Способ для оптимизированного по мощности функционирования насоса, приводимого электродвигателем, с положительной обратной связью

Иллюстрации

Показать все

Изобретение относится к способу для оптимизированного по мощности функционирования насоса, приводимого электродвигателем, в гидравлической системе с по меньшей мере одним саморегулируемым потребителем. Заданный напор (Hsoll) насоса регулируется в зависимости от его объемного расхода (Q) в соответствии с регулируемой базовой характеристической кривой, которая определяется посредством предопределенного заданного значения (HK) характеристической кривой. Определяется накачиваемый насосом объемный расход (Q) и определяется его тренд (δQ), и в зависимости от объемного расхода (Q) и/или его тренда (δQ) заданное значение характеристической кривой (HK) повышается, когда объемный расход (Q) повышается, или уменьшается, когда объемный расход (Q) снижается. Изобретение направлено на обеспечение оптимального согласования гидравлической мощности насоса с его соответствующей рабочей точкой в гидравлической системе. 2 н. и 19 з.п. ф-лы, 13 ил.

Реферат

Изобретение относится к способу для оптимизированного по мощности функционирования насоса, приводимого электродвигателем, в гидравлической системе с по меньшей мере одним саморегулируемым потребителем, причем заданный напор насоса регулируется в зависимости от его объема в соответствии с регулируемой базовой характеристической кривой, которая определяется посредством предопределенного заданного значения характеристической кривой. Кроме того, изобретение относится к насосу, приводимому электродвигателем, c управляющей и регулирующей электроникой, которая выполнена с возможностью осуществления способа, соответствующего изобретению. Изобретение также относится к компьютерному программному продукту с инструкциями для выполнения соответствующего изобретению способа, когда он выполняется в управляющей и регулирующей электронике насоса.

При регулировании циркуляционных насосов для нагревательных установок в уровне техники известно регулирование согласно заданной характеристической кривой, например, так называемой Δр-v характеристике. Подобная Δр-v характеристика описывает линейную взаимосвязь между нагнетаемым насосом объемным расходом Q и вырабатываемым им дифференциальным давлением Δр или его напором Н. Регулирование насоса согласно этой характеристической кривой подстраивает гидравлическую мощность насоса в зависимости от объемного напора. Недостатком при подобном решении является то, что характеристическая кривая является жестко заданной, то есть может изменяться лишь незначительно. Правда известно выполнение насосов с возможностью ручной установки характеристической кривой, при которой положение и/или крутизна характеристической кривой в семействе характеристических кривых, в общем случае, может выбираться дискретно или может изменяться. Однако выходящая за пределы этого коррекция мощности насоса не производится.

Вообще и при оптимальном расчете и произвольно выбранной форме характеристической кривой предоставляемая насосом гидравлическая мощность при регулировании вдоль подобной жесткой характеристической кривой не в каждой рабочей точке соответствует потребности установки, так как требуемый напор зависит не только от объемного расхода, но и от положения потребителей в гидравлической сети, которые требуют этого объемного расхода. По этой причине расчет насоса всегда либо должен завышаться, потому что он выбирается по наиболее слабому звену при условиях «наихудшего случая», либо должен занижаться, так что это может привести к недостаточному обеспечению отдельных потребителей в гидравлической системе.

Поэтому задачей настоящего изобретения является предоставить способ, который гарантирует оптимальное согласование гидравлической мощности насоса с его соответствующей рабочей точкой в гидравлической системе.

Эта задача решается способом с признаками пункта 1 формулы изобретения. Предпочтительные варианты осуществления изобретения представлены в зависимых пунктах формулы изобретения.

В соответствии с изобретением предложен способ для оптимизированного по мощности функционирования насоса, приводимого электродвигателем, в гидравлической системе с по меньшей мере одним саморегулируемым потребителем, при котором заданный напор насоса регулируется в зависимости от его объемного расхода вдоль регулируемой базовой характеристической кривой, которая определена посредством предопределенного заданного значения характеристической кривой, причем определяется накачиваемый насосом объемный расход и определяется его тренд, и в зависимости от объемного расхода и/или его тренда заданное значение характеристической кривой повышается, когда объемный расход повышается, или сокращается, когда объемный расход снижается.

