Способ получения l-аргинина с использованием бактерии семейства enterobacteriaceae, содержащей n-ацетилорнитиндеацетилазу с нарушенной активностью

Иллюстрации

Показать все

Изобретение относится к биотехнологии и представляет собой способ получения L-аминокислоты, такой как L-аргинин, ферментацией с использованием бактерии рода Escherichia, которая модифицирована таким образом, что содержит ген argJ, который кодирует фермент, имеющий, по меньшей мере, орнитинацетилтрансферазную активность, и при этом бактерия модифицирована таким образом, что содержит N-ацетилорнитиндеацетилазу с нарушенной активностью. Изобретение позволяет получать L-аргинин с высокой степенью эффективности. 2 н. и 8 з.п. ф-лы, 2 ил., 4 табл., 7 пр.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к микробиологической промышленности, в частности к способу получения L-аминокислот, таких как L-аргинин, ферментацией бактерии семейства Enterobacteriaceae, которая модифицирована таким образом, что она содержит ген argJ, кодирующий фермент, имеющий, по меньшей мере, орнитинацетилтрансферазную активность, и нарушенный ген argE, кодирующий N-ацетилорнитиндеацетилазу.

Уровень техники

Традиционно L-аминокислоты в промышленности получают ферментационным методом с использованием штаммов микроорганизмов, полученных из природных источников, или их мутантов. Обычно, микроорганизмы модифицируются для увеличения продукции L-аминокислот.

Описано много способов повышения продукции L-аминокислот, например, путем трансформации микроорганизмов рекомбинантной ДНК (см., например, патент США №4,278,765) и изменения регуляторных участков, таких как промотор, лидерная последовательность и/или аттенюаторы или другие, известные для специалиста в данной области (см., например, Патентную заявку США №20060216796 А1 и WO9615246 А1). Другие способы, повышающие выход, включают повышение активности ферментов, вовлеченных в биосинтез аминокислот, и/или снятие ингибирования ключевых ферментов продуцируемой L-аминокислотой по типу обратной связи (см., например, публикацию Патента Японии №56-18596 (1981), WO 95/16042 или Патенты США №5,661,012 и 6,040,160).

Другой способ повышения продукции L-аминокислот заключается в ослаблении экспрессии одного или нескольких генов, вовлеченных в деградацию целевой L-аминокислоты, генов, участвующих в удалении предшественников целевой L-аминокислоты из биосинтетического пути L-аминокислоты, генов, вовлеченных в перераспределение потоков углерода, азота и фосфора, и генов, кодирующих токсины, и т.д.

Принято считать, что, например, в бактерии биосинтез L-аргинина из L-глутамата может проходить по двум путям, линейному или циклическому, в зависимости от конкретного микроорганизма (Cunin R. et al., Microbiol. Rev., 1986, 50:314-352). В бактериях, таких как бактерия, принадлежащая семейству Enterobacteriaceae, в частности, Escherichia coli (E.coli) имеет место линейный путь, который включает 8 стадий до полного образования L-аргинина из L-глутамата (Vogel H.J. и MacLellan W.L., Methods Enzymol., 1970, 17A, 265-269). Биосинтез инициирован ацетилированием L-глутамата аминокислотной N-ацетилтрансферазой (ЕС 2.3.1.1, также называемой как N-ацетил-L-глутаматсинтетаза), кодируемой геном argA. Последующие биосинтетические реакции катализируются ферментами, обычно называемыми как N-ацетилглутаматкиназа, N-ацетил-γ-глутамилфосфатредуктаза, N-ацетилорнитинаминотрансфераза, N-ацетилорнитиндеацетилаза, орнитинкарбамоилтрансфераза, аргининосукцинатсинтетаза и аргининосукцинатлиаза, кодируемые генами argB, argC, argD, argE, argF, argG и argH, соответственно. Ацетильная группа, снимаемая N-ацетилорнитиндеацетилазой (ArgE) с N-ацетилорнитина с образованием орнитина, связывается с коферментом A (HS-CoA, CoA) с образованием ацетилированного кофермента A (AcS-CoA, ацетил-СоА), который выступает как донор ацетильной группы в реакции ацилирования L-глутамина, катализируемой аминокислота-N-ацетилтрансферазой (argA).

Циклический путь биосинтеза L-аргинина был обнаружен в прокариотах, таких как Corynebacterium glutamicum (Udaka S. и Kinoshita S., J. Gen. Appl. Microbiol., 1958, 4:272-282; Sakanyan V. et al., Microbiology, 1996, 142:99-108), Bacillus species (Sakanyan V. et al., J. Gen. Microbiol., 1992, 138:125-130), Thermotoga neapolitana (Marc F. et al., Eur. J. Biochem., 2000, 267(16):5217-5226), и эукариотах (De Deken R.H., Biochim. Biophys. Acta., 1962, 78:606-616). В отличие от линейного пути, в циклическом пути перенос ацетильной группы с N-ацетилорнитина на L-глутамат катализируется бифункциональной орнитинацетилтрансферазой/N-ацетилглутаматсинтазой (ЕС 2.3.1.35/2.3.1.1), кодируемой геном argJ.

