Лечение сиртуин 1 (sirt1)-связанных заболеваний путем ингибирования натурального антисмыслового транскрипта
Иллюстрации
Показать всеИзобретение относится к области молекулярной биологии и медицины. Предложено применение олигонуклеотида длиной 10-30 нуклеотидов, который специфически направлен на природный антисмысловой транскрипт сиртуина 1 (SIRT1), для профилактики или лечения связанного с сиртуином 1 (SIRT1) заболевания или расстройства, где указанный олигонуклеотид повышает экспрессию сиртуина 1 (SIRT1), и где природный антисмысловой транскрипт обладает нуклеотидной последовательностью с любой из SEQ ID NO:2-5. 5 н. и 14 з. п. ф-лы, 20 ил., 4 пр.
Реферат
ПЕРЕКРЕСТНАЯ ССЫЛКА
Настоящая заявка заявляет приоритет предварительной заявки США № 61/119965, поданной 4 декабря 2008 года, и предварительной заявки США № 61/157255, поданной 4 марта 2009 года, и предварительной заявки США № 61/259072, поданной 6 ноября 2009 года, указанные заявки включены в описание во всей полноте посредством ссылки.
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Варианты воплощения изобретения включают в себя олигонуклеотиды, модулирующие экспрессию и/или функции SIRT1 и ассоциированных молекул.
УРОВЕНЬ ТЕХНИКИ
Гибридизация ДНК-РНК и РНК-РНК является важной во многих аспектах функционирования нуклеиновой кислоты, включая репликацию, транскрипцию и трансляцию ДНК. Гибридизация также является главным способом в ряде способов, с помощью которых либо обнаруживают определенную нуклеиновую кислоту, либо изменяют ее экспрессию. Антисмысловые нуклеотиды, например, нарушают экспрессию генов путем гибридизации с РНК-мишенью, препятствуя, таким образом, сплайсингу, транскрипции, трансляции и репликации РНК. Антисмысловая ДНК обладает тем дополнительным свойством, что гибриды ДНК-РНК служат в качестве субстрата для расщепления рибонуклеазой H, активность которой показана в большинстве клеточных типов. Антисмысловые молекулы могут быть доставлены в клетки, как в случае с олигодезоксинуклеотидами (ODN), или они могут быть экспрессированы из эндогенных генов в виде молекул РНК. Недавно FDA одобрило применение антисмыслового лекарственного препарата, VITRAVENETM (для лечения цитомегаловирусного ретинита), что отражает терапевтическое применение антисмысловых соединений.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Настоящее краткое изложение предоставляется, чтобы выразить в краткой форме природу и сущность изобретения. Краткое изложение предоставляется с пониманием, что оно не будет использоваться для интерпретации или ограничения объема или смысла формулы изобретения.
В одном варианте воплощения изобретение предоставляет способы ингибирования действия природного антисмыслового транскрипта с помощью антисмыслового олигонуклеотида (олигонуклеотидов), направленного на какой-либо участок природного антисмыслового транскрипта, что приводит к активации соответствующего смыслового гена. В описании также предусматривается, что ингибирование природного антисмыслового транскрипта может быть достигнуто с помощью siРНК, рибозимов и малых молекул, которые рассматривают в объеме настоящего изобретения.
Один вариант воплощения предоставляет способ модулирования функции и/или экспрессии полинуклеотида SIRT1 в клетках или тканях пациента in vivo или in vitro, включающий в себя взаимодействие указанных клеток или тканей с антисмысловым олигонуклеотидом длиной 5-30 нуклеотидов, где указанный олигонуклеотид характеризуется по меньшей мере 50% идентичностью последовательности с обратным комплементом полинуклеотида, включающим в себя 5-30 последовательных нуклеотидов в положениях нуклеотидов с 1 по 1028 SEQ ID NO:2 или нуклеотидов с 1 по 429 SEQ ID NO:3, или нуклеотидов с 1 по 156 SEQ ID NO:4, или нуклеотидов с 1 по 593 SEQ ID NO:5 (фиг.11) модулирование посредством этого функции и/или экспрессии полинуклеотида SIRT1 в клетках или тканях пациента in vivo или in vitro.
В другом предпочтительном варианте воплощения олигонуклеотид воздействует на природную антисмысловую последовательность полинуклеотидов SIRT1, например, полинуклеотидов, представленных в SEQ ID NO:2-5, и на их варианты, аллели, гомологи, мутанты, производные, фрагменты и комплементарные последовательности. Примеры антисмысловых олигонуклеотидов приведены в виде SEQ ID NO:6-47.