Идея, лежащая в основе изобретения, заключается в том, чтобы посредством гидравлической системы поддерживать предопределенное изменение объемного расхода, дополнительно к обычному регулированию по Δр-v характеристике, посредством подстройки характеристической кривой и, тем самым, мощность насоса. Если объемный расход в гидравлической системе снижается, то это изменение поддерживается не только посредством снижения мощности насоса на основе регулирования по характеристической кривой, но и дополнительно посредством уменьшения заданного значения характеристической кривой. Если объемный расход повышается, то выполняется повышение мощности насоса. С точки зрения техники регулирования этот основополагающий способ действий обозначается как положительная обратная связь.

Изменение объемного расхода в гидравлической системе обусловлено посредством саморегулируемых потребителей. Саморегулируемый потребитель в смысле предложенного изобретения - это такой потребитель, собственный объемный расход которого непосредственно регулируется посредством исполнительного механизма, например, термостатированного клапана на потребителе. Если гидравлическая система включает в себя множество подобных саморегулируемых потребителей, они все вместе оказывают влияние на необходимый общий объемный расход, который должен нагнетать насос. Если этот объемный расход не достигается, то возникает недостаточное снабжение по меньшей мере одного потребителя, и напротив, при превышении этого необходимого объемного расхода происходит избыточное снабжение, при котором ненужная энергия потребляется для насоса, так как насос в этом случае работает против частично закрытого клапана.

За счет соответствующего изобретению способа названные случаи функционирования исключаются тем, что гидравлическая мощность насоса постепенно изменяется. Происходит отклонение от классического регулирования вдоль жесткой характеристической кривой. Более того, заданное значение характеристической кривой, определяющее характеристическую кривую, постепенно изменяется, чтобы приблизить гидравлическую мощность насоса к актуальной рабочей точке.

Заданное значение НК характеристической кривой является при этом таким значением, которое указывает на положение характеристической кривой в семействе характеристических кривых (на параметрической поверхности) насоса, то есть на так называемой H/Q-диаграмме при известном или ранее установленном наклоне (крутизне). В случае Δр-постоянной характеристики с наклоном, равным нулю, то есть такой характеристики, вдоль которой напор HSoll насоса должен поддерживаться постоянным по объемному расходу Q, заданное значение НК характеристической кривой указывает этот поддерживаемый постоянным напор HSoll насоса. Если, альтернативно, применяется Δр-переменная характеристика, то есть такая характеристика, которая описывает линейную зависимость напора HSoll насоса от объемного расхода Q, эта характеристика может определяться, например, через ее точку пересечения с кривой максимального числа оборотов, которая тогда соответствует заданному значению НК характеристической кривой. Наклон кривой может, например, определяться тем, что при объемном расходе, равном нулю, имеет место напор, который соответствует половинному заданному значению характеристической кривой.

Повышение или уменьшение заданного значения характеристической кривой может осуществляться тем, что c предопределенным заданным значением HK,alt характеристической кривой суммируется значение М положительной обратной связи, причем значение М положительной обратной связи является положительным, когда объемный расход Q увеличивается, и является отрицательным, когда объемный расход Q падает. Это означает, что заданное значение НК характеристической кривой при положительном тренде δQ повышается, а при отрицательном тренде δQ снижается. Тренд δQ объемного расхода поддерживается, следовательно, посредством соответствующего изобретению способа тем, что регулирующее действие простого регулирования по характеристической кривой, в частности Δр-v характеристике, усиливается. Предопределенное заданное значение HK,alt характеристической кривой может быть заданным вручную опорным заданным значением HK,ref, которое является решающим при пуске в эксплуатацию насоса, или оно может быть последним определенным регулированием заданным значением HK. Это означает, что предопределенное ранее заданное значение HK,alt характеристической кривой в рамках регулирования является последним предопределенным заданным значением HK характеристической кривой.

