; ii) оснащенного камерой мобильного телефона; и/или iii) цифровой записывающей видеокамеры. Обычный пользователь легко обращается с таким оборудованием, и пользователь знаком с работой такого оборудования.

В одном варианте осуществления определенные колориметрические данные и/или известные колориметрические данные представляют собой XYZ-координаты цвета. XYZ-координаты цвета определяют фиксированные и конкретные эталонные цвета.

В одном варианте осуществления могут определяться цвета, дополнительные к подобранному цвету, и информация, относящаяся к определенным дополнительным цветам, предоставляется пользователю. Посредством предоставления дополнительных цветов легче могут быть определены цветовые схемы.

В одном варианте осуществления по меньшей мере вторые данные изображения ориентируются в известную ориентацию, позволяя распознавать в них известные образцы цвета калибровки. Автоматическое ориентирование данных изображения делает возможным легкое использование для конечного пользователя, так как нет необходимости захватывать захватываемые вторые данные изображения в какой-либо конкретной требуемой ориентации.

В данном варианте осуществления ориентирование предпочтительно содержит выполнение обнаружения краев для идентификации расположения набора известных образцов цвета калибровки во вторых данных изображения. Кроме того, ориентирование может дополнительно содержать идентификацию множества предварительно определенных точек, относящихся к набору известных образцов цвета калибровки во вторых данных изображения. Если эти известные точки идентифицированы, может быть применено перспективное преобразование ко вторым данных изображения в зависимости от расположения идентифицированных точек для устранения наклона изображения набора известных образцов цвета калибровки.

Кроме того, в данном варианте осуществления ориентирование может дополнительно содержать идентификацию меток заданной угловой ориентации, относящихся к набору известных образцов цвета калибровки во вторых данных изображения. Вторые данные изображения тогда могут быть повернуты в зависимости от расположения идентифицированных меток угловой ориентации, так что известные образцы цвета калибровки размещаются в известное положение во вторых данных изображения.

В одном варианте осуществления характеристики калибровки цвета определяются с использованием N известных образцов цвета калибровки, где N меньше общего количества известных образцов цвета калибровки по всему цветовому пространству. При некоторых обстоятельствах это может обеспечивать более точные результаты.

Более предпочтительно, в вышеупомянутом варианте осуществления N известных образцов цвета калибровки представляют собой N образцов, которые находятся ближе всего в цветовом пространстве к оцениваемому цвету неизвестного образца цвета. Это эффективно позволяет выполнять «увеличение масштаба» цветового пространства при определении характеристик калибровки цвета, так что более точно характеризуется часть цветового пространства, которая содержит неизвестный образец цвета.

В вышеописанном варианте осуществления оцениваемый цвет может быть получен посредством определения первого набора характеристик калибровки, используя все доступные известные образцы цвета калибровки, и вычисления оцениваемого цвета, используя первый набор характеристик калибровки. Затем выполняется «второй проход» обработки, используя N ближайших известных образцов цвета калибровки к оцениваемому цвету. Таким образом, используется подход с двухпроходной обработкой, который позволяет охарактеризовать общее цветовое пространство, и затем более подробно характеризовать часть пространства, содержащую неизвестный образец цвета, обеспечивая более точные результаты.

Альтернативно, N известных образцов цвета калибровки представляют собой те N образцов, используемых в ограниченном цветовом пространстве, которые, как известно, представляют вторые данные изображения. В этом отношении может быть, что известные образцы цвета калибровки, как известно, находятся в ограниченной части цветового пространства, например могут быть все красные, или синие. Т.е. если пытаться подобрать красный цвет, то пользователь использует известные образцы цвета калибровки, которые представляют собой преимущественно красные, или близко к красным, тем самым ограничивая часть цветового пространства устройства захвата, которое требует характеризации.

В другом альтернативном случае, N известных образцов цвета калибровки представляют собой N образцов, которые имеют измеренные цветовые значения из вторых данных изображения, которые наиболее подобны измеренному цветовому значению неизвестного образца из первых данных изображения. Например, могут использоваться N известных образцов цвета калибровки, которые имеют RGB-значения, ближайшие к неизвестному образцу цвета.