Другой вариант воплощения предоставляет способ модулирования функции и/или экспрессии полинуклеотида SIRT1 в клетках или тканях пациента in vivo или in vitro, включающий в себя взаимодействие указанных клеток или тканей с антисмысловым олигонуклеотидом длиной 5-30 нуклеотидов, где указанный олигонуклеотид характеризуется по меньшей мере 50% идентичностью последовательности с обратным комплементом антисмысловой последовательности полинуклеотида SIRT1; модулирование посредством этого функции и/или экспрессии полинуклеотида SIRT1 в клетках или тканях пациента in vivo или in vitro.
Другой вариант воплощения включает в себя способ модулирования функции и/или экспрессии полинуклеотида SIRT1 в клетках или тканях пациента in vivo или in vitro, включающий в себя взаимодействие указанных клеток или тканей с антисмысловым олигонуклеотидом длиной 5-30 нуклеотидов, где указанный олигонуклеотид характеризуется по меньшей мере 50% идентичностью последовательности со антисмысловым олигонуклеотидом для антисмыслового полипептида SIRT1; модулирование посредством этого функции и/или экспрессии полинуклеотида SIRT1 в клетках или тканях пациента in vivo или in vitro.
В предпочтительном варианте воплощения композиция включает в себя один или более антисмысловых олигонуклеотидов, которые связываются со смысловыми и/или антисмысловыми полинуклеотидами SIRT1.
В другом предпочтительном варианте воплощения олигонуклеотиды включают в себя один или более модифицированных или замещенных нуклеотидов.
В другом предпочтительном варианте воплощения олигонуклеотиды включают в себя одну или более модифицированных связей.
В еще одном варианте воплощения модифицированные нуклеотиды включают в себя модифицированные основания, содержащие фосфоротиоат, метилфосфонат, пептидные нуклеиновые кислоты, или молекулы закрытой нуклеиновой кислоты (LNA). Предпочтительно модифицированные нуклеотиды представляют собой молекулы закрытой нуклеиновой кислоты, включая α-L-LNA.
В другом предпочтительном варианте воплощения олигонуклеотиды вводят пациенту подкожно, внутримышечно, внутривенно или внутрибрюшинно.
В другом предпочтительном варианте воплощения олигонуклеотиды вводят в виде фармацевтической композиции. Схема лечения включает в себя по меньшей мере однократное ведение антисмысловых соединений пациенту; однако, указанное лечение может быть изменено для включения многократных доз в течение периода времени. Лечение может быть скомбинировано с одним или более другими типами терапии.
В другом предпочтительном варианте воплощения олигонуклеотиды инкапсулируют в липосоме.
Другие аспекты описаны ниже.
ВКЛЮЧЕНИЕ В ОПИСАНИЕ ИЗОБРЕТЕНИЯ СВЕДЕНИЙ ПУТЕМ ССЫЛКИ
Все публикации, патенты и патентные заявки, упомянутые в описании, включены посредством ссылки в том же объеме, как если бы каждая отдельная публикация, патент или патентная заявка специфически и по отдельности указаны как включенные посредством ссылки.
КРАТКОЕ ОПИСАНИЕ ФИГУР
Новые признаки изобретения изложены с подробностями в прилагаемой формуле изобретения. Наилучшее понимание признаков и преимуществ настоящего изобретения может быть получено с помощью ссылки на следующее подробное описание, которое предлагает пояснительные примеры осуществления изобретения, в которых используются принципы изобретения, и сопровождающихся чертежами, из которых:
На фиг.1 представлены результаты анализа ПЦР в реальном масштабе времени олигонуклеотидов, предназначенных для SIRT-антисмысловой последовательности CV396200. Результаты показывают, что уровни мРНК SIRT1 в клетках HepG2 значительно возрастают через 48 часов после обработки одной из siРНК, предназначенных для sirtas (sirtas_5, P=0,01). В тех же самых образцах уровни sirtas РНК существенно снижались после обработки sirtas_5, но не изменялись после обработки sirtas_6 и sirtas_7, которые также не оказывали эффекта на уровни мРНК SIRT1 (фиг.1B). Sirtas_5, sirtas 6 и sirtas_7 представляют собой SEQ ID NO:29, 30 и 31 соответственно.
На фиг.2 представлены результаты олигонуклеотидной прогулки по антисмысловой последовательности SIRT CV396200. Результаты анализа ПЦР в реальном масштабе времени показывают, что уровни мРНК SIRT1 в клетках HepG2 значительно возрастают через 48 часов после обработки тремя антисмысловыми олигонуклеотидами, предназначенными для sirtas. С CUR-0292 по CUR-309 соответствуют SEQ ID NO:6-23 соответственно.
На фиг.3 представлены результаты для PS, LNA и 2'О Me модифицированных олигонуклеотидов в клетках HepG2 (фиг.3A) и Vero76 (фиг.3B). Результаты анализа ПЦР в реальном масштабе времени показывают, что уровни мРНК SIRT1 в клетках HepG2 значительно возрастают через 48 часов после обработки сконструированными с включением группировок PS, LNA, 2'О Me и 2'О Me антисмысловыми олигонуклеотидами к антисмысловой последовательности SIRT1. Уровни мРНК SIRT1 в клетках Verо также возрастали через 48 часов после обработки PS- и LNA-модифицированными антисмысловыми олигонуклеотидами к антисмысловой последовательности SIRT1. Полосы, обозначенные как CUR-0245, CUR-0736, CUR-0688, CUR-0740 и CUR-0664, представляют собой SEQ ID NO:24-28, соответственно.