Предложенное изобретение представляет тем самым при этом типе положительной обратной связи расширение обычного регулирования по Δр-v характеристике. В отличие от этого регулирования, соответствующая изобретению подстройка мощности насоса приводит не к регулированию по жесткой характеристической кривой, а к режиму работу, согласованному с потребностями. Фактическая рабочая точка насоса не лежит на установленной перед этим вручную или в заводских условиях опорной характеристической кривой и не перемещается вдоль таковой. Она перемещается скорее вдоль любой траектории относительно этой установленной опорной характеристической кривой. Следует отметить, что в рамках изобретения не обязательно в основу должно быть положено регулирование по Δр-v характеристике. Напротив, характеристическая кривая может иметь любую форму, в частности, также может быть постоянной.

Объемный расход Q может, в частности, измеряться посредством сенсора объемного потока. Предпочтительным образом он может определяться из внутренних электрических параметров насоса или его электродвигателя. Определение объемного расхода может осуществляться непрерывно или дискретно по времени. Соответственно определение тренда δQ объемного расхода может осуществляться непрерывно или дискретно по времени. В смысле предложенного изобретения под трендом δQ понимается временное изменение объемного расхода Q. Оно может особенно простым образом вычисляться из производной dQ/dt временной характеристики объемного расхода Q(t), если объемный расход Q(t) регистрируется непрерывно. При дискретном по времени измерении объемного расхода Q(tv) можно вместо производной применять разностное отношение ΔQ/ΔT для определения временного изменения объемного расхода Q. Так как производная или разностное отношение измеренных значений объемного расхода приводят к слишком сильным шумам, является особенно предпочтительным, в качестве меры изменения объемного расхода применять разность текущего объемного расхода Q и его арифметического среднего ( Q ¯ ) по непосредственно прошедшему временному интервалу Т. Временной интервал Т может составлять, например, от 5 до 20 минут, предпочтительно примерно 10 минут. Он перемещается с течением времени, так что арифметическое среднее может рассматриваться как скользящее среднее значение.

Кроме того, является предпочтительным, определенный объемный расход Q умножать на нуль, если он сравнительно меньше заданного минимального значения Qmin. Аналогичным образом, предпочтительно, определенный тренд δQ умножать на нуль, если он сравнительно меньше заданного минимального значения δQmin. Это вызывает подавление малых значений объемного расхода или изменений объемного расхода. Таким способом могут отфильтровываться малые колебания объемного расхода или колебания тренда относительно нулевой точки. Фильтрация может осуществляться умножением объемного расхода или тренда на оконную функцию, значения которой в интервале между соответствующим минимальным значением Qmin или δQmin и его парным дополнением -Qmin и -δQmin равны нулю, а вне его - единице. Это может осуществляться в рамках предварительной фильтрации измеренного объемного расхода или определенного тренда. В качестве минимального значения Qmin для объемного расхода Q может применяться, например, значение между 0,005 и 0,02 м3/час, предпочтительно примерно 0,01 м3/час. Кроме того, в качестве минимального значения δQmin для тренда δQ может применяться, например, значение между 5 и 10 м3/час за 10 минут.

Определение значения М положительной обратной связи может осуществляться различным образом. Оно может рассчитываться, например, из зависимой от объемного расхода Q(t) и/или его тренда δQ функции f(Q), f(δQ) или f(Q, δQ). Предпочтительно вычисление осуществляется на основе зависимой от тренда δQ функции f(δQ) или на основе зависимой от объемного расхода Q и от тренда δQ функции f(Q, δQ).

