Полотно инактивирующее вирусы

Иллюстрации

Показать все

Предлагаемое полотно способно инактивировать попадающие на него вирусы даже в присутствии липидов и белков и независимо от наличия у вируса оболочки. Полотно способно инактивировать попадающие на него вирусы и содержит основу полотна и тонкодисперсные частицы соединения моновалентной меди и/или тонкодисперсные частицы йода, причем тонкодисперсные частицы соединения моновалентной меди и/или тонкодисперсные частицы йода нанесены на упомянутую основу полотна. Тонкодисперсные частицы соединения моновалентной меди представляют собой частицы, по меньшей мере, одного из следующей группы: хлорид, ацетат, сульфид, йодид, бромид, пероксид и тиоционат. Полотно способно инактивировать различные виды вирусов. Вирусы инактивируются даже в присутствии липидов и белков. 11 н. и 3 з.п. ф-лы, 3 ил., 4 табл., 13 пр.

Реферат

Область техники, к которой относится изобретение.

Настоящее изобретение представляет собой полотно инактивирующее вирусы, в частности изобретение относится к полотну инактивирущему вирусы, способному инактивировать различные попадающие на него вирусы даже в присутствии липидов и белков и независимо от наличия у этих белков оболочки. Уровень техники.

В последние годы появились сообщения о смертельных случаях, вызванных инфекциями новых типов вирусов, таких как вирус атипичной пневмонии (SARS, Severe Acute Respiratory Syndrome) и вирус птичьего гриппа. В настоящее время в связи с развитием способности вирусов к переносу и мутациям мир столкнулся с риском «пандемии», то есть эпидемии вирусной инфекции по всей планете, и возникла неотложная потребность в принятии ответных мер. Для решения этой проблемы спешно разрабатываются антивирусные препараты на основе вакцин. Однако вакцины имеют собственную специфику и могут лишь предупреждать инфицирование конкретными вирусами. В больницах и госпиталях, нозокомиальная инфекция также является серьезной проблемой, что также рассматривается как и социальная проблема. Нозокомиальная инфекция представляет собой заразную инфекцию с MRSA (methicillin-resist Staphylococcus aureus) приносимую в больницу носителями или инфицированными больными или со штаммом MRSA в результате приемом антибиотиков. Такие заразные инфекции переходят от одних больных к другим больным и медицинскому персоналу посредством халатов, пижам, одеял, или медицинского оборудования или другого оборудования, например кондиуионеров. Следовательно, существует сильная потребность в разаработке анивирусного средства обладающего бактерицидным и антивирусным эффектом для различных вирусов и бактерий.

Для решения вышеописанной проблемы, разаработано полотно инактивирующее вирусы, использующее составную структуру, изготовленную из полимеров, содержащих неорганические пористые кристаллы, которые содержат антибактериальные ионы металлов, такие как ионы серебра или ионы меди (Патентная литература 1). Вирус инактивирующие агенты, содержащие растворенные в нем иодид-циклодекстрин клатрат соединения также были описаны (Патентная литература 2, 3, и 4). Перечень ссылок. Патентная литература

Патентная литература 1: выложенная патентная заявка Японии No.2006-291031

Патентная литература 2: выложенная патентная заявка Японии No.2006-328039

Патентная литература 3: выложенная патентная заявка Японии No.2007-39395

Патентная литература 4: выложенная патентная заявка Японии No.2007-39396

Раскрытие изобретения.

Техническая проблема.

Способы изготовления полимеров, содержащих в себе неорганические пористые кристаллы применимы для волокнистых тканей. Однако такие способы не применимы к покрытиям и полотнам, которые не используют волокна, а также неорганические материалы. Вирус, инактивирующий агент, использующий йод, является водорастворимым. Следовательно, при пропитке ткани или полотна таким вирус инактивирующим агентом, если ткань или полотно смачивается водой, компоненты растворятся в воде.

Вирусы классифицируются на те, которые не имеют оболочки, такие как норовирусы и те, которые имеют оболочку, такие как вирусы инфлюэнца. Хотя лекарственный препарат способен инактивировать вирус в оболочке, такой препарат может быть неэффективен по сношению к вирусам без оболочки. Когда вирус инактивирующее полотно применяется к повязке или используется, например, в качестве хирургической защитной повязки, липиды и белки, содержащиеся в крови или слюне, могут прилипать к инактивирующему полотну вследствии того, что изделие контактирует со ртом и носом инфицированного больного. Следовательно, требуется, чтобы вирусы были инактивированы даже при условии наличия липидов и белков. Однако, это условие не в вышеупомянутой патентной литературе.