На фиг.4 представлены результаты ПЦР образцов биопсии жировой ткани обезьян. Результаты анализа ПЦР в реальном масштабе времени показывают увеличение уровней мРНК SIRT1 в образцах биопсии жировой ткани обезьян, получавших дозы CUR-963, олигонуклеотида, предназначенного для SIRT1-антисмысловой последовательности CV396200.1. CUR-963 соответствует SEQ ID NO:25.
На фиг.5 представлены результаты ПЦР первичных гепатоцитов печени обезьяны. Результаты анализа ПЦР в реальном масштабе времени показывают увеличение уровней мРНК SIRT1 после обработки CUR-0245, олигонуклеотидом против антисмысловой последовательности SIRT1. Полоса, обозначенная как CUR-0245, соответствует SEQ ID NO:24.
На фиг.6 представлены результаты для олигонуклеотидов, предназначенных для SIRT-антисмысловой последовательности CV396200. Результаты анализа ПЦР в реальном масштабе времени показывают, что уровни мРНК SIRT1 в клетках HepG2 значительно возрастают в присутствии одного из олигонуклеотидов, предназначенных для SIRT1-антисмысловой последовательности CV396200. Полосы, обозначенные как CUR-1230, CUR-1231, CUR-1232 и CUR-1233, соответствуют SEQ ID NO:32-35.
На фиг.7 представлены результаты, полученные с олигонуклеотидами, предназначенными для SIRT-антисмысловой последовательности CV428275. Результаты анализа ПЦР в реальном масштабе времени показывают, что уровни мРНК SIRT1 в клетках HepG2 значительно возрастают в присутствии двух олигонуклеотидов, предназначенных для SIRT1-антисмысловой последовательности CV428275. Полосы, обозначенные как CUR-1302, CUR-1304, CUR-1303 и CUR-1305, соответствуют SEQ ID NO:36-39.
На фиг.8 представлены результаты анализа ПЦР в реальном режиме времени. Результаты показывают, значительное увеличение уровней мРНК SIRT1 в клетках HepG2 через 48 часов после обработки одним из олигонуклеотидов, предназначенных для SIRT-антисмысловой последовательности BE717453. Полосы, обозначенные как CUR-1264, CUR-1265 и CUR-1266, представляют собой SEQ ID NO:40-42 соответственно.
На фиг.9 представлены результаты анализа ПЦР в реальном режиме времени. Результаты показывают, что уровни мРНК SIRT1 в клетках HepG2 значительно возрастают через 48 часов после обработки тремя олигонуклеотидами, предназначенными для SIRT1-антисмысловой последовательности AV718812. Полосы, обозначенные как CUR-1294, CUR-1297, CUR-1295, CUR-1296 и CUR-1298, представляют собой SEQ ID NO:43-47 соответственно.
На фиг.10 представлены SEQ ID NO:1: сиртуин Homo sapiens (гомолог регуляции 2 сайленсинга информации по типу скрещивания) 1 (S. cerevisiae) (SIRT1), мРНК (регистрационный номер NCBI: NM_012238.3) и SEQ ID NO:1a показывает геномную последовательность SIRT (экзоны показаны заглавными буквами, интроны показаны строчными буквами).
На фиг.11 представлены:
SEQ ID NO:2: расширенная природная антисмысловая последовательность (CV396200 - расширенная);
SEQ ID NO:3: природная антисмысловая последовательность (CV428275);
SEQ ID NO:4: природная антисмысловая последовательность (BE717453);
SEQ ID NO:5: природная антисмысловая последовательность (AV718812).
На фиг.12 показаны SEQ ID NO:6-23, * указывает фосфоротиоатную связь.
На фиг.13 показаны SEQ ID NO:24-28, * указывает фосфоротиоатную связь, + указывает LNA и m указывает 2'О Me.
На фиг.14 показаны SEQ ID NO:29-31, антисмысловая последовательность двухцепочечных тестируемых олигонуклеотидов, предназначенных для SIRT-антисмысловой последовательности CV396200, которые представляют собой sirtas_5, sirtas_6 и sirtas_7 соответственно.
На фиг.15 показаны SEQ ID NO:32, 33, 34 и 35, предназначенные для SIRT1-антисмысловой последовательности CV396200.
На фиг.16 показаны SEQ ID NO:36, 37, 38 и 39, предназначенные для SIRT1-антисмысловой последовательности CV428275.