Особенно простой формой положительной обратной связи является пропорциональная тренду δQ положительная обратная связь согласно функции М(δQ)=k·δQ, причем k - положительная константа, с помощью которой изменение объемного расхода δQ масштабируется и согласуется относительно физической единицы. В качестве альтернативы, значение М положительной обратной связи может определяться на основе функции М(δQ)=k·(δQ)3. Подобная функция определяет кубическую функциональную взаимосвязь между трендом δQ и положительной обратной связью М. В другой альтернативной форме выполнения значение М положительной обратной связи может определяться на основе функции М(δQ)=k·arctan(δQ). Также в обоих последних вариантах k является положительной константой, с помощью которой изменение объемного расхода δQ масштабируется и согласуется относительно физической единицы. Функция арктангенса имеет преимущество, состоящее в том, что она для положительных и отрицательных трендов δQ асимптотически сближается с определенным через k предельным значением, так что достигается ограничение по величине значения положительной обратной связи, которое улучшает стабильность регулирования.

Названные функции имеют свойство, заключающееся в том, что они симметричны, в частности, обладают симметрией по точкам относительно нулевой точки, так что для положительного и отрицательного тренда δQ с одинаковыми величинами ассоциируется соответственно одинаковое по величине значение М положительной обратной связи.

Согласно другой альтернативной формуле расчета для значения положительной обратной связи, оно может вычисляться из асимметричной функции. Асимметричная функция имеет преимущество, заключающееся в том, что для положительного и отрицательного тренда δQ с одинаковыми величинами ассоциируются соответственно соразмерные различные значения М положительной обратной связи. Таким способом для положительных и отрицательных изменений объемного расхода может определяться разная по величине положительная обратная связь. При этом предпочтительно значение положительной обратной связи выбирается соразмерно большим для положительных трендов δQ, чем для отрицательных трендов δQ, чтобы быстро реагировать на возрастание объемного расхода, то есть на повышенную потребность объемного расхода.

Предпочтительным образом, вычисление осуществляется из асимметричной функции, которая описывает наложение двух сдвинутых относительно друг друга, различным образом взвешенных функций арктангенса. Это может осуществляться, например, согласно следующей функции положительной обратной связи:

где М - значение положительной обратной связи, δQ - тренд, а1, а2, b1 и b2 - соответственно положительные масштабирующие коэффициенты, с1, с2, d1 и d2 - соответственно положительные коэффициенты смещения и Е - сдвиг для коррекции нулевой точки, и причем а1 не равно а2. Сдвиг Е соответствует значению суммы вышеупомянутых функций арктангенса для тренда δQ, равного нулю. Естественные точки симметрии функций арктангенса из нулевой точки сдвинуты относительно друг друга на коэффициенты смещения с1, с2.

В особенно предпочтительном варианте осуществления соответствующего изобретению способа масштабирующий коэффициент а1 сдвинутой вправо функции арктангенса выбирается большим, чем масштабирующий коэффициент а2 сдвинутой влево функции арктангенса. Это означает, что большая положительная обратная связь М применяется для положительных трендов δQ, и меньшая положительная обратная связь М применяется для отрицательных трендов δQ. Тем самым достигается более быстрая реакция регулирования насоса на увеличение объемного расхода по сравнению с реакцией на уменьшение объемного расхода. Это, в свою очередь, предотвращает недостаточное снабжение потребителей, в частности, при открытии исполнительных механизмов, регулирующих их объемный расход.

Вышеназванные примерные функции М(δQ) имеют действие, состоящее в том, что при постоянном объемном расходе Q, то есть при тренде δQ, равном 0, имеет место положительная обратная связь М, равная 0, то есть вычисленная согласно этим функциям М(δQ) положительная обратная связь М при постоянном объемном расходе Q ведет к поддержанию текущего заданного напора НК.

В отдельных случаях, однако, в гидравлической системе могут иметь место нелинейные эффекты, которые могут иметь следствием остановку течения, например, в случае термического колебания или в случае закрывающегося клапана обратного течения в одной или нескольких частях гидравлической системы. Остановка течения может также возникать тогда, когда существует потребность в объемном расходе отдельных потребителей, которая более не может обеспечиваться. Чтобы избежать остановки течения и, тем самым, повысить устойчивость соответствующего изобретению способа по отношению к таким нелинейным эффектам, предпочтительно к положительной обратной связи М добавлять сдвиг М0, если тренд δQ является положительным или нулевым.