Для решения описанных выше задач, настоящее изобретение представляет собой полотно, способное инактивировать различные попадающие на нее вирусы даже в присутствии липидов и белков и независимо от наличия у этих белков оболочки. Решение проблемы.

Первый аспект настоящего изобретения представляет собой полотно инактивирующее вирус, способное инактивировать вирусы, попадающие на него, отличающееся наличием основы полотна и тонкодисперсных частиц соединения моновалентной меди и/или тонкодисперсных частиц йода, причем тонкодисперсные частицы соединения моновалентной меди и/или тонкодисперсные частицы йода нанесены на упомянутую основу полотна. В представленном описании под вирус инактивирующим полотном понимается полотно, способное инактивировать вирусы (уменшать инвазивную способность вирусов и деактивровать их). Следовательно, идея вирус инактивирующего полотна заключается в присоединении к бумажному полотну основы полотна с целью инактивирования вирусов. В настоящем изобретении выражения: способность к инактивированию вирусов и антивирусная способность применяются с одинаковым смысловым значением.

Второй аспект изобретения представляет собой полотно инактивирующее вирусы в соответствии с первым аспектом, отличающееся тем, что тонкодисперсные частицы соединения моновалентной меди представляют собой частицы, по меньшей мере, одного из следующей группы: хлорид, ацетат, сульфид, йодид, бромид, пероксид, оксид, и тиоцинат.

Третий аспект изобретения представляет собой полотно инактивирующее вирусы в соответствии со вторым аспектом, отличающееся тем, что тонкодисперсных частиц соединения моновалентной меди представляют собой частицы, по меньшей мере, одного из следующей группы: CuCl, CuOOCCH3, CuI, CuBr, Cu2O, Cu2S, и CuSCN.

Четвертый аспект изобретения представляет собой полотно инактивирующее вирусы в соответствии с третьим аспектом, отличающееся тем, что тонкодисперсные частицы соединения йода представляют собой частицы, по меньшей мере, одного из следующей группы: CuI, AgI, SbI3, IrI4, GeI2, GeI4, SnI2, SnI4, TiI, PtI2, PtI4, PdI2, BiI3, AuI, AuI3, FeI2, CoI2, NiI2, ZnI2, HgI, и InI3.

Пятый аспект изобретения представляет собой полотно инактивирующее вирусы в соответствии с любым из аспектов с первого по четвертый, отличающуюся тем, что тонкодисперсные частицы соединения моновалентной меди и/или тонкодисперсные частицы йода удерживаются на полотне посредством группы других неорганических тонкодисперсных частиц, которые закреплены к полотну через химические кольца мономера силана и/или продукт полимеризации мономера силана.

Шестой аспект изобретения представляет собой покрывало для кровати, изготовленное с использованием вирус инактивирущего полотна, в соответствии с любым из аспектов с четвертого по пятый.

Седьмой аспект изобретения представляет собой защитный костюм, изготовленный с использованием вирус инактивирущего полотна, в соответствии с любым из аспектов с четвертого по пятый.

Восьмой аспект изобретения представляет собой перчатки, изготовленные с использованием вирус инактивирущего полотна, в соответствии с любым из аспектов с первого по пятый.

Девятый аспект изобретения представляет собой медицинскую салфетку, изговленную с использованием вирус инактивирущего полотна, в соответствии с любым из аспектов с первого по пятый.

Десятый аспект изобретения представляет собой медицинскую шапочку, изготовленную с использованием вирус инактивирущего полотна, в соответствии с любым из аспектов с первого по пятый.

Одиннадцатый аспект изобретения представляет собой бахилы для обуви, изготовленные с использованием вирус инактивирущего полотна, в соответствии с любым из аспектов с первого по пятый.

Двенадцатый аспект изобретения представляет собой фильтр, изготовленный с использованием вирус инактивирущего полотна, в соответствии с любым из аспектов с первого по пятый.

Тринадцатый аспект изобретения представляет собой киперную ленту, изготовленную с использованием вирус инактивирущего полотна, в соответствии с любым из аспектов с первого по пятый.

Четырнадцатый аспект изобретения представляет собой марлю, изготовленную с использованием вирус инактивирущего полотна, в соответствии с любым из аспектов с первого по пятый.

Пятнадцатый аспект изобретения представляет собой обои, изготовленные с использованием вирус инактивирущего полотна, в соответствии с любым из аспектов с первого по пятый. Технический результат изобретения.

В рамках настоящего изобретения предлагается полотно, которое легко инактивирует различные вирусы, попадающие на его поверхность даже в присутсвии белков, например, капель слюны и крови.

