Волокнообразующие органоиттрийоксаналюмоксаны
Иллюстрации
Показать всеИзобретение относится к получению предкерамических волокнообразующих органо-иттрийоксаналюмоксанов. Предложен способ получения предкерамических волокно-образующих органоиттрийоксаналюмоксанов взаимодействием полиалкоксиалюмоксанов с раствором гидрата ацетилацетоната иттрия {[СН3(O)ССН=С(СН3)O]3Y·2,5Н2O}, концентрация которого 4,5-5,0 мас.% в ацетоуксусном эфире, в среде органического растворителя (гексан, толуол, этиловый спирт и т.п.) при температуре 20-50°C, при этом мольное отношении алюминий : иттрий (Al :Y) менее 200, с последующей отгонкой растворителей сначала при атмосферном давлении, а затем при пониженном давлении и температуре до 150°C. Технический результат - предложенный способ позволяет получать органоиттрийоксаналюмоксаны, являющиеся предшественниками тугоплавких оксидных волокон на основе оксида алюминия, модифицированных оксидами иттрия, способных выдерживать высокие температуры в окислительной среде. 4 ил., 2 табл., 7 пр.
Реферат
Изобретение относится к получению предкерамических волокнообразующих иттрийсодержащих органоалюмоксанов, общей формулы:
где m/k до 200;
1+x+2y+z=3; s+t+2r=3;
R-CnH2n+1, n=2-4;
R*-С(СН3)=СНС(O)OCnH2n+1;
R**-С(СН3)=СНС(O)СН3
- предшественников (прекурсоров) тугоплавких оксидных волокон на основе оксида алюминия, модифицированных оксидами иттрия.
Непрерывные оксидные керамические волокна на основе Al2O3 обладают высокой термической и химической стабильностью в широком диапазоне температур, низким удельным весом, поэтому они являются весьма перспективными для использования в качестве матричных и упрочняющих фаз при конструировании композиционных керамических теплозащитных, теплоизоляционных или конструкционных материалов, способных выдерживать высокие температуры в окислительной среде. Включение керамических волокон в полимеры, сплавы металлов и керамику позволяет получать композиционные материалы с улучшенными свойствами. Такие материалы необходимы для применения в перспективной авиационной и космической технике.
Из патентной литературы известно, что алюминаты иттрия со структурой граната являются основой для получения высокопрочной керамики и пьезоматериалов, люминофоров и полупроводников, активного материала в оптических и квантовых генераторах (SU №564290, МПК С04В 35/44, 1976; SU №647285, МПК С04В 35/00, 1979).
Система Y2O3-Al2O3 является также перспективным материалом для огнеупорных покрытий, керамики и полупроводниковых технологий. Кроме того, полупрозрачная керамика этой системы является незаменимой для изготовления оптических материалов.
Основные способы получения тугоплавких волокон, в частности из оксида алюминия, основаны на переработке золей и гелей на основе оксидов, либо соединений, содержащих оксидообразующие элементы, так как получение волокон путем переработки расплавов оксида алюминия или шихты из оксидов алюминия и иттрия затруднено вследствие высокой температуры плавления оксидов алюминия (Тпл=2044°C) и иттрия (Тпл=2410°C).
Наиболее близким к предложенному и принятым нами в качестве прототипа является 1. способ получения иттрийсодержащих органоалюмоксанов общей формулы: [(R**O)sY(OH)tOr]k·[Al(OR)1(OR*)x(OH)zOy]m, где k, m=3-12; s+t+2r=3; 1+x+2y+z=3; R-CnH2n+1, n=2-4; R*-C(CH3)=CHC(O)CnH2n+1, C(CH3)=CHC(O)OCnH2n+1; R**-С(СН3)=СНС(O)СН3 взаимодействием алюминийорганического соединения общей формулы: AlL3, где L - CnH2n+1 CnH2n+1O, (CnH2n+1)2AlO[(CnH2n+1)AlO]t, где n=1-4, t=2-10 с хелатирующим агентом, в качестве которого берут соединения формулы R*OH, где R*-C(CH3)=CHC(O)CnH2n+1; C(CH3)=CHC(O)OCnH2n+1, и гидратом ацетилацетоната иттрия {[СН3(O)ССН=С(СН3)O]3Y·2,5H2O} со спиртом в среде органического растворителя, при 0-150°C.
2. Связующие и пропиточные композиции, отличающиеся тем, что в качестве алюмоиттриевого соединения они содержат иттрийсодержащий органоалюмоксан общей формулы: [(R**O)sY(OH)tOr]k·[Al(OR)1(OR*)x(OH)z Oy]m, где k, m=3-12; s+t+2r=3; 1+x+2y+z=3; R-CnH2n+1, n=2-4; R*-C(CH3)=CHC(O)CnH2n+1, C(CH3)=CHC(O)OCnH2n+1; R**-C(CH3)=CHC(O)CH3, и дополнительно растворитель (алифатический спирт или углеводород), при следующем соотношении компонентов, мас. %:
иттрийсодержащий органоалюмоксан - 5-90
растворитель - остальное до 100.