При вышеназванных примерных функциях М(δQ) положительная обратная связь М вычисляется исключительно в зависимости от изменения объемного расхода δQ. Однако оказалось, что в общем случае при малом объемном расходе Q положительная обратная связь М может выбираться большей, чем при больших объемных расходах. Изменение объемного расхода δQ при изменении заданного напора HSoll может вычисляться непосредственно на основе параболы сети трубопроводов: H=d·Q2, так как объемный расход рассчитывается согласно Q=√(H/d). Так как сопротивление d сети трубопроводов стоит в знаменателе этого выражения, при крутых характеристических кривых установок с высоким сопротивлением d сети трубопроводов изменение заданного напора HSoll вызывает меньшее изменение объемного расхода Q, чем при более «отлогих» характеристических кривых установок с меньшим сопротивлением d сети трубопроводов. Поэтому является рациональным положительную обратную связь М при малом объемном расходе Q выбирать большей, чем при большом объемном расходе Q. Поэтому в соответствии с изобретением можно для вычисления положительной обратной связи М дополнительно применять текущий объемный расход Q согласно функции М=f(Q, δQ).

В простой форме выполнения ранее вычисленная в зависимости от изменения объемного расхода δQ положительная обратная связь М умножается на зависимую от объемного расхода Q функцию масштабирования, например, S(Q)=Smax/(1+Q/Q0), так что М(Q, δQ)=S(Q)·f(δQ).

Дополнительная мера для повышения устойчивости соответствующего изобретению способа может быть реализована путем ограничения значения М положительной обратной связи соразмерно ее высоте. Тем самым можно избежать слишком сильных изменений характеристических кривых. Предпочтительным образом значению М положительной обратной связи присваивается максимальное значение M_max, если оно превышает верхнее предельное значение. Соответствующим образом значению М положительной обратной связи может присваиваться минимальное значение M_min, если оно спадает ниже нижнего предельного значения. Таким образом, текущее вычисленное значение М положительной обратной связи может сравниваться с верхним пределом M_max, а также с нижним пределом M_min и при превышении верхнего предела M_max или спадании ниже нижнего предела M_min устанавливаться на верхний предел M_max или нижний предел M_min.

В качестве альтернативы, ограничение значения положительной обратной связи может осуществляться простым способом посредством вышеназванной функции положительной обратной связи. За счет этого устраняются дополнительные этапы сравнения и присвоения значений. Так как функция арктангенса для нарастающих значений асимптотически сходится к значению π/2, а для спадающих значений - к значению -π/2, то за счет соответствующего выбора константы k или масштабирующего коэффициента а1 для сдвинутой вправо функции арктангенса можно реализовать верхнее ограничение диапазона для значения М положительной обратной связи, а за счет соответствующего выбора масштабирующего коэффициента а2 для сдвинутой влево функции арктангенса реализовать нижнее ограничение диапазона для значения М положительной обратной связи. Предпочтительным образом при симметричной функции М(δQ) положительной обратной связи типа арктангенса константа k выбирается как k=M_max·2/π. Предпочтительным образом ограничение при несимметричной функции М(δQ) положительной обратной связи типа арктангенса достигается тем, что масштабирующий коэффициент а1 выбирается как максимальное значение M_max, а масштабирующий коэффициент а2 как минимальное значение M_min.

Альтернативно или в комбинации с ограничением значения М положительной обратной связи устойчивость соответствующего изобретению способа может быть улучшена за счет того, что повышение или снижение заданного значения НК характеристической кривой осуществляется только в определенном рабочем диапазоне. Этот рабочий диапазон может определяться, например, полосой вокруг установленной опорной характеристической кривой К, которая может устанавливаться для насоса в заводских условиях или вручную. Следует отметить, что в смысле предложенного изобретения «рабочий диапазон» должен пониматься не как рабочий диапазон насоса, а скорее как рабочий диапазон соответствующего изобретению принципа регулирования, который может быть наглядно представлен как рабочий диапазон насоса на H/Q-диаграмме.