Помимо бифункционального фермента, кодируемого геном argJ, известен белок ArgJ, кодируемый геном argJ и проявляющий исключительно орнитинацетилтрансферазную активность (Haas D. et al., Eur. J. Biochem., 1972, 31:290-295; Marc F. et al., Eur. J. Biochem., 2000, 267(16):5217-5226). Монофункциональный и бифункциональный ферменты ArgJ можно различить двумя способами: (i) ферментативным анализом с использованием двух доноров ацетильных групп, таких как N-ацетилорнитин и AcS-CoA; и (ii) комплементационным тестом с использованием мутантов argE и argA Е.coli с клонированием гена argJ. Монофункциональный фермент ArgJ переносит ацетильную группу от N-ацетилорнитина к L-глутамату и комплементирует мутант argE, в то время как бифункциональный фермент ArgJ переносит ацетильную группу от N-ацетилорнитина и AcS-CoA и комплементирует штаммы, мутантные по argE и argA.

Новый биосинтетический путь L-аргинина был недавно обнаружен в Xanthomonas campestris, где N-ацетилорнитин превращается в N-ацетилцитруллин под действием ацетилорнитинкарбамоилтрансферазы, кодируемой геном argF', и цитруллин образуется из N-ацетилцитруллина под действием ArgE (Shi D. et al., J. Biol. Chem., 2005, 280:14366-14369).

Известна бактерия Е.coli, изначально имеющая линейный путь, была модифицирована таким образом, что она содержит ген argJ из Bacillus stearothennophilus или Thermotoga neapolitana (T. neapolitana), который кодирует бифункциональный фермент ArgJ, чтобы инициировать менее энергоемкий циклический путь и, таким образом, увеличить продукцию L-аргинина посредством модифицированной бактерии (патент США №6,897,048 В2).

В микроорганизмах, изначально использующих линейный биосинтетический путь или имеющих модифицированный линейный путь, который функционирует как циклический путь, аминокислота-N-ацетилтрансфераза (N-ацетил-L-глутаматсинтетаза) (ArgA) может быть необходима для инициации и поддержания биосинтеза L-аргинина посредством поставки N-ацетилглутамата. Таким образом, для увеличения продукции L-аргинина с помощью рекомбинантного штамма Е.coli, количество копий гена argA может быть увеличено клонированном гена дикого типа argA на плазмидных векторах и включением их в штамм, имеющий клонированный ген argJ (патент США №6,897,048 В2). С другой стороны, ген argA, кодирующий мутантную аминокислота-N-ацетилтрансферазу с устойчивостью к ингибированию по принципу обратной связи L-аргинином (Eckhardt Т. et al., Mol. Gen. Genet, 1975, 138:225-232), может быть введен в штамм Е.coli для усиления продукции L-аргинина (ЕР 1170361 А2).

Несмотря на то что наличие положительного эффекта на продукцию L-аргинина от использования бифункционального белка ArgJ, дополнительных копий гена argA и/или мутантной N-ацетил-L-глутаматсинтетазы (мутантного ArgA), и т.п., четко установлено, подходы для дальнейшего увеличения продукции L-аргинина с помощью микроорганизмов не очевидны.

В настоящее время нет данных, описывающих влияние нарушенного гена argE так, что активность N-ацетилорнитиндеацетилазы (ArgE) уменьшена или отсутствует, на продукцию L-аргинина модифицированными бактериальными штаммами семейства Enterobacteriaceae, имеющих гетерологичный ген argJ.

Раскрытие сущности изобретения

Авторы настоящего изобретения предположили, что в микроорганизмах, например, в бактериях, имеющих гетерологичный ген argJ, который кодирует монофункциональный фермент орнитинацетилтрансферазу или бифункциональный фермент орнитинацетилтрансферазу/N-ацетилглутаматсинтазу, ослабление экспрессии гена argE или инактивация гена argE может быть источником дополнительной энергии из процесса, связанного с переносом ацетильной группы от N-ацетилорнитина к L-глутамату, таким образом, содействуя продукции L-аргинина с помощью модифицированного штамма по сравнению с родительским штаммом. Авторы настоящего изобретения предположили, что фермент ArgJ, имеющий моно- или двойную активность и кодируемый геном argJ, клонированным из микроорганизма-донора, может восстановить биосинтез L-аргинина в штаммах, мутантных по argE или argA и argE генам. С этой точки зрения, искусственный циклический путь, будучи инициированный путем реализации первой биосинтетической реакции с целью продукции N-ацетилглутамата, может функционировать посредством прямого ацилирования L-глутамата ацетильной группой, полученной из N-ацетилорнитина, нежели из более энергетически богатого AcS-CoA.

Цель настоящего изобретения - предоставление бактерии, принадлежащей к семейству Enterobacteriaceae, которая может принадлежать к роду Escherichia, более точно к виду Escherichia coli, которая имеет активность орнитинацетилтрансферазы или орнитинацетилтрансферазы/N-ацетилглутаматсинтазы (ArgJ) и в которой N-ацетилорнитиндеацетилаза (ArgE) инактивирована или активность ArgE уменьшена.