Краткое описание чертежей

Фиг.1 представляет собой поперечное сечение полотна инактивирующего вирусы в первом варианте осуществления.

Фиг.2 представляет собой поперечное сечение полотна инактивирующего вирусы во втором варианте осуществления.

Фиг.3 представляет собой поперечное сечение полотна инактивирующего вирусы в третьем варианте осуществления.

Осуществление изобретения.

Далее со ссылкой на фиг.1 подробно описан первый вариант осуществления.

На фиг.1 изображен вид части увеличенного поперечного сечения полотна инактивирующего вирусы 100, в первом варианте осуществления представленного изобретения. Неорганические тонкодисперсные частицы, имеющие способность инактивации вирусов (далее вирус инактивирующие частицы), соединены связующим компонентом с поверхностью основы полотна 1, используемого в качестве подложки.

В первом варианте осуществления настоящего изобретения мономер силана или олигомер полученый полимеризацией мономера силана используемого как связующий компонент, по причине описанной далее. Следовательно, в качестве примера для цели понимания, вирус инактивирующие тонкодисперсные частицы 2 связаны с поверхностью полотна 1 химической связью 5 через мономер силана (или продукт полимеризации полимера силана). В данном случае под диммером понимается олигомер. В данном варианте осуществления используется армированный материал 4 для прочного скрепления вирус инактивирующих тонкодисперсных частиц 2 с основой полотна 1, как показано на фигуре 1. Армированный материал добавляется только при необходимости прочного скрепления вирус инактивирующих тонкодисперсных частиц 2 с основой полотна 1.

В первом варианте осуществления, вирус инактивирующие тонкодисперсные частицы 2 являются соединениями моновалентной меди и/или тонкодисперсными частицами йода и могут инактивировать вирусы как при наличии у них оболочки, так при ее отсутствии.

Следовательно, в качестве первого варианта осуществления изобретения рассматривается антивирусный агент включающий, по меньшей мере, одного из следующих неорганических тонкодисперсных частиц из группы, состоящей из тонкодисперсных частиц соединения моновалентной меди и/или тонкодисперсных частиц йода. Вирус инактивирующие частицы 2 в первом варианте осуществления способны инактивировать вирусы даже при наличии белков и липидов.

В настоящее время механизм инактивации вирусов тнкодисперсными частицами неясен. Предполагается, что это механизм работает следующим образом. При вступлении инактивирующих вирус тонкодисперсных частиц 2 в контакт, с влагой воздуха или каплями, часть тонкодисперсных частиц 2 подвергается окислительно-восстановительной реакции. Это оказывает воздействие на поверхностный электрический заряд, либо мембранный белок, либо ДНК вирусов, попадающих на полотно 100 в первом варианте осуществления, в результате чего вирусы обезвреживаются.

К размерам инактивирующих вирус тонкодисперсных частиц не предъявляется особых ограничений, поэтому задать их может специалист в данной области. Однако средний диаметр частиц предпочтительно больше или равен 1 нм и меньше 500 нм. Если средний диаметр частиц менее 1 нм, инактивирующие вирус тонкодисперсные частицы утрачивают физическую стабильность и склеиваются друг с другом. Следовательно, в этом случае сложнее равномерно разместить частицы на фильтрующем элементе 1. Если средний диаметр частиц превышает 500 нм, адгезия между частицами и фильтрующим элементом 1 оказывается ниже, чем в случае, когда средний диаметр частиц попадает в пределы вышеуказанного диапазона. Средний диаметр частиц в данном случае представляет собой средний объемный диаметр.

К типу инактивирующих вирус тонкодисперсных частиц 2 служащих в качестве активного ингредиента также не предъявляется особых ограничений.

Однако предпочтительно, чтобы соединение моновалентной меди являлось частицами хлорида, ацетата (соединения ацетата), сульфида, йодида, бромида, пироксида, оксида, тиоцината или их композиций. Более предпочтительно, чтобы соединением тонкодисперсными частицами соединения моновалентной меди являлись частицы, по меньшей мере, выбранные из следующей группы: CuCl, CuOOCCH3, CuI, CuBr, Cu2O, Cu2S, и CuSCN. Предпочтительно, чтобы тонкодисперсными частицами йода являлись частицы, по меньшей мере, частицы, выбранные из следующей группы: CuI, AgI, SbI3, IrI4, GeI2, GeI4, SnI2, SnI4, TlI, PtI2, PtI4, PdI2, BiI3, AuI, AuI3, FeI2, CoI2, NiI2, ZnI2, HgI, и InI3. Более конкретно, в первом варианте осуществления, для фиксации к вирус инактивирующему полотну может использоваться только один тип частиц 2, либо для фиксации к основе полотна 1 может использоваться два или боле типа частиц.