В вышеупомянутых вариантах осуществления N предпочтительно находится в диапазоне от, по существу, 5 до, по существу, 250, или более предпочтительно от, по существу, 10 до, по существу, 100, или более предпочтительно от, по существу, 20 до, по существу, 85, или более предпочтительно от, по существу, 30 до, по существу, 70, или более предпочтительно от, по существу, 40 до, по существу, 60, или наиболее предпочтительно равен или около 50. В других вариантах осуществления тогда могут использоваться другие числа или диапазоны N.

В одном варианте осуществления изобретения алгоритм кластеризации может применяться к значениям пикселей в пикселях, представляющих неизвестный образец цвета в первом изображении, для определения количества цветов в изображении образца, и цвет, идентифицированный для каждого идентифицированного кластера. С таким устройством, если неизвестный образец цвета содержит более одного цвета, тогда или может идентифицироваться преобладающий цвет, и/или могут отдельно идентифицироваться индивидуальные цвета.

В данном варианте осуществления значения пикселей сначала калибруются с использованием характеристик калибровки цвета. Это имеет результатом гарантирование, что алгоритм кластеризации работает на реальных цветах в образце цвета.

Алгоритм кластеризации в использовании может тогда работать посредством: i) калибровки среднего значения пикселей в кластере; ii) затем определения количества пикселей в пределах заданного порогового расстояния от среднего значения; и затем iii) увеличения количества кластеров, если определенное количество пикселей меньше заданной доли количества пикселей в первых данных изображения, относящихся к неизвестному образцу. Таким образом, становится возможным идентифицировать разные цвета в образце, причем каждый идентифицированный кластер относится к соответствующему индивидуальному цвету.

Чтобы гарантировать, что обнаруживаются преобладающие или важные цвета в образце, вариант осуществления также может фильтровать кластеры для удаления тех кластеров из рассмотрения, которые не содержат пороговое количество пикселей в пределах второго порогового расстояния от среднего значения кластера. Следовательно, кластеры цветов только с малым количеством пикселей не идентифицируются в качестве преобладающих или важных цветов в образце.

Во втором аспекте настоящее изобретение дополнительно обеспечивает устройство, содержащее по меньшей мере один процессор; и по меньшей мере одну память, включающую в себя компьютерный программный код, причем по меньшей мере одна память и компьютерный программный код выполнены так, что вызывают выполнение устройством при помощи по меньшей мере одного процессора по меньшей мере следующего: прием первых данных изображения, относящихся к неизвестному образцу цвета, колориметрические данные для которого должны быть определены; прием вторых данных изображения, относящихся к множеству известных образцов цвета калибровки, колориметрические данные для которых являются уже известными; определение множества характеристик калибровки цвета, связывающих измерения цвета известных образцов цвета калибровки из вторых данных изображения с соответствующими известными колориметрическими данными образцов цвета калибровки; вычисление колориметрических данных неизвестного образца цвета в зависимости от их измерений цвета из первых данных изображения и определенных характеристик калибровки цвета; причем устройство отличается тем, что по меньшей мере одна память и компьютерный программный код выполнены так, что вызывают компенсацию устройством при помощи по меньшей мере одного процессора различий яркости по набору известных образцов цвета калибровки при определении множества характеристик калибровки цвета.

Другие аспекты и признаки настоящего изобретения будут очевидны из прилагаемой формулы изобретения.

Краткое описание чертежей

Другие признаки и преимущества примеров изобретения становятся очевидными из последующего описания конкретных вариантов осуществления изобретения, представленных только в качестве примера, и посредством ссылки на прилагаемые чертежи, на которых подобные позиции ссылаются на подобные детали и на которых:

фиг.1 представляет собой блок-схему системы согласно варианту осуществления изобретения;

фиг.2 представляет собой чертеж карты образцов калибровки цвета, используемой в варианте осуществления изобретения;

фиг.3 представляет собой блок-схему последовательности операций процесса, выполняемого в варианте осуществления изобретения;

фиг.4 представляет собой блок-схему последовательности операций и связанные с ней чертежи, иллюстрирующие процесс ориентирования изображения, используемый в варианте осуществления изобретения;

фиг.5 представляет собой блок-схему последовательности операций, описывающую процесс калибровки цвета, используемый в варианте осуществления изобретения;

фиг.6 представляет собой блок-схему последовательности операций, иллюстрирующую многопроходный процесс, используемый в варианте осуществления изобретения;