Другая цель настоящего изобретения - предоставление способа получения L-аминокислот, таких как L-аргинин, с использованием бактерии семейства Enterobacteriaceae как здесь описано.

Эти цели были достигнуты благодаря обнаружению того факта, что инактивация или ослабление экспрессии гена argE в бактерии семейства Enterobacteriaceae, имеющей гетерологичный ген argJ, приводит к повышенной продукции L-аргинина.

Цель настоящего изобретения - предоставление бактерии-продуцента L-аргинина, принадлежащей к семейству Enterobacteriaceae, имеющей рекомбинантную ДНК, которая содержит ген argJ, кодирующий фермент, имеющий, по меньшей мере, орнитинацетилтрансферазную активность, отличающуюся тем, что бактерия модифицирована таким образом, что она содержит N-ацетилорнитиндеацетилазу с нарушенной активностью.

Другая цель настоящего изобретения - предоставление описанной здесь бактерии, отличающейся тем, что ген argJ происходит из микроорганизма, имеющего фермент, обладающий активностью орнитинацетилтрансферазы или орнитинацетилтрансферазы/N-ацетилглутаматсинтазы.

Другая цель настоящего изобретения - предоставление описанной здесь бактерии, отличающейся тем, что ген argJ происходит из микроорганизма, принадлежащего к семейству, выбранному из группы, состоящей из семейств Thermotogaceae, Bacillaceae и Methanocaldococcaceae.

Другая цель настоящего изобретения - предоставление описанной здесь бактерии, отличающейся тем, что ген argJ происходит из вида Thermotoga neapolitana.

Другая цель настоящего изобретения - предоставление описанной здесь бактерии, отличающейся тем, что ген argJ кодирует белок, выбранный из группы, состоящей из:

(A) белка, имеющего аминокислотную последовательность, представленную в SEQ ID NO:2, который имеет активность орнитинацетилтрансферазы/N-ацетилглутаматсинтазы;

(B) варианта белка, имеющего аминокислотную последовательность, представленную в SEQ ID NO:2, но которая содержит замену, делецию, вставку и/или добавление одного или нескольких аминокислотных остатков и имеет активность орнитинацетилтрансферазы/N-ацетилглутаматсинтазы в соответствии с аминокислотной последовательностью, представленной в SEQ ID NO:2;

и

(C) их комбинации.

Другая цель настоящего изобретения предоставление описанной здесь бактерии, отличающейся тем, что N-ацетилорнитиндеацетилаза является белком, выбранным из группы, состоящей из:

(D) белка, имеющего аминокислотную последовательность, представленную в SEQ ID NO:4;

(Е) варианта белка, имеющего аминокислотную последовательность, представленную в SEQ ID NO:4, но которая содержит замену, делецию, вставку и/или добавление одного или нескольких аминокислотных остатков и имеет активность N-ацетилорнитиндеацетилазы в соответствии с аминокислотной последовательностью, представленной в SEQ ID NO:4; и

(F) их комбинации.

Другая цель настоящего изобретения - предоставление описанной здесь бактерии, отличающейся тем, что активность N-ацетилорнитиндеацетилазы понижена.

Другая цель настоящего изобретения - предоставление описанной здесь бактерии, отличающейся тем, что активность N-ацетилорнитиндеацетилазы отсутствует.

Другая цель настоящего изобретения - предоставление описанной здесь бактерии, отличающейся тем, что бактерия принадлежит к роду Escherichia.

Другая цель настоящего изобретения - предоставление описанной здесь бактерии, отличающейся тем, что бактерия принадлежит к виду Escherichia coli.

Другая цель настоящего изобретения - предоставление описанной здесь бактерии, отличающейся тем, что бактерия принадлежит к роду Pantoea.

Другая цель настоящего изобретения - предоставление описанной здесь бактерии, отличающейся тем, что бактерия принадлежит к виду Pantoea ananatis.

Цель настоящего изобретения - предоставление способа получения L-аргинина или его соли, включающего:

(i) выращивание описанной выше бактерии в питательной среде;

(ii) накопление L-аргинина или его соли в бактерии или культуральной жидкости, или обоих; и, если необходимо,

(iii) выделение L-аргинина или его соли из бактерии или культуральной жидкости.

Настоящее изобретение детально описано ниже.

Краткое описание фигур

Фигура 1 показывает схему интеграции гена argJ в хромосому штамма Е.coli MG1655ΔargAΔargR.

Фигура 2 показывает схему конструирования штамма Е.coli MG1655ΔargAΔargRΔartP-J::Pnlp8φ10argJargEm24::Cm.

Наилучший способ осуществления изобретения

1. Бактерия

Термин «бактерия-продуцент L-аминокислоты» может означать бактерию семейства Enterobacteriaceae, которая способна продуцировать, экскретировать или секретировать и вызывать накопление L-аминокислоты в культуральной жидкости или бактериальных клетках, когда указанная бактерия выращивается (культивируется) в питательной среде.

Термин «способность бактерии продуцировать L-аминокислоту» может означать способность бактерии продуцировать, экскретировать или секретировать и вызывать накопление L-аминокислоты в культуральной жидкости или бактериальных клетках, что приводит к накоплению L-аминокислоты в количествах, достаточных для ее выделения из культуральной жидкости или бактериальных клеток, когда указанная бактерия выращивается (культивируется) в питательной среде.