На фиг.17 представлены SEQ ID NO:40, 41 и 42 предназначенные для SIRT1-антисмысловой последовательности BE717453.
На фиг.18 представлены SEQ ID NO:43, 44, 45, 46 и 47 предназначенные для SIRT1-антисмысловой последовательности AV718812.
На фиг.19 представлены SEQ ID NO:48-51. SEQ ID NO:38 соответствует экзону 4 природной SIRT1-антисмысловой последовательности CV396200, SEQ ID NO:49, 50 и 51 соответствуют последовательности прямого праймера, последовательности обратного праймера и репортерной последовательности соответственно.
На фиг.20 представлена SEQ ID NO:52, которая соответствует CUR-962, * указывает фосфоротиоатную связь и + указывает LNA.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Отдельные аспекты изобретения описаны ниже со ссылкой на примеры практического применения для иллюстрации. Следует понимать, что многочисленные конкретные детали, зависимости и способы изложены для обеспечения полного понимания изобретения. Специалист в данной области техники, однако, легко определит, что изобретение может быть применено на практике без одной или более специфических деталей или с применением других способов. Настоящее изобретение не ограничивается последовательностью действий или событий, поскольку некоторые действия могут происходить в другом порядке и/или одновременно с другими действиями или событиями. Кроме того, не все иллюстративные действия или события необходимы для воплощения методологии в соответствии с настоящим изобретением.
Предполагается, что все гены, названия генов, и продукты генов, раскрытые в описании, соответствуют гомологам из других видов, для которых применимы композиции и способы, раскрытые в описании. Таким образом, термины включают в себя, но без ограничения гены и продукты генов человека и мыши. Следует понимать, что если раскрыт ген или продукт гена из определенного вида, указанное раскрытие является только иллюстративным, и не должно интерпретироваться как ограничение, если только контекст, в котором он появляется, не указывает ясно другое. Таким образом, например, для генов, раскрытых в описании, которые в некоторых вариантах осуществления изобретения относятся к последовательностям нуклеиновых кислот млекопитающих и последовательностям аминокислот млекопитающих, подразумевается, что они охватывают гомологичные и/или ортологичные гены и продукты генов из других животных, включая, но без ограничения других млекопитающих, рыб, амфибий, рептилий и птиц. В предпочтительных вариантах осуществления изобретения гены или последовательности нуклеиновых кислот являются человеческими.
Определения
Терминология, применяемая в настоящем документе, используется только с целью описания определенных вариантов воплощения и не предназначена для ограничения изобретения. Применяемые в описании формы единственного числа предназначены также для включения множественных форм, если только не в контексте не указано иное. Кроме того, в тех случаях, когда термины "включающий в себя", "включает в себя", "имеющий", "имеет", "с", или их варианты применяют в подробном описании и/или в формуле, предполагается, что указанные термины являются инклюзивными сходным образом с термином "содержащий".
Термин "примерно" или "приблизительно" означает в пределах допустимой погрешности для конкретной величины, как определяет специалист в данной области техники, которая будет зависеть в частности от того, как величину измеряют или определяют, т.е. от ограничений системы измерения. Например, "приблизительно" может означать в пределах 1 или более чем 1 стандартного отклонения на практике в данной области техники. Альтернативно, "приблизительно" может означать диапазон до 20%, предпочтительно до 10%, более предпочтительно до 5% и еще более предпочтительно до 1% указанного значения. Альтернативно, в особенности с учетом биологических систем и процессов, термин может означать в пределах порядка величины, предпочтительно в пределах 5-кратного, и более предпочтительно в пределах 2-кратного значения величины. В случае если конкретные значения описаны в заявке и в формуле изобретения, и если не утверждается другое, следует исходить из того, что термин "приблизительно" означает в пределах допустимой погрешности для конкретной величины.
Применяемый в описании термин "мРНК" означает известный в настоящее время транскрипт (транскрипты) мРНК гена-мишени, и любые другие транскрипты, которые могут быть выявлены.
Под "антисмысловыми олигонуклеотидами" или "антисмысловым соединением" подразумевается молекула РНК или ДНК, которая связывается с другой РНК или ДНК (РНК-мишень, ДНК-мишень). Например, если антисмысловое соединение представляет собой РНК-олигонуклеотид, оно связывается с другой РНК-мишенью посредством РНК-РНК взаимодействий и изменяет активность РНК-мишени (Eguchi et al., 1991 Ann. Rev. Biochem. 60, 631-652). Антисмысловой олигонуклеотид может активировать или подавлять экспрессию и/или функции определенного полинуклеотида. Определение предназначено для включения любой чужеродной молекулы РНК или ДНК, которая полезна с терапевтической, диагностической или другой точки зрения. Указанные молекулы включают в себя, например, молекулы антисмысловых РНК или ДНК, интерферирующую РНК (РНКi), микроРНК, молекулы РНК ловушки, siРНК, ферментативную РНК, терапевтические редактирующие РНК, и РНК-агониста и РНК-антагониста, антисмысловые олигомерные соединения, антисмысловые олигонуклеотиды, олигонуклеотиды внешней вспомогательной последовательности (EGS), альтернативные сплайсеры, праймеры, зонды, и другие олигомерные соединения, которые гибридизуются по меньшей мере с частью нуклеиновой кислоты-мишени. По существу указанные соединения могут быть представлены в форме одноцепочечных, двухцепочечных, частично одноцепочечных, или циклических олигомерных соединений.
