Способ ионообменной очистки сточных вод и технологических растворов от ионов металлов
Изобретение может быть использовано в промышленности на стадии тонкой или дополнительной очистки воды от следов ионов тяжелых металлов, при очистке парового конденсата в котельных и на предприятиях ТЭЦ при создании замкнутого технологического водооборота. Для осуществления способа ионообменной очистки сточные воды и технологические растворы пропускают через сорбент, содержащий гидразидные группы. В качестве сорбента используют активированный уголь, предварительно обработанный газовой смесью аммиака и гидразина, взятых в объемных соотношениях 1:2-2,5, при температуре 350-450°C. Способ обеспечивает удаление из воды ионов металлов переменной валентности: Cu2+, Zn2+, Ni2+, Cr3+, Fe3+, а также ионов металлов: Bi3+, Zr4+, Sr2+, Co2+, при сохранении сорбентом сорбционной активности при широких значениях pH водного раствора. 1 табл., 1 пр.
Реферат
Изобретение относится к технологии очистки сточной воды и может быть использовано в промышленности на стадии тонкой или дополнительной очистки воды от следов ионов тяжелых металлов, при очистке парового конденсата в котельных и на предприятиях ТЭЦ, в том числе при создании замкнутого технологического водооборота.
Известен способ очистки воды от ионов металлов при их совместном присутствии фильтрацией через сополимерные сорбенты, содержащие этилендиаминовые группировки (авторское свидетельство RU №966023, МПК7, кл. C02F 1/42, 1982 г. ). Указанный способ обладает селективностью только по отношению к ионам трехвалентного железа (Fe3+), что является его недостатком, так как ограничено его применение и работоспособность при содержании в воде других ионов.
Известны способы извлечения ионов тяжелых металлов сульфированным бурым углем [Ibarra J. Moliner R. Fuel Удаление ионов тяжелых металлов из сточных вод с ломанью сульфированного бурого угля. 1984, 63, N3, p.377], сорбентом на основе торфа [Ludwig G. Simon J. Очистка промышленных сточных вод от тяжелых металлов с помощью фильтров с гранулированным сорбентом на основе торфа. "Geol Jahrb", 1983, N6a, p.365].
Недостатками таких способов очистки является невысокая поглотительная способность сорбентов, высокая стоимость регенерации, низкая прочность сорбента и, следовательно, высокие потери при фильтрации.
Известен способ очистки сточных вод от ионов тяжелых металлов путем их извлечения сорбентом на основе магнезиально-железистых шлаков [Зосин А.П. Гуревич Б.И. Милованова И.Б. О сорбционных свойствах шлакосиликата. В кн. "Химия и технология силикатных материалов". Л. Наука, 1971, с. 100 105], [А.П. Зосин, Т.И. Примак. Очистка промышленных стоков от катионов никеля, кобальта, меди, сорбентом на основе магнезиально-железистых шлаков цветной металлургии // Химия и технология неорганических сорбентов: Минвуз. Сб. науч. тр. Перм. политехи, ин-т. Пермь, 1980, с. 92 97].
Очистка стоков от ионов металлов осуществляется путем пропускания раствора через слой сорбента. Недостаток этого способа заключается в невысокой эффективности, невозможности регенерации сорбента ввиду невысокой прочности гранул.
Известен способ очистки раствора, содержащего медь, цинк и железо, от ионов трехвалентного железа путем сорбции на анионите, полученном аминированием гидразином сополимера метилакрилата и дивинилбензола [Авторское свидетельство RU №528310, МПК7, кл. C08F 226/02, C08F 8/32 1975].
Недостатком способа является низкая степень очистки раствора от ионов трехвалентного железа.
Известен способ очистки медноцинковых растворов от ионов трехвалентного железа путем сорбции на анионите, полученном аминированием гидроксиламином сополимера метилакрилата и дивинилбензола [Авторское свидетельство RU №529178, МПК7, кл C08F 226/02, C08F 8/32, B010 15/04, 1975].
Недостатком данного способа является невысокая степень очистки раствора от ионов трехвалентного железа.