В первом варианте осуществления тонкодисперсные вирус инактивирующие частицы 2 прикрепляются к поверхности основы полотна 1 с помощью связующего компонента. Как описано выше, на фиг.1, в качестве связующего компонента используется мономер силана (или его продукт полимеризации). Тем не менее, может быть использован любой другой связующий компонент. На используемый связущий компонент не налагается особых ограничений. Например, могут использоватся следущие связущие вещества: синтетические полимеры, такие как полиэфирные полимеры, амино полимеры, эпоксидные полимеры, полиуретановые полимеры, акриловые полимеры, водорастворимые полимеры, полимеры на основе винила, фтористые полимеры, силиконовые полимеры, полимеры на целлюлозной аснове, фенольные полимеры, ксилолные полимеры и толуольные полимеры, а также натуральные полимеры, такие как олифа, например касторовое масло, льняное масло и тунговое масло.

В настоящее варианте осуществления, мономер силана 3 или олигомер получаемые с помощью полимеризации мономера силана используются в качестве связующего комонента. Вследствии того, что эти мономеры и олигомеры имеют низкие молекулярные массы, они не охватывают тонкодисперсные вирус инактивриующие частицы 2 целиком и маловероятно, что будет предотвращен контакт между тонкодисперсными частицами и вирусами, попадающими на основу полотна 1.

Следовательно, использование мономера силана 3 (или продукта его полимеризации) в качестве связующего вещества способствует эффективной инактивации вирусов.

Вследствии того, что мономер силана является прочным связующим услучшается адгезия основы полотна 1, и тонкодисперсные вирус инактивирующие частицы 2 более стабильно удерживаются на основе полотна 1.

В число конкретных примеров мономера силана, используемого для полотна инактивирующего вирусы 100 в первом варианте осуществления, входят мономеры силана, представленные общей формулой X-Si(OR)n (n - целое число от 1 до 3). При этом Х представляет собой функциональную группу, которая взаимодействует с органическим веществом: например, винильная группа, эпоксидная группа, стириловая группа, метакриловая группа, акрилоксигруппа, изоцианатная группа, полисульфидная группа, аминогруппа, меркаптогруппа и хлорогруппа. Каждая группа OR представляет собой гидролизуемую алкоксигруппу, такую как метоксигруппа или этоксигруппа, при этом три функциональные группы в мономере силана могут быть одинаковыми или разными. Эти алкоксигруппы, включающие метокси- и этоксигруппы, гидролизуются с образованием силанольных групп. Известна высокая реакционность такой силанольной группы, винильной группы, эпоксигруппы, стириловой группы, метакриловой группы, акрилоксигруппы, изоцианатной группы и функциональных групп, имеющих ненасыщенную связь, и других подобных. В частности, в полотне инактивирующем вирусы 100, в первом варианте осуществления, инактивирующие вирус тонкодисперсные частицы прочно удерживаются на поверхности основы полотна 1 химическими связями 5 за счет мономера силана с высокой реакционностью.

Примеры мономера силана, представленного приведенной выше общей формулой, включают: винилтрихлорсилан, винилтриметоксисилан, винилтриэтоксисилан, винилтриацетоксисилан,