В контексте настоящего изобретения термин "олигонуклеотид" относится к олигомеру или полимеру рибонуклеиновой кислоты (РНК) или дезоксирибонуклеиновой кислоты (ДНК) или к их миметикам. Термин "олигонуклеотид", также включает в себя линейные или циклические олигомеры природных и/или модифицированных мономеров или связей, включая дезоксирибонуклеозиды, рибонуклеозиды, их замещенные и альфа-аномерные формы, пептидные нуклеиновые кислоты (PNA), закрытые нуклеиновое кислоты (LNA), фосфоротиоат, метилфосфонат и т.п. Олигонуклеотиды способны к специфическому связыванию с полинуклеотидом-мишенью с помощью регулярной структуры мономер-мономерных взаимодействий, таких как образование пар оснований по Уотсону-Крику, Хугстину или с помощью обратного хугстиновского типа спаривания оснований или т.п.
Олигонуклеотид может быть "химерным", а именно может включать в себя различные области. В контексте настоящего изобретения "химерные" соединения представляют собой олигонуклеотиды, которые содержат два или более химических областей, например, область (области) ДНК, область (области) РНК, область (области) PNA и т.д. Каждая химическая область образована по меньшей мере одной мономерной единицей, т.е. нуклеотидом в случае олигонуклеотидного соединения. Указанные олигонуклеотиды обычно включают в себя по меньшей мере одну область, где олигонуклеотид модифицирован, так чтобы он демонстрировал одно или более желаемые свойства. Желаемые свойства олигонуклеотида включают в себя, но без ограничения, например, повышенную устойчивость к нуклеазной деградации, повышенное клеточное поглощение, и/или повышенную аффинность связывания с нуклеиновой кислотой-мишенью. Различные участки олигонуклеотида могут, соответственно, обладать различными свойствами. Химерные олигонуклеотиды настоящего изобретения могут быть образованы как смешанные структуры двух или более олигонуклеотидов, модифицированных олигонуклеотидов, олигонуклеотидов и/или олигонуклеотидных аналогов, как описано выше.
Олигонуклеотид может быть образован из областей, которые могут быть соединены в "регистр", то есть когда мономеры соединены последовательно, как в нативной ДНК, или соединены с помощью спейсеров. Спейсеры предназначены для образования ковалентного “мостика” между участками, и в предпочтительных случаях имеют длину не более 100 атомов углерода. Спейсеры могут обладать различными функциональными свойствами, например, могут иметь положительный или отрицательный заряд, обладать свойствами связывания с определенными нуклеиновыми кислотами (интеркаляторами, веществами, связывающимися по бороздкам молекулы ДНК, токсинами, флуорофорами и т.д.), могут являться липофильными, вызывая образование определенных вторичных структур, как например, аланин-содержащие пептиды, которые индуцируют альфа-спирали.
Применяемые в описании "SIRT1" и "сиртуин 1" включают в себя всех членов семейства, мутантов, аллели, фрагменты, виды, кодирующие и некодирующие последовательности, смысловые и антисмысловые полинуклеотидные цепи и т.д.
Применяемый в описании "SIRT1" относится к гомологу регулятора 2 сайленсинга информации по типу скрещивания и является членом семейства белка сиртуиновой деацетилазы. Аминокислотная последовательность SIRT1 может быть найдена по номеру регистрации в GenBank, регистрационный номер NP.sub.--08509. SIRT1 является человеческим гомологом белка дрожжей Sir2 и проявляет NAD-зависимую деацетилазную активность.
Применяемые в описании формулировки сиртуин 1, SIRT1, сиртуин, гомолог 1 регулятора 2 сайленсинга информации по типу скрещивания, hSIR2, hSIRT1, NAD-зависимая деацетилаза сиртуин-1, SIR2L1, SIR2-подобный белок 1, рассматриваются как аналогичные в литературе и используются взаимозаменяемо в настоящей заявке.
Применяемый в описании термин "олигонуклеотид, специфичный для" или "олигонуклеотид, который воздействует на" относится к олигонуклеотиду, обладающему последовательностью (i), способной к образованию стабильного комплекса с частью гена-мишени, или (ii) способной к образованию стабильного дуплекса с частью транскрипта мРНК гена-мишени. Стабильность комплексов и дуплексов может быть определена с помощью теоретических расчетов и/или с помощью анализов in vitro. Типичные анализы для определения стабильности гибридизации комплексов и дуплексов описаны в примерах ниже.