Термин «L-аминокислота» может означать L-аланин, L-аргинин, L-аспарагин, L-аспарагиновую кислоту, L-цистеин L-глутаминовую кислоту, L-глутамин, L-гистидин, L-изолейцин, L-лейцин, L-лизин, L-метионин, L-фенилаланин, L-пролин, L-серин, L-треонин, L-триптофан, L-тирозин и L-валин.

Бактерия может обладать способностью к продукции аминокислот изначально, в соответствии со своими природными характеристиками, или может быть модифицирована с помощью мутаций (мутагенеза) или технологий рекомбинантных ДНК таким образом, чтобы она получила способность продуцировать аминокислоты.

Бактерия, принадлежащая к семейству Enterobacteriaceae, может быть выбрана из бактерий, относящихся к родам, входящим в состав этого семейства, таких как Enterobacter, Erwinia, Escherichia, Klebsiella, Morganella, Pantoea, Photorhabdus, Providencia, Salmonella, Yersinia и т.д., и способных продуцировать L-аминокислоту. Более конкретно, могут быть использованы бактерии, классифицируемые как принадлежащие к семейству Enterobacteriaceae в соответствии с таксономией, используемой в базе данных NCBI (National Center for Biotechnology Information) (http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=543). Предпочтительна для модификаций согласно данному изобретению бактерия, относящаяся к роду Escherichia, Enterobacter или Pantoea.

Выбор штаммов бактерий, принадлежащих к роду Escherichia, которые могут быть модифицированы в настоящем изобретении, не ограничен каким-либо образом, однако, в качестве примеров, бактерии рода Escherichia, описанные в книге Neidhardt et al. (Bachmann, B.J., Derivations и genotypes of some mutant derivatives of E.coli K-12, p.2460-2488. In F.C. Neidhardt et al. (ed.), E.coli и Salmonella: cellular и molecular biology, 2nd ed. ASM Press, Washington, D.C., 1996) могут быть включены в число бактерий согласно настоящему изобретению. В качестве конкретного примера могут быть взяты штаммы E.coli., такие как E.coli W3110 (АТСС 27325), E.coli MG1655 (АТСС 47076) и т.д., которые происходят из исходного штамма дикого типа, т.е. штамма E.coli K-12. Этот штамм может быть получен, в частности, из Американской коллекции типовых культур «American Type Culture Collection, (АТСС)» (P.O. Box 1549, Manassas, VA 20108, United States of America). Каждому штамму присвоен индивидуальный регистрационный номер, и штаммы могут быть заказаны согласно регистрационному номеру (см. ссылку www.atcc.org). Регистрационные номера штаммов находятся в списке каталога Американской коллекции типовых культур «American Type Culture Collection, АТСС».

Примеры бактерий Enterobacter включают Enterobacter agglomerans, Enterobacter aerogenes и т.д. Примеры бактерии Pantoea включают Pantoea ananatis и т.д. Недавно некоторые виды Enterobacter agglomerans были переклассифицированны как Pantoea agglomerans, Pantoea ananatis или Pantoea stewartii на основе анализа нуклеотидной последовательности 16S рРНК и других доказательств. Бактерии, относящиеся к роду Enterobacter или Pantoea, могут быть использованы в соответствии с настоящим изобретением, так как принадлежат семейству Enterobacteriaceae. Полученные с использованием технологий генной инженерии штаммы Pantoea ananatis, такие как штамм Pantoea ananatis AJ13355 (PERM ВР-6614), штамм AJ13356 (PERM BP-6615), штамм AJ13601 (PERM BP-7207) и их производные могут быть использованы в соответствии с настоящим изобретением. Эти штаммы были классифицированы как Enterobacter agglomerans при выделении, и они депонированы как Enterobacter agglomerans. Однако позднее они были классифицированы как Pantoea ananatis на основе анализа нуклеотидной последовательности 16S рРНК и других доказательств.

Термин «бактерия-продуцент L-аргинина» может означать бактерию, которая способна продуцировать, экскретировать или секретировать и вызывать накопление L-аргинина в культуральной жидкости или бактериальных клетках в количествах больших, чем штамм дикого типа или родительский штамм Е.coli, такой как Е.coli K-12, когда бактерия выращена в питательной среде. Способность продуцировать L-аргинин может означать способность бактерии продуцировать, экскретировать или секретировать и вызывать накопление L-аргинина в питательной среде в количестве не менее 0,5 г/л или не менее чем 1,0 г/л, так что L-аргинин может быть выделен из культуральной жидкости и/или бактериальных клеток, когда указанная бактерия выращивается (культивируется) в питательной среде.

Примеры родительских штаммов, которые могут использоваться для получения бактерии, продуцирующей L-аргинин, включают, но не ограничиваются данными примерами, штаммы, принадлежащие к роду Escherichia, такие как штамм Е.coli 237 (ВКПМ В-7925) (патентная заявка США 2002/058315 А1) и его производные штаммы, имеющие мутантную N-ацетилглутаматсинтазу (ЕР 1170361 А2), штамм Е.coli 382 (ВКПМ В-7926) (ЕР1170358 А1) и штамм, продуцирующий L-аргинин, имеющий введенный ген argA (ЕР1170361 А1), и подобные им.