N-β-(N-винилбензиламиноэтил)-γ-аминопропилтриметоксисилан, гидрохлорид

N-(винилбензил)-2-аминоэтил-3-аминопропилтриметоксисилана,

2-(3,4-эпоксициклогексил)этилтриметоксисилан,

3-глицидоксипропилтриметоксисилан,

3-глицидоксипропилметилдиэтоксисилан,

3-глицидоксипропилтриэтоксисилан, пара-стирилтриметоксисилан,

3-метакрилоксипропилметилдиметоксисилан,

3-метакрилоксипропилтриметоксисилан,

3-метакрилоксипропилметилдиэтоксисилан,

3-метакрилоксипропилтриэтоксисилан,

3-акрилоксипропилтриметоксисилан,

3-изоцианатпропилтриэтоксисилан,

бис(триэтоксисилилпропил)тетрасульфид,

3-аминопропилтриметоксисилан, 3-аминопропилтриэтоксисилан,

3-триэтоксисилил-N-(1,3-диметилбутилиден)пропиламин,

N-фенил-3-аминопропилтриметоксисилан,

N-2-(аминоэтил)-3-аминопропилметилдиметоксисилан^

N-2-(аминоэтил)-3-аминопропилтриметоксисилан,

N-2-(аминоэтил)-3-аминопропилтриэтоксисилан,

3-меркаптопропилметилдиметоксисилан,

3-меркаптопропилтриметоксисилан,

N-фенил-3-аминопропилтриметоксисилан, специальные аминосиланы, 3-уреидопропилтриэтоксисилан, 3-хлорпропилтриметоксисилан, тетраметоксисилану тетраэтоксисилан, метилтриметоксисилан, метилтриэтоксисилан, диметилдиэтоксисилан, фенилтриэтоксисилан, гексаметилдисилазан, гексилтриметоксисилан, децилтриметоксисилан, силоксаны, содержащие гидролизуемые группы, олигомеры, содержащие фторалкильные группы, метилгидросилоксан и четвертичные аммониевые соли кремния.

В число олигомеров на основе силана входят имеющиеся в продаже олигомеры КС-893, KR-500, Х-40-9225, KR-217, KR-9218, KR-213 и KR-510, которые являются продукцией фирмы Shin-Etsu Chemical Co., Ltd. Эти олигомеры на основе силана возможно использовать по отдельности, в виде смеси двух или более из них или в виде смеси с одним, двумя или более вышеописанными мономерами силана.

Как было объяснено выше, в полотне инактивирующем вирусы 100 в первом варианте осуществления, вирус инактивирующие тонкодисперсные частицы 2 удерживаются на основе полотна при помощи мономера силана или олигомера с, по крайней мере, частью открытой поверхности частиц.

Следовательно, вероятность контакта попадающих на поверхность полотна инактивирующего вирусы 100 вирусов и бактерий с вирус инактивирующими тонокдисперсными частицами 2 может быть выше, чем в случае, когда инактивирующие вирус тонкодисперсные частицы закреплены на основе полотна 1 с использованием такого связующего вещества как полимер. Это позволяет эффективно обезвреживать вирусы даже при использовании небольшого количества инактивирующих вирус тонкодисперсных частиц 2.

Инактивирующие вирус тонкодисперсные частицы прочно закреплены на основе полотна 1 химическими связями с мономером силана или его олигомером, поэтому количество инактивирующих вирус тонкодисперсных частиц, отделяющихся от основы полотна 1, значительно ниже, чем в том случае, когда эти частицы покрыты и закреплены, например, обычным связующим компонентом. Таким образом, полотно инактивирующее вирусы 100 данного варианта осуществления способно сохранять свои антивирусные свойства в течение более длительного времени. Инактивирующие вирус тонкодисперсные частицы могут удерживаться за счет реакции конденсации, амидных связей, водородных связей, ионных связей, Ван-дер-Ваальсовых сил или физической адсорбции. Этого эффекта можно достигнуть за счет выбора подходящего мономера силана.

В первом варианте осуществления отсутствуют конкретные ограничения на способ удержания инактивирующих вирус тонкодисперсных частиц 2 на основе полотна 1, причем этот способ может выбрать специалиста данной области. Например, соответствующие тонкодисперсные частицы могут быть рассеяны на основе полотна 1. Неорганические тонкодисперсные частицы могут содержаться в виде комплексов частиц с двух- или трехмерной структурой. В частности, инактивирующие вирус тонкодисперсные частицы могут быть агрегированы в виде точек, островков или тонкой пленки. Если инактивирующие вирус тонкодисперсные частицы существуют в виде трехмерных комплексов, они содержат частицы, связанные с основой полотна 1 посредством мономера силана или его олигомера 3(такие частицы называют инактивирующими вирус тонкодисперсными частицами 2а), и частицы, связанные с основой полотна 1, по меньшей мере, посредством инактивирующих вирус тонкодисперсных частиц 2а.

Предпочтительно, чтобы инактивирующие вирус тонкодисперсные частицы 2 удерживались на основе полотна 1 в виде трехмерных комплексов, поскольку на поверхности основы полотна 1 образуется большое число мелких неровностей, которые препятствуют адгезии пыли и тому подобных веществ к основе полотна 1. Подавление адгезии пыли и тому подобных веществ позволяет полотну 100 сохранять антивирусные свойства в течение более длительного времени.

В полотне инактивирующем вирусы 100 в первом варианте осуществления в дополнение к инактивирующим вирус тонкодисперсным частицам может использоваться функциональный материал для придания полотну 100 желаемых свойств. Этот функциональный материал может удерживаться на поверхности основы полотна 1.