фиг.7 представляет собой блок-схему последовательности операций, иллюстрирующую часть процесса калибровки пространственной яркости, используемого в варианте осуществления изобретения;

фиг.8 представляет собой блок-схему последовательности операций, иллюстрирующую процесс кластеризации, используемый в варианте осуществления изобретения;

фиг.9 представляет собой чертеж, демонстрирующий использование процесса кластеризации, используемого в варианте осуществления изобретения;

фиг.10 представляет собой другой чертеж, иллюстрирующий использование процесса кластеризации, используемого в варианте осуществления изобретения;

фиг.11 представляет собой фотографию экспериментального шаблона образца калибровки цвета, используемого для испытаний варианта осуществления изобретения;

фиг.12 представляет собой график, изображающий степенную подгонку серой шкалы, полученную из процесса калибровки во время испытания варианта осуществления изобретения;

фиг.13-15 представляют собой графики регрессионной подгонки степенной функции для X, Y и Z, основываясь на степенных функциях, показанных на фиг.12;

фиг.16 представляет собой график подгонки серой шкалы, использующий полином второго порядка;

фиг.17 представляет собой график подгонки серой шкалы, использующий полином четвертого порядка, ограниченный до пересечения в нуле; и

фиг.18-20 представляют собой графики результатов испытания, полученных из варианта осуществления, где выполняется второй проход обработки.

Описание конкретных вариантов осуществления

Различные примеры изобретения ниже описываются в отношении прилагаемых чертежей.

1. Первый вариант осуществления - коррекция пространственной яркости

Фиг.1 представляет собой блок-схему системы согласно первому варианту осуществления настоящего изобретения. Система имеет элементы на стороне пользователя и элементы на стороне внутреннего сервера. Элементы на стороне пользователя используются для захвата изображения образца цвета, подлежащего определению, вместе с изображением образцов цвета калибровки, колориметрические данные которого известны. Элементы на стороне сервера или внутренние элементы относятся к элементам обработки, которые принимают данные изображения, обрабатывают данные изображения, определяют цвет неизвестного цвета образца, подбирают цвет к палитре красок и затем возвращают подобранный цвет из палитры пользователю.

В этом отношении целью первого варианта осуществления настоящего изобретения является обеспечение системы, которая дает возможность домашнему заказчику, или другому пользователю, точно идентифицировать цвет неизвестного образца цвета. Чтобы это выполнить, пользователь получает карту образцов цвета калибровки, например, по почте, или посредством посещения розничного магазина по продаже красок, где они имеются в наличии. Карта образцов цвета калибровки имеет вырезанный участок, в котором может быть размещен объект, цвет которого должен быть определен. Пользователь затем выполняет захват изображения карты образцов цвета калибровки с объектом, цвет которого должен быть определен, в вырезанном участке, используя легкодоступные устройства захвата изображения, такие как цифровая камера или оснащенный камерой мобильный телефон. Затем изображение передается пользователем, например, при помощи электронной почты, службы передачи мультимедийных сообщений (MMS), или используя веб-интерфейс, на внутренний сервер, где оно обрабатывается, определяется цвет неизвестного образца цвета, и информация, относящаяся к подобранному цвету краски, передается обратно пользователю. Кроме того, информация, касающаяся дополнительных цветов краски, чтобы составить цветовую схему красок, также может передаваться обратно пользователю.

Фиг.1 более подробно иллюстрирует элементы такой системы. Начиная с оконечного устройства пользователя, пользователь получает карту 24 образцов цвета калибровки, например, от местного розничного торговца красок, или отсылает письмо для нее по почте. Карта 24 образцов цвета калибровки имеет на ней некоторое количество образцов 242 индивидуальных цветов, пространственно распределенных по карте, причем цвета образцов 242 цвета также распределены по цветовому пространству. Карта 24 образцов цвета калибровки имеет вырезанный участок 244, показанный на фиг.1, расположенный в середине, но который в других вариантах осуществления может быть расположен в любом месте на карте, в котором при использовании размещается объект, подлежащий замеру, или карта размещается на объекте, подлежащем замеру, так что часть объекта, подлежащего замеру, видна через вырезанный участок 244. Дополнительные подробности карты 24 образцов цвета калибровки описываются ниже в отношении фиг.2.