Предпочтительным образом подобный рабочий диапазон образован таким образом, что заданное значение НК характеристической кривой ограничивается значением внутри диапазона между максимальным заданным значением HK,max и минимальным заданным значением HK,min, причем опорное заданное значение HK_ref установленной или устанавливаемой опорной характеристической кривой К лежит внутри этого диапазона. Так как изменение заданного значения НК характеристической кривой для базового регулирования по характеристической кривой, исходя из первоначально установленной опорной характеристической кривой К, вызывает сдвиг этой характеристической кривой К, то получается рабочий диапазон (полоса) вокруг этой опорной характеристической кривой К, который сверху ограничен той характеристической кривой, которая определяется посредством максимального заданного значения HK,max, снизу ограничен той характеристической кривой, которая определяется посредством минимального заданного значения HK,min, причем насос соответственно регулируется по текущей характеристической кривой внутри этого диапазона.

Альтернативно ограничению рабочего диапазона посредством полосы вокруг установленной опорной характеристической кривой К, рабочий диапазон может быть определен таким образом, что он лежит ниже установленной опорной характеристической кривой К. Это имеет преимущество, состоящее в том, что требуемая для работы насоса энергия минимизируется. Как показали опыты с обычно применяемыми в настоящее время Δр-v характеристиками, в общем случае не возникает недостаточное снабжение гидравлической системы, так что можно отказаться от работы в диапазоне выше предварительно установленной опорной характеристической кривой К. Поэтому предпочтительным образом заданное значение НК характеристической кривой ограничено значением внутри диапазона между максимальным заданным значением HK,max и минимальным заданным значением HK,min, причем максимальное заданное значение HK,max соответствует опорному заданному значению HK_ref установленной или устанавливаемой опорной характеристической кривой К.

В простом случае нижний предел рабочего диапазона образован прямой. Например, эта прямая может соответствовать прямой, получаемой параллельным сдвигом опорной характеристической кривой на определенное значение вниз. Если этот предел, напротив, определяется минимальным заданным значением HK,min, то может быть получена прямая, которая не только сдвинута вниз, но и ее наклон также становится больше. Это, в частности, было бы в том случае, когда заданное значение НК характеристической кривой таком образом определяет характеристическую кривую, что она при напоре НК пересекает кривую максимального числа оборотов и при 0,5*НК пресекает ось напора. В предпочтительном дальнейшем развитии изобретения нижняя граница рабочего диапазона, однако, образована не жестко заданной прямой или прямой, зависимой от опорной характеристической кривой, а определяется зависимой от объемного расхода Q функцией HK,min=f(Q).

Кроме того, является предпочтительным, осуществлять ограничение рабочего диапазона относительно больших объемных расходов Q. Поэтому в соответствии с изобретением повышение или снижение заданного значения НК характеристической кривой может осуществляться только тогда, когда объемный расход Q лежит ниже заданного опорного значения объемного расхода Q_ref. Предпочтительным образом это опорное значение объемного расхода Q_ref по существу соответствует половинному максимальному объемному расходу Q_max, то есть тому объемному расходу, который имеет место в рабочей точке, которая лежит в точке пересечения предварительно установленной опорной характеристической кривой с кривой максимального числа оборотов. Это имеет следующие предпосылки:

В рамках проектирования гидравлической установки проектировщик вычисляет так называемую расчетную точку установки, то есть расчетный объемный расход Q_A и соответствующий расчетный напор Н_А, см. фиг. 4а, 4b, на которых расчетная точка обозначена ссылочной позицией 4. Подлежащий применению насос выбирается проектировщиком таким образом, что расчетная точка лежит внутри семейства характеристических кривых (параметрической поверхности) насоса. Так как не любые параметры насоса являются доступными, расчетная точка лежит, как правило, заметно ниже кривой 2 максимального числа оборотов насоса. Ручная установка заданного значения Δр-v характеристики на этом насосе осуществляется таким образом, что регулировочная характеристическая кривая К проходит по возможности через расчетную точку, причем, ввиду дискретной возможности установки регулировочной характеристической кривой, в типовом случае имеются малые отклонения. Поэтому для работы насоса вблизи расчетной точки можно исходить из того, что на основе выполненного проектировщиком вычисления, напор предварительно установленной регулировочной характеристической кривой соответствует по существу потребности установки. По этой причине является рациональным работать вблизи расчетной точки насоса вдоль предварительно установленной регулировочной характеристической кривой, то есть опорной характеристической кривой, и снижение заданного значения характеристической кривой ниже этой опорной характеристической кривой выполнять только ниже опорного значения объемного расхода Q_ref, причем опорное значение объемного расхода Q_ref предпочтительно несколько ниже или равно объемному расходу Q_А в расчетной точке гидравлической системы.