В число примеров функционального материала входят другие антивирусные агенты, антибактериальные агенты, противогрибковые агенты, противоаллергенные агенты и катализаторы. Подобный функциональный материал возможно закреплять на основе полотна 1, инактивирующих вирус тонкодисперсных частицах и т.п. с помощью связующего вещества. Как и в случае инактивирующих вирус тонкодисперсных частиц, функциональный материал может быть связан с основой полотна 1 посредством химических связей между мономером силана или его олигомером, связанным с поверхностью функционального материала.

Независимо от того связан или нет функциональный материал с основой полотна, инактивирующие вирус тонкодисперсные частицы 2 могут быть связаны с основой полотна через дополнительный упрочняющий наполнитель (наполнитель с твердым покрытием) 4 дополнительно к мономеру силана или олигомеру 3, как показано на фигуре 1. В далнейшем описании материалы, связанные с основой полотна 1 (такие материалы включают вирус инактививрующие тонкодисперсные чатицы 2, мономер силана 3 (или олигомер 3), и им подобные) будут именоваться составами для удерживания основы.

Специалист в данной области техники может соответствующим образом задать количество инактивирующих вирус тонкодисперсных частиц, удерживаемых полотном 100 в первом варианте осуществления, с учетом целевого назначения и способа применения полотна, а также размера тонкодисперсных частиц. Количество инактивирующих вирус тонкодисперсных частиц, в составе для удерживания основы, предпочтительно составляет от 1 до 80 процентов по массе от суммы общей массы веществ, а еще более предпочтительно - от 5 до 60 процентов по массе. Если количество инактивирующих вирус тонкодисперсных частиц составляет менее 1 процента по массе, антивирусная активность ниже, чем когда это количество попадает в пределы вышеуказанного диапазона. Если это количество превышает 80 процентов по массе, антивирусное действие не сильно отличается от того, когда это количество попадает в пределы вышеуказанного диапазона. Кроме того, связывающие свойства олигомера, образованного путем реакции конденсации мономера силана, снижаются и, следовательно, инактивирующие вирус тонкодисперсные частицы отделяются от основы полотна 1 легче, чем когда это количество находится в пределах вышеуказанного диапазона.

Далее будет описана основа полотна 1, на которой находятся вирус инатиирующие частицы 2. В первом варианте осуществления изобретения для полотна может использоваться любая основа при условии, что основа полотна 1 может быть химически связано с мономером силана или его олигомера 3, по крайней мере, на части поверхности основы полотна 1. Следовательно, в первом варианте осуществления, никакое особое ограничение не наложено на другие свойства основы полотна 1.

Также никакое особое ограничение не наложено на форму основы полотна 1, при условии, что основа имеет соответсвующую полотну форму.

Примером основы полотна 1, имеющего поверхность, с которой могут быть химически связаны мономер силана или его олигомер 3, является основа полотна 1, по крайне мере часть, которой состоит из любого из разнообразных полимеров, искусственных волокон, натуральных волокон, таких как хлопок, пенька, шелк, и Японская бумага, получаемая из натуральных волокон.

При изготовлении из полимера поверхности или полностью основы полотна 1 используется искусственный или натуральный полимер.

Примером такого полимера является: термопластичный полимер такой как полиэтилен полимеры, полипропилен полимеры, полистирол полимеры, ABS полимеры, AS полимеры, EVA полимеры, полиметилпентен полимеры, поливинил хлорид полимеры, поливинилиден хлорид полимеры, полиметил аркрилат полимеры, поливинил ацетат полимеры, полиамид полимеры, полиимид полимеры, поликарбонат полимеры, полиэтилен терефталат полимеры, полибутилен терефталат полимеры,полиацеталь полимеры, полиакрилат полимеры, полисульфон полимеры, поливинилиден фторид плимеры, Vectran (зарегистрированный товарный знак), и PTFE (политетрафторэтилен); биологически разлагаемый полимеры, такие как полимолочные полимеры, полигидроксибутират полимеры, модифицированные крахмал полимеры, поликапролактон полимеры, полибутилен сукцинат, полибутилен адипат терефталат полимеры, полибутилен сукцинат терефталат полимеры, и полиэтилен сукцинат полимеры; термореактивные полимеры такие как фенольные полимеры, карбомид полимеры, меламин полимеры, ненасыщенные полиэстер полимеры, диаллил фталлат полимеры, эпоксидные полимеры, эпоксидные акрилат полимеры, силикон полимеры, акриловые уретан полимеры, и уретан полимеры; эластомеры такие как силикон полимеры, полистирол эластомеры, полиэтилен эластомеры, полипропилен эластомеры, полиуретан эластомеры; и натуральные полимеры такие как глазурь.