Применяемый в описании термин "нуклеиновая кислота-мишень" охватывает ДНК, РНК (включая пре-мРНК и мРНК) транскрибируемую из указанной ДНК, и также кДНК полученную из такой РНК, кодирующие, некодирующие последовательности, смысловые или антисмысловые полинуклеотиды. Специфическая гибридизация олигомерного соединения с его нуклеиновой кислотой-мишенью препятствует нормальному функционированию нуклеиновой кислоты. Указанная модуляция функции нуклеиновой кислоты-мишени с помощью соединений, которые специфически гибридизуются с ней, обычно обозначается как "антисмысловая". Функции ДНК, которые модулируют, включают в себя, например, репликацию и транскрипцию. Функции РНК, которые затрагиваются, включают в себя все витальные функции такие как, например, транслокация РНК к месту трансляции белка, трансляция белка из РНК, сплайсинг РНК для получения одного или более видов мРНК, и каталитическая активность, в которой участвует РНК или которая облегчается с помощью РНК. Общим эффектом такого воздействия на функционирование нуклеиновой кислоты-мишени является модуляция экспрессии кодированного продукта или олигонуклеотидов.
РНК-интерференция "РНКi" опосредуется молекулами двухцепочечной РНК (dsРНК), которая обладает сайт-специфической гомологией со своими "мишенями" - последовательностями нуклеиновой кислоты (Caplen, N. J., et al. (2001) Proc. Natl. Acad. Sci. USA 98:9742-9747). В определенных вариантах осуществления настоящего изобретения медиаторы представляют собой "малые интерферирующие" РНК-дуплексы (siРНК), состоящие из 5-25 нуклеотидов. Получают siРНК путем процессинга dsРНК с помощью фермента РНКазы, известного как Dicer (Bernstein, E., et al. (2001) Nature 409:363-366). Продукты двухцепочечной siРНК участвуют в мультибелковом комплексе siРНК, называемом RISC (РНК Induced Silencing Complex). Вне связи с какой-либо конкретной теорией считают далее, что RISC направляется к нуклеиновой кислоте-мишени (соответствующей мРНК), где дуплекс siРНК взаимодействует специфичным образом с последовательностью и опосредует каталитическое расщепление (Bernstein, E., et al. (2001) Nature 409:363-366; Boutla, A., et al. (2001) Curr. Biol. 11:1776-1780). Малые интерферирующие РНК, которые могут быть использованы в соответствии с настоящим изобретением, могут быть синтезированы и применены согласно способам, которые хорошо известны в данной области техники, и которые знакомы специалисту в данной области техники. Малые интерферирующие РНК для применения в способах настоящего изобретения соответственно включают в себя от приблизительно 1 до приблизительно 50 нуклеотидов (nt). В примерах неограничивающих вариантов осуществления изобретения siРНК могут включать в себя от приблизительно 5 до приблизительно 40 nt, от приблизительно 5 до приблизительно 30 nt, от приблизительно 10 до приблизительно 30 nt, от приблизительно 15 до приблизительно 25 nt или приблизительно 20-25 нуклеотидов.
Отбор подходящих олигонуклеотидов облегчается при использовании компьютерных программ, которые автоматически выравнивают последовательности нуклеиновых кислот и показывают области идентичности или гомологии. Указанные программы используют для сравнения полученных последовательностей нуклеиновых кислот, например, при проведении поиска в базах данных, таких как GenBank или при секвенировании продуктов ПЦР. Сравнение последовательностей нуклеиновых кислот ряда биологических видов обеспечивает селекцию последовательностей нуклеиновых кислот, которые демонстрируют подходящую степень идентичности между видами. В случае генов, которые не были секвенированы, осуществляют саузерн-блоттинг, чтобы определить степень идентичности между генами видов-мишеней и других видов. При выполнении саузерн-блоттинга в условиях различной степени жесткости, как хорошо известно в данной области техники, можно получить приблизительный показатель идентичности. Указанные процедуры позволяют провести отбор олигонуклеотидов, которые демонстрируют высокую степень комплементарности с последовательностями нуклеиновой кислоты-мишени у субъекта, которые должны контролироваться и низкую степень комплементарности с соответствующими последовательностями нуклеиновых кислот других видов. Специалисту в данной области техники понятно, что существует значительная широта выбора подходящих областей генов для применения в настоящем изобретении.
Под "ферментной РНК" подразумевают молекулу РНК с ферментативной активностью (Cech, (1988) J. American. Med. Assoc. 260, 3030-3035). Ферментные нуклеиновые кислоты (рибозимы) действуют путем первичного связывания с РНК-мишенью. Такое связывание происходит с помощью связывающей мишень части ферментной нуклеиновой кислоты, которая расположена в непосредственной близости от ферментной части молекулы, которая способствует расщеплению РНК-мишени. Таким образом, ферментная нуклеиновая кислота сначала распознает и затем связывается с РНК-мишенью путем спаривания оснований, и после связывания с соответствующим сайтом, действует, ферментативно расщепляя РНК-мишень.