В другом предпочтительном развитии соответствующего изобретению способа выполняется постепенное возвращение рабочей точки насоса в рабочий диапазон, если эта рабочая точка находится вне рабочего диапазона. Поэтому в соответствии с изобретением заданное значение НК характеристической кривой постепенно, ступенчато снижается, если оно превышает максимальное заданное значение HK,max, или постепенно ступенчато повышается, если оно снизилось ниже минимального заданного значения HK,min. Предпочтительным образом, в случае выхода из рабочего диапазона, положительная обратная связь может быть деактивирована или деактивируется. «Постепенно» в этой связи означает, что осуществляется только незначительное изменение заданного значения НК характеристической кривой. Если, например, выход из рабочего диапазона, исходя из рабочей точки при малом объемном расходе Q и малом напоре Н, вызван тем, что дополнительные клапаны открываются, так что рабочая точка перемещается из рабочего диапазона к большим объемным расходам, то заданное значение НК характеристической кривой в соответствии с изобретением повышается не скачкообразно на высокое значение. Напротив, это осуществляется путем постепенного возвращения заданного значения в рабочий диапазон. За счет этого могут исключаться неприятные шумы из-за быстрого изменения числа оборотов в гидравлической системе.

То, находится ли рабочая точка насоса вне рабочего диапазона, может отслеживаться путем сравнения с определяющими диапазон максимальным и минимальным значениями. Скорость возвращения может задаваться либо высотой шага (ступеньки) и/или шириной шага, то есть временной длительностью шага. Предпочтительным образом ступенчатое изменение заданного значения НК характеристической кривой находится в пределах от 1 см до 3 см, предпочтительно 2 см в минуту. В случае дискретного по времени определения объемного расхода Q ширина шага может соответствовать интервалу выборки или кратному значению интервала выборки. Так ширина шага может составлять 30 секунд, одну минуту или также быть больше. Могут применяться и любые другие значения ширины шага.

Изменение заданного значения НК характеристической кривой может осуществляться таким способом заново для каждого следующего временного интервала или для каждого следующего временного шага, пока текущая рабочая точка насоса продолжает находиться вне рабочего диапазона. Это означает, что заданное значение НК характеристической кривой насоса повторно незначительно подстраивается, если рабочая точка на следующем временном шаге продолжает находиться вне рабочего диапазона. Поэтому в соответствии с изобретением ступенчатое изменение заданного значения НК характеристической кривой повторяется так долго, пока оно вновь не окажется внутри диапазона между максимальным заданным значением HK,max и минимальным заданным значением HK,min. Преимущество такого способа действий заключается в непрерывном согласовании рабочей точки насоса, не вызывая нежелательных скачкообразных изменений состояния системы, которые могут привести к перерегулированиям и шумам течения.

Предложенный способ особенно предпочтительно может применяться для управления циркуляционным насосом, в особенности циркуляционным насосом нагревательной установки, в замкнутой гидравлической системе. В этом случае гидравлическая система может представлять собой нагревательную установку с по меньшей мере одним нагревательным элементом, снабжаемым посредством циркуляционного насоса нагревательной установки. Альтернативно, гидравлическая система может быть системой охлаждения, которая снабжает охлаждающие агрегаты в качестве потребителей охлаждающей жидкостью, которая перекачивается насосом охлаждающей жидкости.