Наиболее близким к изобретению по технической сущности и достигаемому результату является способ ионообменной очистки сточный вод и технологических растворов от ионов металлов переменной валентности путем их пропускания через смесь аминокарбоксильного катеонита и низкоосновного анионита полимеризационного типа, взятых в катионной и анионной форме, при этом в качестве смеси используют сополимер метилметакрилата, дивинилсульфида, дивинилбензола и гидразида полиметакриловой кислоты, при соотношении этилендиаминовых и гидразидных группировок в сополимере 1:1 [Патент RU №2434811), C02F 1/42, МПК 7, 01J 43/00, B01J 20/26, 2011 г.].
Недостатком данного способа является его ограниченная работоспособность при очистке сточных вод, содержащих ионы таких металлов, как Bi3+, Zr4+, Sr2+, Co2+.
Технический результат изобретения - удаление из воды ионов металлов переменной валентности: Cu2+, Zn2+, Ni2+, Cr3+, Fe3+, а также ионов металлов: Bi3+, Zr4+, Sr2+, Co2+, при сохранении сорбентом сорбционной активности, широких значений pH водного раствора и числа циклов «очистка - регенерация».
Поставленный технический результат достигается тем, что в способе ионообменной очистки сточных вод и технологических растворов от ионов металлов путем их пропускания через сорбент, содержащий гидразидные группы, согласно изобретению в качестве сорбента используют активированный уголь, предварительно обработанный газовой смесью аммиака и гидразина, взятых в объемных соотношениях 1:2-2,5, при температуре 350-450°C.
В предложенном способе эффект улучшенной водоочистки достигается за счет улучшенной структуры активного угля. Для этого процесс осуществлялся в следующих условиях: температура 350-450°C, обработка газовой смесью аммиака и гидразина, взятых по объему в соотношении 1:2-2,5, время обработки составляло 2-5 минут. Такие условия процесса позволяют модифицировать пористую структуру угля и увеличить пористость, что дает условия для приобретения углем свойств по сорбции из водной фазы не только ионов металлов переменной валентности: Cu2+, Zn2+, Ni2+, Cr3+, Fe3+, а также ионов следующих металлов: Bi3+, Zr4+, Sr2+, Co2+.
Технический результат, который достигается вышеизложенной совокупностью существенных признаков, объясняется тем, что при таком способе очистки проявляется комплексная активность сорбента с использованием, помимо имеющихся в активном угле структур, аминогрупп -NH2 и гидразидных группировок -NH-NH2.
Данный сорбент не теряет механической прочности в цикле работа - регенерация. Набор активных группировок позволяет удерживать широкое разнообразие ионов металлов: Bi3+, Zr4+, Sr2+, Co2+, не ухудшая при этом степени очистки от ионов металлов переменной валентности: Cu2+, Zn2+, Ni2+, Cr3+, Fe3+. При этом из воды удаляются, помимо прочих, загрязнения ионогенного характера, она становится чистой, пригодной для использования в водообороте. Способ апробирован на лабораторной установке.
Результаты испытаний представлены в таблице.
Пример 1
500 мл водного раствора, содержащего ионы Cu2+, Zn2+, Ni2+, Cr3+ и Fe3+ при содержании 1,40 мг/л и ионы металлов Bi3+, Zr4+, Sr2+, Co2+ при содержании не выше 0,01 мг/л (следы) (см. табл.), самотеком пропускают через колонку высотой 100 мм и диаметром 11,3 мм, наполненную на 80% активированным углем, предварительно обработанным газовой смесью аммиака и гидразина, взятых в соотношении 1:2 по объему, при температуре 350°C. В очищенном водном растворе по результатам жидкофазного хроматографического анализа ионы Cr3+ и Fe3+ отсутствуют, ионы Cu2+, Zn2+, Ni2+ не превышают допустимых значений, экологически опасные ионы металлов Bi3+, Zr4+, Sr2+, Co2+ отсутствуют, то есть качество очистки воды значительно улучшается.