Под "РНК-ловушкой" подразумевают молекулу РНК имитирует природный домен связывания для лиганда. Таким образом, РНК-ловушка конкурирует с природной связывающей мишенью за связывание специфического лиганда. Например, показано, что избыточная экспрессия РНК транс-активации ответа (TAR) ВИЧ может действовать в качестве "ловушки" и эффективно связывать tat белок ВИЧ, предотвращая тем самым его связывание с последовательностями TAR, кодированными в РНК ВИЧ (Sullenger et al. (1990) Cell, 63, 601-608). Описанное выше является специфическим примером. Специалистам в данной области техники понятно, что это только один пример, и могут быть разработаны другие варианты осуществления с применением способов, широко известных в данной области техники.
Применяемый в описании термин "мономеры" обычно указывает мономеры, связанные фосфодиэфирными связями или их аналогами с образованием олигонуклеотидов, отличающихся по размеру от нескольких мономерных единиц, например, от приблизительно 3-4, до приблизительно нескольких сотен мономерных единиц. Аналоги фосфодиэфирных связей включают в себя: фосфоротиоат, фосфородитиоат, метилфосфонаты, фосфоселенат, фосфорамидат и т.п., которые более подробно описаны ниже.
Термин "нуклеотид" включает в себя природные и синтетические нуклеотиды. Специалисту в данной области техники должно быть понятно, что различные нуклеотиды, которые ранее рассматривали как "синтетические", впоследствии были обнаружены в природе. Таким образом, "нуклеотиды" включают в себя не только молекулы, содержащие известные пуриновые и пиримидиновые гетероциклы, но также их гетероциклические аналоги и таутомеры. Иллюстративные примеры типов нуклеотидов представляют собой молекулы, содержащие аденин, гуанин, тимин, цитозин, урацил, пурин, ксантин, диаминопурин, 8-оксо-N6-метиладенин, 7-деазаксантин, 7-деазагуанин, N4,N4-этаноцитозин, N6,N6-этано-2,6-диаминопурин, 5-метилцитозин, 5-(C3-C6)-алкинилцитозин, 5-фторурацил, 5-бромурацил, псевдоизоцитозин, 2-гидрокси-5-метил-4-триазолпиридин, изоцитозин, изогуанин, инозин и "синтетические" нуклеотиды, описанные в Benner et al., патент США № 5432272. Термин "нуклеотид" предназначен для включения каждого и всех примеров, а также их аналогов и таутомеров. Особый интерес представляют нуклеотиды, содержащие аденин, гуанин, тимин, цитозин и урацил, которые рассматриваются как природные нуклеотиды, в отношении терапевтического и диагностического применения у человека. Нуклеотиды включают в себя природные 2'-дезокси и 2'-гидрокси-сахара, которые описаны, например, в Kornberg and Baker, DNA Replication, 2nd Ed. (Freeman, San Francisco, 1992) as well as their analogs.
"Аналоги" в применении к нуклеотидам включают в себя синтетические нуклеотиды, содержащие модифицированные молекулы оснований и/или модифицированные молекулы сахаров (смотрите, например, описанные в целом Scheit, Nucleotide Analogs, John Wiley, New York, 1980; Freier & Altmann, (1997) Nucl. Acid. Res., 25(22), 4429-4443, Toulme, J.J., (2001) Nature Biotechnology 19:17-18; Manoharan M., (1999) Biochemica et Biophysica Acta 1489:117-139; Freier S. M., (1997) Nucleic Acid Research, 25:4429-4443, Uhlman, E., (2000) Drug Discovery & Development, 3: 203-213, Herdewin P., (2000) Antisense & Nucleic Acid Drug Dev., 10:297-310); 2'-O, 3'-C-связанные [3.2.0] бициклоарабинонуклеозиды (смотрите, например, N.K Christiensen., et al., (1998) J. Am. Chem. Soc, 120: 5458-5463; Prakash TP, Bhat B. (2007) Curr Top Med Chem. 7(7):641-9; Eun Jeong Cho, Joo-Woon Lee, Andrew D. Ellington Applications of Aptamers as Sensors Annual Review of Analytical Chemistry, July 2009, Vol. 2, Pages 241-264). Указанные аналоги включают в себя синтетические нуклеотиды, предназначенные для усиления связывающих свойств, например стабильности дуплекса или триплекса, специфичности или тому подобного.