Бактерия-продуцент L-аргинина семейства Enterobacteriaceae, может быть модифицирована далее таким образом, что она содержит гетерологичный ген argJ, который кодирует монофункциональный фермент орнитинацетилтрансферазу или бифункциональный фермент орнитинацетилтрансферазу/N-ацетилглутаматсинтазу (ArgJ). Например, бактерия семейства Enterobacteriaceae может иметь ген argJ, кодирующий моно- или бифункциональный фермент ArgJ, устойчивый к ингибированию по принципу обратной связи L-аргинином. Ген argJ может быть выделен из термофильного микроорганизма, такого как микроорганизм, принадлежащий к семейству Thermotogaceae, и более конкретно - к роду Thermotoga, например, Т. пеароШапа (Т. neapolitana). Ген argJ также может быть выделен из других бактериальных источников, таких как Bacillus stearothermophUus (или Geobacillus stearothermophilus) семейства Bacillaceae или архей, таких как Methanocaldococcus jannaschii (М. jannaschii) (ранее Methanococcus jannaschii) семейства Methanocaldococcaceae, и им подобных. Однако, различные бактериальные источники гена argJ могут использоваться при условии, что ген argJ кодирует фермент имеющий, по меньшей мере, активность орнитинацетилтрансферазы.

Бактерия-продуцент L-аргинина семейства Enterobacteriaceae может быть модифицирована далее таким образом, что она содержит инактивированный ген argE или ген argE с ослабленной экспрессией, так что N-ацетилорнитиндеацетилаза (ArgE) в модифицированной бактерии неактивна или активность N-ацетилорнитиндеацетилазы снижена по сравнению с немодифицированной бактерией.

Термин «бактерия-продуцент L-аргинина» может означать бактерию семейства Enterobacteriaceae, имеющую ген argA, кодирующий дикий тип или мутант аминокислота-N-ацетилтрансферазы (ArgA). Фермент ArgA, устойчивый к ингибированию по принципу обратной связи L-аргинином, может быть назван как мутантная аминокислота-N-ацетилтрансфераза. Например, мутант белка ArgA, устойчивый к ингибированию по принципу обратной связи L-аргинином, может быть получен из белка дикого типа ArgA путем замены аминокислотной последовательности в положении с 15 по 19 на другую аминокислотную последовательность, как указано В ЕР 1170361 А2. Мутантный белок ArgA, содержащий в аминокислотной последовательности замену, делению, вставку и/или добавление одного или нескольких аминокислотных остатков в одном или более положениях, отличных от положений 15-19, также может быть назван как мутантный белок ArgA при условии, что третичная структура мутантной аминокислота-N-ацетилтрансферазы изменена незначительно по сравнению белком дикого типа или активность мутантного фермента не ухудшилась и существует устойчивость к ингибированию по принципу обратной связи L-аргинином.

Термин «бактерия-продуцент L-аргинина» также может означать бактерию семейства Enterobacteriaceae, как описано выше, имеющую усиленный, ослабленный и/или инактивированный ген argA, кодирующий дикий тип или мутант аминокислота-N-ацетилтрансферазы.

Термин «бактерия-продуцент L-аргинина» также может означать бактерию семейства Enterobacteriaceae, модифицированную далее таким образом, что она лишена ArgR-зависимой транскрипционной репрессии. ДНК-связывающий транскрипционный двойной регулятор ArgR, в микроорганизмах участвующий в отрицательном контроле биосинтетического пути L-аргинина, может быть инактивирован, например, инактивацией гена argR, кодирующего ArgR.

Термин «белок дикого типа» может означать нативный белок, естественным образом продуцируемый штаммом дикого типа или родительским бактериальным штаммом семейства Enterobacteriaceae, например, штаммом дикого типа Е.coli MG1655. Белок дикого типа может быть кодирован геном дикого типа, или немодифицированным геном, естественным образом встречающимся в геноме бактерии дикого типа.

Термин «бактерия, модифицированная таким образом, что она содержит ген argJ» может означать, что бактерия, принадлежащая к бактерии первого вида, естественным образом не содержащая ген argJ, и, таким образом, называемая как бактерия-реципиент, модифицирована таким образом, чтобы содержать одну или более рекомбинантных молекул ДНК, имеющих ген argJ, синтезированный и/или происходящий и введенный из бактерии, принадлежащей ко второму виду, называемой как бактерия-донор, которая отлична от бактерии первого вида. Примером модификации по введению рекомбинантной ДНК может быть экспрессия гетерологичного гена. Например, бактерия-реципиент может принадлежать к семейству Enterobacteriaceae, например, вида Е.coli; бактерия-донор может принадлежать к термофильной бактерии, например, вида Т. neapolitana.