В первом варианте осуществления изобретния, поверхность основы полотна 1 может быть сформирована из люого металла, такого как алюминий, нержавеющая сталь, железо и неорганическогоматериала, такого как стекло или керамика, при условии, что могут быть сформированы химические связи 5 с мономером силана или его олигомером.

В этом случае, как в случае полимерной подложки, например, ненасыщенная связь или реактивная функциональная группа мономера силана 3 может вступать в реакцию с гидрокси группой на поверхности металла посредством плимеризации описанной далее для формирования химических связей 5. В этом случае, врус инативирующие тонкодисперсные частицы 2 могут быть прикреплены к металлической основе полотна 1. Однако, когда функциональные группы, способные формировать химические свзяи 5 вводятся на поверхность основы полотна 1 с помощью мономера силана, мономер титана или тому подобное вещество, вирус инактивирующие тонкодисперсные частицы 2 удерживаются более прочно. Примерами функциональных групп, возникающих их мономера силана и вводимых в поверхность основы полотна 1 являются виниловые группы, эпоксидные группы, стириловые группы, меткакриловые группы, акрилокси группы, изоцианатные группы, и тиольные группы.

Основа 1 вирус инактивирующего полотна 100 в первом варианте осуществления будет описана более детально. Например, основа полотна в соответствии с первым вараинтом осуществления может быть изготовлена из волокон. Более конкретно, основа полотна 1 может быть из текстильной ткани, трикотажной ткани, нектанного материала, и тому подобного. Следовательно, вирус инактивирущее полотно может ипсользоваться для масок, шапочек, бахил, фильтров для воздушных кондиционеров, фильтров для воздухоочистителей, фильтров для вентиляторов, фильтров для транспортных средств, фильтров для устройств кондиционирования воздуха, фильтров для искусственной вентиляции, тепло и влагообменников (НМЕ), медицинских салфеток (медицинских защитных тканей и повязок, хирургических простыней, лент, марли, обоев, одежды, пододеяльников, инсектицидных сеток, и других таких как противомаскитные сетки.

Примером волокон, из которых состоит основа полотна 1 являются:

полимерные материалы, такие как полиэстер, полиэтилен, полипропилен, поливинил хлорид, полиэтилен терефталат, полибутилен терефталат, политетраметилен терефталат, нейлон, акрил, политетрафлуоротилен, поливиниловый сприт, Кевлар, полиакрильная кислота, полиметил метакриалат, вискозагауоп, купра, Тенкель, Полиносик, ацетат, триацетат, хлопок, пенька, шерсть, шелк, и бамбук; и металлы, такие как алюминий, железо, нержавещая сталь, латунь, медь, вольфрам, и титан.

Дополнительный элемент, такой как пленка или лист, может быть уложен на поверхность вирус инактивирущего полотна 100 в первом варианте осуществления. В результате вирус инактивирующее полотно может, например, стать водостойкой. С такими свойствами могут быть изготовлены высокотехнологичные защитные костюмы и медицинские перчатки, способные препятствовать распространению вирусов и зараженной крови. Также могут быть изготовлены тканые повязки, и покрывала для больниц и больничного персонала.

Проницаемая пленка или лист не пропускающие воду, но пропускающие воздух (влагу), предпочтительно применяются для укладки на поверхность полотна, обеспечивая комфорт для ее пользователя.

Более конкретно, в зависимости от назначения, используется пленка или лист на основе общих коммерчески доступных продуктов.

Клеящее вещество и любое подобное может быть нанесено на, по крайней мере, одну основную поверхность вирус инаткивирующего полотна 100 в первом варианте осуществления изобретения, так что пользователь может легко прилепить лист к маске, стене или полу. Более конкретно, вирус инактивирующее полотно может быть изготовлено путем соединения обычного полотна и вирус инактивирующего полотна в соответствии с первым вариантом осуществления.

Выполнение основы полотна 1 в первом варианте осуществления не ограничено воздупроницаемой структурой и может препятствовать прохождению воздуха, т.е. может иметь защитную функцию. Более конкретно, основа полотна 1 может быть выполнена в форме пленки с использованием любого из следующих материалов: полимеры такие кака полиэстер, полиэтилен, полиамид, поливинил хлорид, поливинилиден фторид, поливиниловый спирт, поливинил ацетат, полиамид, полиамид имид, политетрафторэтилен, и тетрафторэтилен-этилен; полимерные листы, такие как поликарбонат полимерные листы и пленки, винил хлоридные листы, фторуглеродные полимерные листы, полиэтиленовые листы, силиконовые полимерные листы, нейлоновые листы, ABS листы,, и карбаматные листы; и металлы такие как титан, алюминий, нержавеющая сталь, магний и латунь.