Применяемый в описании термин "гибридизация" означает спаривание главным образом комплементарных цепей олигомерных соединений. Механизм спаривания включает в себя образование водородных связей, в контексте данного изобретения “гибридизация” означает образование водородных связей, которое может представлять собой образование водородных связей по Уотсону-Крику, Хугстину (Hoogsteen) и обратное связывание водородными связями по Хугстину между комплементарными нуклеозидными или нуклеотидными основаниями (нуклеотидами) цепей олигомерных соединений. Например, аденин и тимин являются комплементарными нуклеотидами, которые спариваются путем образования водородных связей. Гибридизация может происходить в различных условиях.
Антисмысловое соединение является "способным к специфической гибридизации" если связывание соединения с нуклеиновой кислотой-мишенью препятствует нормальному функционированию нуклеиновой кислоты-мишени, таким образом, что вызывает модуляцию функции и/или активности, и имеется достаточная степень комплементарности, чтобы избежать неспецифического связывания антисмыслового соединения с нецелевыми последовательностями нуклеиновой кислоты в условиях, в которых желательно осуществление специфического связывания, а именно в физиологических условиях в случае тестов in vivo или терапевтического лечения, и в условиях, в которых исследования проводят в случае тестов in vitro.
Применяемая в описании фраза "жесткие условия гибридизации" или "жесткие условия" относится к условиям, при которых соединение изобретения будет гибридизироваться со своей последовательностью-мишенью, но только с очень небольшим количеством других последовательностей. Жесткие условия зависят от последовательности и будут различными в различных обстоятельствах, и в контексте настоящего изобретения "жесткие условия", при которых олигомерные соединения гибридизуются с последовательностью-мишенью, определяются природой и составом олигомерных соединений и тестами, в которых их изучают. В целом жесткие условия гибридизации включают в себя низкие концентрации (<0,15 M) солей неорганических катионов, таких как Na++ или K++ (т.e. с низкой ионной силой), температуру более чем на 20-25ºC ниже Tm комплекса олигомерное соединение: последовательность-мишень, и присутствие денатурирующих реагентов, таких как формамид, диметилформамид, диметилсульфоксид или детергент додецилсульфат натрия (SDS). Например, скорость гибридизации уменьшается на 1,1% для каждого 1% формамида. Пример жестких условий гибридизации представляет собой 0,1× буфер хлорида натрия и цитрата натрия (SSC)/0,1% (масс/об) SDS при 60ºC в течение 30 минут.
Термин "комплементарный", применяемый в описании, относится к способности точного спаривания между двумя нуклеотидами одной или двух олигомерных цепей. Например, если нуклеиновое основание в определенном положении антисмыслового соединения способно образовывать водородные связей с нуклеиновым основанием в определенном положении нуклеиновой кислоты-мишени, при этом указанная нуклеиновая кислота-мишень, представляет собой ДНК, РНК или олигонуклеотидную молекулу, то положение, в котором образуется водородное связывание между олигонуклеотидом и нуклеиновой кислотой-мишенью, рассматривают как комплементарное положение. Олигомерное соединение и следующая ДНК, РНК или олигонуклеотидная молекула комплементарны друг другу, если достаточное число комплементарных положений в каждой молекуле занято нуклеотидами, которые могут образовывать водородные связи друг с другом. Таким образом, "способный к специфической гибридизации" и "комплементарный" являются терминами, которые используют, чтобы показать достаточную степень точного спаривания или комплементарности с помощью достаточного числа нуклеотидов, так что между олигомерным соединением и нуклеиновой кислотой-мишенью возникает стабильное и специфическое связывание.
Как понимают в данной области техники, последовательность олигомерного соединения не должна быть на 100% комплементарной со своей нуклеиновой кислотой-мишенью, чтобы быть способной к специфической гибридизации. Кроме того, олигонуклеотид может гибридизоваться через один или более сегментов, так что промежуточные или соседние сегменты не вовлекаются в событие гибридизации (например, петлевая структура, несоответствие или шпилечная структура). Олигомерные соединения настоящего изобретения составляют по меньшей мере приблизительно 70%, или по меньшей мере 75%, или по меньшей мере 80%, или по меньшей мере 85%, или по меньшей мере 90%, или по меньшей мере 95%, или по меньшей мере 99% комплементарности последовательности с участком-мишенью в пределах последовательности нуклеиновой кислоты-мишени, на которую они направлены. Например, антисмысловое соединение, в котором 18 из 20 нуклеотидов антисмыслового соединения комплементарны участку-мишени, и соответственно специфически гибридизуются, представляют собой 90 процентов комплементарности. В данном примере оставшиеся некомплементарные нуклеотиды могут быть сгруппированы или рассеяны комплементарными нуклеотидами и не обязательно должны быть сопряжены друг с другом или с комплементарными нуклеотидами. В связи с этим антисмысловое соединение длиной 18 нуклеотидов, содержащее 4 (четыре) некомплементарных нуклеотида, которые фланкируются двумя областями полной комплементарности с нуклеиновой кислотой-мишенью, будет обладать 77,8% общей комплементарности с