Термин «бактерия, модифицированная таким образом, что она содержит рекомбинантную ДНК» может означать, что бактерия модифицирована обычными способами так, что она содержит экзогенную ДНК. К обычным способам относятся, например, трансформация, трансфекция, инфекция, конъюгация и мобилизация. Трансформация, трансфекция, инфекция, конъюгация или мобилизация бактерии молекулой ДНК, кодирующей белок, могут сообщить бактерии способность синтезировать белок, кодируемый молекулой ДНК. Способы трансформации, трансфекции, инфекции, конъюгации и мобилизации включают любые известные ранее описанные способы. Например, известен способ эффективной трансформации и трансфекции ДНК путем обработки клеток-реципиентов Escherichia coli K-12 хлоридом кальция с целью увеличения проницаемости клеток для ДНК (Mandel M. и Higa A., Calcium-dependent bacteriophage DNA infection, J. Mol. Bioi, 1970, 53:159-162). Описаны способы специализированной и/или общей трансдукции (Morse M.L. et al., Transduction in Escherichia coli K-12, Genetics, 1956, 41(1):142-156; Miller J.H., Experiments in Molecular Genetics. Cold Spring Harbor, N.Y.: Cold Spring Harbor La. Press, 1972). Могут быть применены другие способы случайной и/или направленной интеграции ДНК в геном хозяина, например, «Mu-зависимая интеграция/амплификация» (Akhverdyan et al., Appl. Microbiol. Biotechnol., 2011, 91:857-871), «Red/ET-зависимая» или «λRed/ET-зависимая интеграция» (Datsenko K.A. и Wanner B.L., Proc. Natl. Acad. Sci. USA 2000, 97(12):6640-45; Zhang Y., et al., Nature Genet, 1998, 20:123-128). Более того, для многократных вставок желаемых генов в дополнение к Mu-зависимой репликативной транспозиции (Akhverdyan et al., Appl. Microbiol. Biotechnol., 2011, 91:857-871) и химически индуцированной хромосомной эволюции, основанной на recA-зависимой гомологичной рекомбинации, приводящей к амплификации желаемых генов (Туо K.E.J. et al., Nature Biotechnol., 2009, 27:760-765), могут использоваться другие подходы, основанные на различных комбинациях транспозиции, сайт-направленной и/или гомологичной Red/ET-зависимой рекомбинации, и/или P1-зависимой общей трансдукции (см., например, Minaeva N. et al., ВМС Biotechnology, 2008, 8:63; Koma D. et al., Appl. Microbiol. Biotechnol., 2012, 93(2):815-829).

Гетерологичная экспрессия гена argJ в микроорганизмах хозяина может быть осуществлена путем замены редких (мало используемые в организме хозяина) кодонов на синонимичные средне или часто используемые кодоны, при этом термин «использование кодона» может быть определен как число раз (частота) трансляции кодона в клетке организма в единицу времени или как средняя частота встречаемости кодона в сиквенированных белок-кодирующих рамках считывания (Zhang S.P. et al., Gene, 1991, 105(1):61-72). Использование кодонов в организме может быть найдено в базе данных использования кодонов Codon Usage Database, которая является расширенной веб-версией CUTG (Codon Usage Tabulated from GenBank) (http://www.kazusa.or.jp/codon/; Nakamura Y. et al., Codon usage tabulated from the international DNA sequence databases: status for the year 2000, Nucl. Acids Res., 2000, 28(1):292). В Е.coli такие мутации могут включать, не ограничиваясь этим, замену редких Arg-кодонов AGA, AGG, CGG, CGA на CGT или CGC; редкого Ile-кодона АТА на АТС или АТТ; редкого Leu-кодона СТА на CTG, СТС, СТТ, ТТА или TTG; редкого Pro-кодона ССС на CCG или ССА; редкого Ser-кодона TCG на ТСТ, ТСА, ТСС, AGC или AGT; редких Gly-кодонов GGA, GGG на GGT или GGC; и т.д. Замена мало используемых кодонов на синонимичные часто используемые кодоны предпочтительна. Замена редких и/или мало используемых кодонов на синонимичные средне или часто используемые кодоны может комбинироваться с со-экспрессией генов, кодирующих тРНК, распознающие редкие кодоны.

Термин «бактерия, модифицированная таким образом, что она содержит ген argE с нарушенной экспрессией» может означать, что бактерия модифицирована таким образом, что в модифицированной бактерии экспрессия гена argE ослаблена или ген argE инактивирован.

Термин «экспрессия гена argE ослаблена» может означать, что количество белка ArgE в модифицированной бактерии, в которой экспрессия гена argE ослаблена, снижено по сравнению с немодифицированной бактерией, например, штаммом дикого типа или родительским штаммом.

Термин «экспрессия гена argE ослаблена» также может означать, что модифицированная бактерия содержит модифицированный ген argE, который кодирует мутантный белок ArgE, имеющий пониженную активность по сравнению с белком ArgE дикого типа, или функционально связанный с геном участок, включающий последовательности, контролирующие экспрессию гена, такие как промоторы, энхансеры, аттенюаторы, рибосома-связывающие участки (RBS) и т.д., модифицированные с целью снизить уровень экспрессии гена argE, и другие примеры (см., например, WO95/34672; Carrier T.A. и Keasling J.D., Biotechnol. Prog., 1999, 15:58-64).