Предпочтительным образом предложенный способ реализуется в управляющей и регулирующей электронике насоса, в частности подобного циркуляционного насоса, так что он может быть реализован в этой управляющей и регулирующей электронике.

Согласно этому применению, соответствующий изобретению способ образован программными инструкциями, которые образуют компьютерный программный продукт, который соответственно предназначен для выполнения способа и может выполняться на управляющей и регулирующей электронике насоса, чтобы приводить в действие насос. Поэтому изобретение также относится к компьютерному программному продукту с инструкциями для выполнения способа функционирования насоса, приводимого электродвигателем, когда он выполняется в управляющей и регулирующей электронике этого насоса.

Другие преимущества, признаки и свойства соответствующего изобретению способа поясняются ниже со ссылками на приложенные чертежи, на которых показано следующее:

фиг. 1а - схематичное представление способа регулирования согласно первому варианту выполнения,

фиг. 1b - схематичное представление способа регулирования согласно второму варианту выполнения,

Фиг. 1с - схематичное представление способа регулирования согласно третьему варианту выполнения с возвратом в диапазон,

Фиг. 1d - схематичное представление блока возврата в диапазон,

Фиг. 2а - схематичное представление предварительной обработки измерительного сигнала объемного расхода согласно первому варианту,

Фиг. 2b - схематичное представление предварительной обработки измерительного сигнала объемного расхода согласно второму варианту,

Фиг. 3а - определение значения положительной обратной связи согласно линейной зависимости от тренда объемного расхода,

Фиг. 3b - определение значения положительной обратной связи согласно линейной зависимости от тренда объемного расхода с учетом сдвига,

Фиг. 3с - определение значения положительной обратной связи на основе несимметричной функции,

Фиг. 3d - представление масштабирующей функции S(Q),

Фиг. 4а - H/Q-диаграмма с рабочим диапазоном в форме полосы и траектория рабочей точки,

Фиг. 4b - H/Q-диаграмма с ограниченным рабочим диапазоном,

Фиг. 4с - H/Q-диаграмма с рабочим диапазоном в форме облака.

На фиг.1 показана схема регулирования, в которой реализован соответствующий изобретению способ для оптимизированного по мощности функционирования циркуляционного насоса, приводимого электродвигателем, в нагревательной системе. Циркуляционный насос является компонентом насосного агрегата 11, который включает в себя этот насос и приводящий его электродвигатель.

Нагнетаемый насосным агрегатом 11 объемный расход Q измеряется и подается на регулирование 9 по характеристической кривой. Согласно предварительно установленной регулировочной характеристической кривой, которая согласно примеру по фиг. 1а является Δр-v характеристикой, с объемным расходом Q сопоставляется и выдается заданное значение HSoll напора для насоса. Это заданное значение HSoll напора представляет управляющее воздействие последующего контура регулирования и подается на регулятор 10. Одновременно измеряется напор Н и с отрицательным знаком подается по обратной связи на вход регулятора, так что на входе регулятора приложено регулируемое отклонение в форме разности из заданного значения HSoll напора и текущего напора Н.

Регулятор 10 выполнен как PID (пропорционально-интегрально-дифференциальный) регулятор. Он выдает в качестве управляющего воздействия напряжение, которое пропорционально устанавливаемому заданному числу оборотов n. Это управляющее воздействие n задается насосному агрегату 11 или приводящему насос электродвигателю. В зависимости от числа оборотов n насосного агрегата 11, устанавливается его дифференциальное давление Δр или его напор Н. Кроме того, посредством числа оборотов насосного агрегата 11 также устанавливается объемный расход Q, но объемный расход Q зависит от гидравлического сопротивления нагревательной системы, то есть от степени открытия регулирующих клапанов потребителя. Это описанное регулирование по характеристической кривой соответствует уровню техники.

В соответствии с изобретением это регулирование по характеристической кривой расширено тем, что предварительно установленная характеристическая кривая в регулировании 9 по характеристической кривой при работе насосного агрегата 11 непре