При использовании, как отмечено, пользователь размещает карту 24 образцов цвета калибровки над объектом, цвет которого необходимо определить. Затем пользователь использует устройство захвата изображения, такое как цифровая камера, или мобильный телефон, предусмотренный с камерой, чтобы сфотографировать изображение карты 24 образцов цвета калибровки с неизвестным образцом цвета, подлежащим определению, также расположенным в изображении. Как показано на фиг.1, может использоваться устройство 12 захвата изображения пользователя, такое как цифровая камера, или мобильное устройство 14 пользователя, оснащенное устройством захвата изображения, таким как встроенная камера.

Если пользователь выполнил захват изображения, пользователь должен затем передать изображение на внутренний сервер 10 для обработки изображения. Могут использоваться многочисленные разные технологии передачи для передачи данных изображения на внутренний сервер 10, и варианты осуществления изобретения не ограничиваются этими описанными. Например, пользователь может загрузить захваченное изображение с цифровой камеры 12 в свой компьютер 16, причем компьютер 16 подключен к Интернету 22 при помощи локальной сети, такой как маршрутизатор 18 WiFi (беспроводная точность). Затем пользователь может использовать компьютер 16 для посылки сообщения электронной почты с изображением в качестве вложения по адресу электронной почты, который относится к внутреннему серверу 10.

Альтернативно, внутренний сервер 10 при помощи сетевого интерфейса может обеспечивать выделенную веб-страницу, которая может загружаться компьютером 16 и отображаться программой браузера, в которую могут быть помещены данные изображения, чтобы быть посланными обратно на внутренний сервер 10.

Обеспечивается альтернативный маршрут на внутренний сервер, когда пользователь использует мобильный телефон для захвата изображения. Некоторые мобильные устройства, часто известные как смартфоны, имеют функциональную возможность WiFi и могут использоваться для посылки сообщений электронной почты или веб-страниц доступа аналогично портативному или настольному компьютеру. В данном случае мобильное устройство пользователя используется в качестве портативного компьютера, и изображение, захваченное им, может посылаться по электронной почте, или в качестве данных, введенных в веб-страницу, обратно на внутренний сервер. Альтернативно, мобильное устройство пользователя может использовать свой сотовый радиоинтерфейс для посылки данных изображения на внутренний сервер 10. В данном случае данные изображения могут посылаться, например, в качестве сообщения службы передачи мультимедийных сообщений (MMS) по сотовой сети 26 на мобильный шлюз 20, который затем передает данные изображения на внутренний сервер 10. В этом отношении может обеспечиваться конкретный контактный номер, и он может быть сделан известным пользователю (например, отпечатан на карте 24 образцов цвета калибровки), на который могут посылаться сообщения MMS.

Внутренний сервер 10 содержит сетевой интерфейс 102, соединенный с сетью 22, для приема данных изображения от пользователей и передачи на него данных подбора цвета, как описано ниже. Внутренний сервер 10 дополнительно содержит процессор 104, на котором исполняются программы, выполняющие определение цвета и которые, в основном, управляют работой внутреннего сервера 10. Рабочая память 106 обеспечивается для использования процессором, в которой могут временно сохраняться данные.

Также во внутреннем сервере 10 обеспечивается считываемый компьютером носитель 108, который образует долгосрочное хранилище, в котором могут храниться данные и программы. Например, считываемый компьютером носитель 108 может представлять собой накопитель на жестком диске, или, например, может представлять собой твердотельное запоминающее устройство. На считываемом компьютером носителе 108 хранятся несколько программ управления. В данном первом варианте осуществления обеспечивается модуль 104 управления подбором цвета, который управляет всей работой системы и вызывает другие модули для выполнения операций, как и когда потребуется. В первом варианте осуществления дополнительно обеспечивается модуль 118 калибровки, который принимает, соответствующим образом, команды управления от модуля 114 управления подбором цвета и исполняется процессором 104, чтобы выполнять функцию калибровки и, в частности, чтобы выполнять необходимые регрессионные анализы, чтобы можно было охарактеризовать характеристики захвата цвета устройства захвата изображения, используемого пользователем. Дополнительные подробности работы модуля 118 калибровки приведены ниже.

В других вариантах осуществления могут обеспечиваться дополнительные модули, такие как модуль 116 ориентирования изо