Подобные определения могут быть даны для терминов «экспрессия гена argR ослаблена» и «экспрессия гена argA ослаблена».

Экспрессия генов argE, argA и/или argR может быть ослаблена путем замены последовательности, контролирующей экспрессию гена, такой как промотор на хромосомной ДНК, на более слабую. Сила промотора определяется частотой актов инициации синтеза РНК. Примеры методов для оценки силы промотора описаны в Goldstein et al., Prokaryotic promoters in biotechnology, Biotechnol. Annu. Rev., 1995, 1:105-128, и т.д. Кроме того, также возможно ввести нуклеотидную замену в промоторный участок целевого гена таким образом, чтобы ослабить силу промотора, как описано в Международной патентной публикации WO00/18935. Кроме того, известно, что замена нескольких нуклеотидов в области между последовательностью Шайна-Дальгарно (Shine-Dalgarno, SD) и стартовым кодоном на рибосома-связывающем участке (RBS), в частности, в последовательности, расположенной выше и сразу за стартовым кодоном, значительно влияет на эффективность трансляции мРНК. Подобная модификация RBS может комбинироваться с уменьшением уровня транскрипции генов argE, argA и/или argR.

Экспрессия генов argE, argA и/или argR также может быть ослаблена путем вставки транспозона или IS-фактора в кодирующий участок гена (патент США №5,175,107), или в участок, контролирующий экспрессию гена, или в близлежащий или удаленный участок по отношению к структурной части гена argE, argA и/или argR, или с помощью обычных методов, таких как мутагенез посредством УФ-излучения или нитрозогуанидина (N-метил-N'-нитро-N-нитрозогуанидин). Кроме того, мутация может быть сайт-направленно введена с помощью известных методов по изменению хромосомы, основанных, например, на λRed/ET-зависимой рекомбинации.

Термины «ферментативная активность ArgE снижена», «ферментативная активность ArgA снижена» и «ферментативная активность ArgR снижена» могут означать, что ферментативная активность N-ацетилорнитиндеацетилазы (ArgE), аминокислота-N-ацетилтрансферазы (ArgA) и/или регулятора ArgR, соответственно, ниже, чем в немодифицированном штамме, например, штамме дикого типа бактерии, принадлежащей к семейству Enterobacteriaceae, более конкретно, к виду Е.coli. Например, ферментативная активность N-ацетилорнитиндеацетилазы (ArgE), аминокислота-N-ацетилтрансферазы и/или регулятора ArgR может быть уменьшена за счет инактивации соответствующего гена.

Ферментативная активность фермента, кодируемого геном(ми) argE, argA и/или argR также может быть уменьшена за счет введения мутации в ген на хромосоме так, чтобы внутриклеточная активность белка, кодируемого геном(ми) argE, argA и/или. argR была уменьшена по сравнению с немодифицированным штаммом. Такой мутацией в гене(ах) или перед геном в структуре оперона может быть замена одного или нескольких оснований, приводящая к замене аминокислотного остатка в белке, кодируемом геном(ами) (миссенс-мутация), введение стоп-кодона (нонсенс-мутация), делеция одного или нескольких оснований, приводящая к сдвигу рамки считывания, вставка гена, сообщающего устойчивость к антибиотику, частичное или полное удаление генов в геноме (Qiu Z. и Goodman M.F., J. Biol. Chem. 1997, 272:8611-8617; Kwon D.H. et al., J. Antimicrob. Chemother. 2000, 46:793-796).

В модифицированной бактерии количество белка ArgE, кодируемого геном argE, может быть понижено до такого уровня, что остаточная активность ArgE меньше или около 3%, или меньше или около 2%, или меньше или около 1% от исходной активности, но выше чем ноль по сравнению с немодифицированной бактерией.

В модифицированной бактерии специфическая активность ArgE, кодируемого геном argE, может быть понижена до такого уровня, что остаточная специфическая активность ArgE не менее чем 1000 нмоль/мг мин, 750 нмоль/мг мин, 500 нмоль/мг мин, 250 нмоль/мг мин, 100 нмоль/мг мин, 50 нмоль/мг мин, 25 нмоль/мг мин, 10 нмоль/мг мин, 5 нмоль/мг мин или около 3 нмоль/мг мин по результатам разброса экспериментальных данных. Специфическая активность бактериального ArgE в пересчете на 1 мг неочищенного белка может быть определена в неочищенном экстракте разрушенных ультразвуком бактериальных клетках описанным способом (Takahara K. et al. FEBS J., 2005, 272:5353-5364). Концентрация неочищенного белка может быть определена методом Бредфорда (Bradford M.M., Anal. Biochem., 1976, 72:248-254), используя в качестве стандарта бычий сывороточный альбумин.

Ферментативная активность N-ацетилорнитиндеацетилазы (ArgE) может быть понижена за счет изменения условий ферментации, таких как кислотность питательной среды (рН), концентрация кофактора(ов), таких как ионы металлов, температура, ионная сила и т.д.