Для придания поверхности основы полотна воздухозащитных свойств предпочтительна заблаговременная гидрофилизация, которую проводят путем обработки ее поверхности коронным разрядом, атмосферной плазмой или пламенем для повышения адгезии тонкодисперсных вирус инактивирующих частиц и основы полотна 1. Далее, если листовой материал изготовлен из металла, то предпочтительно удалять эмульсию для смазки, продукты коррозии и им подобные, адгезивно связанные с поверхностью, это осуществляют, например, с помощью растворителя, кислоты или щелочи. Помимо этого, поверхность основы полотна можно также окрасить, на нее может быть нанесен рисунок и тому подобное.

Вирус инактивирующее полотно 100 с тонкодисперсными вирус инактивирующими частицами, имеющее воздухозащитные свойства, может использоватся в различных областях, к их примеру относятся: обои, окна, жалюзи, покрытия для столов, сумки для хранения еды, пленки для пищи, чехля для клавиатур, тач панели и чехлы для них, медицинские салфетки, материалы для внутренней отделки зданий (типа больниц), материалы для внутренней отделки поездов и автомобилей, листовой материал для автомобилей, чехлы для сидений, оборудование, используемое при работе с вирусами, грязеустойчивые листовые материалы для дверей и половых настилов, масок для аппаратов искусственного дыхания и их деталей.

Как было описано, к основе полотна 1 может добавляться усиливающий материал 4 для удерживания тонкодисперсных вирус инактивирующих частиц. Любой выше описанный вид полимера может использоваться в качестве усиливающего материала. Мономер силана иной, чем соединение мономера силана 3, может использоваться в качестве усиливающего материала.

Далее приведено подробное описание способа изготовления вирус инактивирующего полотна 100 в первом варианте осуществления, на которой расположены инактивирующие вирус тонкодисперсные частицы.

Вначале, по меньшей мере, одно вещество из числа соединений моновалентной меди и йодидов. После чего выбранный материал измельчают до частиц порядка микрометров с использованием струйной мельницы, молотковой мельницы, шаровой мельницы или вибрационной мельницы для получения инактивирующих вирус тонкодисперсных частиц. Измельчение производится без особых ограничений любым из влажных и сухих способов.

Затем измельченные инактивирующие вирус тонкодисперсные частицы растворяют, например, в воде, метаноле, этаноле, МЭК, ацетоне, ксилоле или толуоле. В случае необходимости, на данном этапе производства, в смеси растворяют также усиливающий материал 4 и функциональные материалы. Затем при необходимости добавляют диспергирующий агент, такой как сурфактант, и полученную в результате смесь диспергируют и измельчают с помощью таких устройств, как бисерная мельница, шаровая мельница, песочная мельница, валковая мельница, вибрационная мельница или гомогенизатор. Затем в дисперсию добавляется мономер силана 3 до получения суспензии содержащей тонкодисперсные вирус инактивирующие частицы 2. При получении суспензии описанным выше способом диаметр инактивирующих вирус тонкодисперсных частиц и вторых неорганических тонкодисперсных частиц уменьшается, в результате чего первые инактивирующие вирус тонкодисперсные частицы 2 располагаются на поверхности основы полотна 1, без излишних промежутков между частицами 2. Это позволяет увеличить плотность расположения инактивирующих вирус тонкодисперсных частиц, таким образом, достигаются хорошие антивирусные свойства.

Дисперсия может быть подготовлена использованием таких способов как, погружение, распыление, валковое нанесение, нанесение ракелем, покрытие методом центрифугирования, глубокая печать, офсетная печать, трафаретная печать или струйная печать. При необходимости растворитель удаляют путем нагревания и высушивания и других подобных способов. Затем функциональные группы на поверхности основы полотна 1 химически связывают с мономером силана (образование химических связей 5)посредством графт-полимеризации с использованием повторного нагревания или графт-полимеризации с использованием облучения инфракрасными лучами, ультрафиолетовыми лучами, электронным пучком или радиационными лучами, например γ-лучами. Во время графт-полимеризации, вирус иактивирующие тонкодисперсные частицы связываются друг с другом с помощью мономера силана или его олигомера.

Затем, при необходимости, в соответствии с первым вариантом осуществления, пленка или адгезив наклеивается на основу полотна 1, например, с использованием, горячей накатки.

Описанное выше вирус инактивирующее полотно 100 в первом варианте осуществления защищает от различных видов вирусов, незави