Пример 2
500 мл технологического раствора, используемого в металлообработке производства ООО «Волгограднефтемаш», содержащего ионы Cu2+, Zn2+, Ni2+, Cr3+, Fe3+, Bi3+, Zr4+, Sr2+ и Co2+ (см. табл.), самотеком пропускают через колонку высотой 100 мм и диаметром 11,3 мм, наполненную на 80% активированным углем, предварительно обработанным газовой смесью аммиака и гидразина, взятых в соотношении 1:2 по объему, при температуре 350°C. В очищенном технологическом растворе по результатам жидкофазного хроматографического анализа ионы Cr3+и Fe3+ отсутствуют, ионы Cu2+, Zn2+, Ni2+ не превышают допустимых значений, экологически опасные ионы металлов Bi3+, Zr4+, Sr2+, Co2+ отсутствуют, то есть качество очистки технологического раствора значительно улучшается. Результаты по сравнению с прототипом представлены в таблице.
Пример 3
500 мл сточных вод производства ООО «Метизный завод», содержащих ионы Cu2+, Zn2+, Ni2+, Cr3+, Fe3+, Bi3+, Zr4+, Sr2+и Co2+ (см. табл.), самотеком пропускают через колонку высотой 100 мм и диаметром 11,3 мм, наполненную на 80% активированным углем, предварительно обработанным газовой смесью аммиака и гидразина, взятых в соотношении 1:2,5 по объему, при температуре 450°C. Очищенные сточные воды содержат ионы Cu2+, Zn2+, Ni2+ в концентрациях, не превышающих допустимых значений, экологически опасные ионы металлов Bi3+, Zr4+, Sr2+, Co2+ отсутствуют, то есть качество очистки сточных вод значительно улучшается.
Предлагаемый способ | ||||
Состав (мг/л) и параметры | Пример 1 | Пример 2 | Пример 3 | Прототип |
Cu2+ | 1,40 | 1,39 | 1,43 | 1,40 |
Zn2+ | 1,40 | 1,40 | 1,44 | 1,40 |
Ni2+ | 1,40 | 1,36 | 1,42 | 1,40 |
Cr3+ | 1,40 | 1,40 | 1,40 | 1,40 |
Fe3+ | 1,40 | 1,38 | 1,43 | 1,40 |
Ионы металлов (не | ||||
более 0,01 мг/л) | ||||
Bi3+ | + | + | + | + |
Zr4+ | + | + | + | + |
Sr2+ | + | + | + | + |
Co2+ | + | + | + | + |
pH раствора | 3,5-5 | 3,5-5 | 3,5-5 | 3,5-5 |
Объем очищенной воды мл/мл ионита | 300 | 300 | 300 | 300 |
pH очищенной воды | 7,0 | 7 | 7 | 7 |
Изменение объема сорбента, % | 0,0÷+0,4 | 0,0÷+0,4 | 0,0÷+0,4 | 0,0÷+0,4 |
Число циклов «работа-регенерация» без ухудшения показателей очищенной воды | 22 | 22 | 22 | 22" |
Bi3+ | отсутствуют | отсутствуют | отсутствуют | есть |
Zr4+ | отсутствуют | отсутствуют | отсутствуют | есть |
Sr2+ | отсутствуют | отсутствуют | отсутствуют | есть |
Co2+ | отсутствуют | отсутствуют | отсутствуют | есть |
Cu2+ (мг/л) | 0,005 | 0,005 | 0,005 | 0,005 |
Zn2+ (мг/л) | 0,007 | 0,007 | 0,007 | 0,007 |
Ni2+ (мг/л) | 0,001 | 0,001 | 0,001 | 0,001 |
Cr3+ | отсутствуют | отсутствуют | отсутствуют | отсутствуют |
Fe3+ | отсутствуют | отсутствуют | отсутствуют | отсутствуют |
Таким образом, разработанное техническое решение содержит признаки, достаточные для получения нового технического результата, оговоренного формулой изобретения.
Способ ионообменной очистки сточных вод и технологических растворов от ионов металлов путем их пропускания через сорбент, содержащий гидразидные группы, отличающийся тем, что в качестве сорбента используют активированный уголь, предварительно обработанный газовой смесью аммиака и гидразина, взятых в объемных соотношениях 1:2-2,5, при температуре 350-450°C.