Термин «ген argE инактивирован» может означать, что модифицированный ген кодирует полностью неактивный или нефункциональный белок. Также возможно, что модифицированный участок ДНК не способен к естественной экспрессии гена благодаря делеции части гена или целого гена, сдвигу рамки считывания гена, введению миссенс/нонсенс мутации (ий) или модификации смежного участка гена, включению последовательностей, контролирующих экспрессию гена, таких как промотор(ы), энхансер(ы), аттенуатор(ы), рибосома-связывающий(ие) сайт(ы) и т.д. Инактивация гена также может быть осуществлена обычными способами, такими как мутагенез, путем обработки микроорганизмов, например, УФ-излучением или нитрозогуанидином (N-метил-N'-нитро-N-нитрозогуанидин), сайт-направленный мутагенез, нарушение структуры гена с использованием гомологичной рекомбинации и/или мутагенеза за счет вставки-делеции (Yu D. et al., Proc. Natl. Acad. Sci. USA, 2000, 97(12):5978-83; Datsenko K.A. и Wanner B.L., Proc. Natl. Acad. Sci. USA 2000, 97(12):6640-45), также называемого как «λRed/ET-зависимая интеграция».

Подобные определения могут быть даны для терминов «ген argR инактивирован» и «ген argA инактивирован».

Термин «активность ArgE отсутствует» равнозначен термину «белок ArgE инактивирован» и также может означать, что активность ArgE полностью отсутствует, то есть равна нулю, или активность ArgE ниже определенного уровня, когда активность измеряется с использованием метода, описанного в работе Takahara K. et al. FEBS J., 2005, 272:5353-5364. В качестве контроля сравнения могут служить, например, бактерии дикого типа Enterobacteriaceae, включая штамм Е.coli MG1655, и т.п. В модифицированной бактерии специфическая активность ArgE, кодируемого геном argE, может быть снижена до такого уровня, что остаточная специфичная активность argE равняется нулю или не более чем 0,01 нмоль/мг мин, 0,05 нмоль/мг мин, 0,1 нмоль/мг мин или около 0,5 нмоль/мг мин по результатам разброса экспериментальных данных и при определении уровня активности описанным выше методом.

Как описано выше, активность белка ArgE (N-ацетилорнитиндеацетилазы) может быть снижена и/или отсутствовать. Следовательно, термин «активность ArgE нарушена» может пониматься как «активность ArgE снижена» и/или «активность ArgE отсутствует», как описано выше.

Термин «повышенная экспрессия гена argA» может означать, что общая ферментативная активность соответствующего гену белка, ArgA, увеличена, например, введением и/или увеличением числа копий гена argA в бактериальном геноме или усилением активности в пересчете на молекулу белка (может быть названа как специфическая активность), кодируемого этим геном, по сравнению с немодифицированным штаммом, таким как штамм дикого типа или родительский штамм. Бактерия может быть модифицирована так, что активность белка ArgA в пересчете на клетку увеличена до 150% или более, 200% или более, 300% или более от активности белка в немодифицированном штамме, В качестве примера немодифицированного штамма-сравнения можно привести штаммы дикого типа микроорганизма семейства Enterobacteriaceae, такие как штамм Е.coli MG1655 (АТСС 47076), штамм W3110 (АТСС 27325), штамм Pantoea ananatis AJ13335 (PERM BP-6614) и т.д.

Термин «повышенная экспрессия гена argA» также может означать, что уровень экспрессии гена argA в модифицированном штамме выше, чем уровень экспрессии в немодифицированном штамме, например, штамме дикого типа или родительском штамме.

Способы, которые могут применяться для повышения экспрессии гена argA, включают, но не ограничиваются данными примерами, увеличение числа копий гена argA в бактериальном геноме (на хромосоме и/или автономно реплицирующейся плазмиде) и/или введение гена argA в вектор таким образом, что он становится способным увеличивать число копий и/или уровень экспрессии гена argA в бактерии семейства Enterobacteriaceae в соответствии с методами генной инженерии, известными для специалистов в данной области.

В качестве примеров таких векторов можно привести, но не ограничиться этим, векторы с широким кругом хозяев (broad-host-range vectors), например, pCM110, pRK310, pVK101, pBBR122, pBHR1 и подобные им. Множественные копии argA гена могут быть введены в хромосомную ДНК бактерии посредством, например, гомологичной рекомбинации, Mu-зависимой интеграции или подобными методами. Гомологичная рекомбинация может быть проведена с использованием многокопийной последовательности в хромосомной ДНК. Многокопийные последовательности в хромосомной ДНК включают, но не ограничиваются данными примерами, повторяющие участки ДНК или обращенные повторы на концах перемещающегося генетического элемента. Также, возможно введение argA гена в транспозон с целью введения в хромосомную ДНК нескольких копий гена argA. При использовании Mu-зависимой интеграции более чем 3 копии могут быть введены в хромосомную ДНК за один акт (Akhverdyan V.Z. et al., Biotechnol. (Russian), 2007, 3:3-20).

Повышение уровня экспрессии argA гена также может быть достигнуто путем модификации регуляторного участка, смежного с argA геном, или введением нативных и/или модифицированных чужеродных регуляторных участков. В качестве примеров регуляторных участков или последовательностей можно привести промоторы, энхансеры, аттенюаторы, сигналы терминации и анти-терминации транскрипции, рибосома-связывающие сайты