Задачей данного изобретения является получение предкерамических волокнообразующих органоиттрийоксаналюмоксанов, из расплава которых можно вытягивать полимерные органоиттрийоксаналюмоксановые волокна, последующее отверждение и пиролиз которых приводил бы к образованию керамических оксидных волокон на основе оксида алюминия, модифицированных оксидами иттрия.
Для решения поставленной задачи предложен способ получения предкерамических волокнообразующих органоиттрийоксаналюмоксанов, заключающийся в том, что проводят взаимодействие полиалкоксиалюмоксанов с раствором гидрата ацетилацетоната иттрия {[СН3(O)ССН=С(СН3)O]3Y·2,5H2O}, концентрация которого 4,5-5,0 мас. % в ацетоуксусном эфире, в среде органического растворителя (гексан, толуол, этиловый спирт и т.п.) при температуре 20-50°C, при этом мольное отношение алюминий : иттрий (Al:Y) менее 200 с последующей отгонкой растворителей сначала при атмосферном давлении, а затем при пониженном давлении и температуре до 150°C.
Получение предкерамического волокнообразующего органоиттрийоксаналюмоксана осуществляют следующим образом: к раствору хелатированного полиалкоксиалюмоксана, полученного согласно изобретению, описанного в патенте РФ №2276155, МПК C07F 5/06, 2006, в органическом растворителе при перемешивании и температуре 30-50°C дозируют заданное количество раствора гидрата ацетилацетоната иттрия (концентрация 4,5-5,0 мас. %) в ацетоуксусном эфире. Далее реакционную смесь выдерживают при перемешивании и температуре 30-50°C в течение 30 минут. Потом отгоняют растворитель сначала при атмосферном давлении, а затем при пониженном давлении и температуре до 150°C. Полученный готовый продукт охлаждают до комнатной температуры. Отбирают пробы органоиттрийоксаналюмоксана и проводят анализ (ЯМР, ИК-спектроскопия, СЭМ, ТГА, элементный анализ, определение технологических температур: температуры размягчения - Т1 волокнообразования - Т2 и каплепадения (расплава) - Т3).
Волокнообразующие органоиттрийоксаналюмоксаны представляют собой твердые вещества с температурой плавления Т3, хорошо растворимые практически в любых органических растворителях, реагирующие с кислотами и щелочами, медленно гидролизующиеся влагой воздуха.
Сущность изобретения иллюстрируется следующими примерами.
Пример 1.
Аппарат, снабженный мешалкой, термометром, дозирующей воронкой, обратным холодильником, заполняют инертным газом и загружают 118,2 г раствора в органическом растворителе олигоэтилацетоацетатэтоксиалюмоксана {Al(OEt)1[(OC(CH3)=CHC(O)OC2H5)]x(OH)zOy}m (Al=5,3 мас. %). При 40-50°C добавляют 30 мл раствора в ацетоуксусном эфире гидрата ацетилацетоната иттрия [СН3(O)ССН=С(СН3)O]3Y·2,5H2O=1,4 г (концентрация 4,66 мас. %), мольное отношение Al:Y=66. Затем реакционную смесь выдерживают при перемешивании в течение 30 мин при 40-60°C. Далее отгоняют растворители при атмосферном давлении и продолжают отгон растворителей из реакционной массы в течение 3 часов при температуре 100-150°C и остаточном давлении 0,2-0,4 кПа. После охлаждения до комнатной температуры получают 53,75 г волокнообразующего органоиттрийоксаналюмоксана. Отбирают пробы на анализ (ЯМР, ИК-спектры, СЭМ, ТГА, элементный анализ, определение технологических температур).
Спектры ЯМР 1Н, 13С, 27Al, 17О и ИК-спектры волокнообразующих органоиттрийоксаналюмоксанов аналогичны спектрам ЯМР и ИК иттрийсодержащих органоалюмоксанов, полученных ранее (РФ №2451687, МПК C07F 5/06, C07F 5/00, 2012).
Изучение морфологии поверхности образцов и их элементного состава осуществлялось с использованием сканирующего электронного микроскопа JEOL JSM 6380 LA (напряжение 20 kV), совмещенного с энергодисперсионным анализатором (EDS). Результаты СЭМ с EDS представлены на рисунке 1.
Анализ ТГА проводили в температурном диапазоне от комнатной до 1500°C в окислительной атмосфере (воздух) в режимах ДСК/ТГ на приборе NETZSCH STA 409 Luxx, совмещенном с капиллярным квадрупольным масс-спектрометром NETZSCH QMS 403 С Aëolos®, результаты представлены на рисунках 2-4.
На термограмме [Al(OC2H5)1(OC(CH3)=CHC(O)OC2H5)x(OH)zOy]m·[(CH3(O)CCH=C(CH3)O)sY(OH)tOr]k (рисунок 2) наблюдается четырехступенчатое уменьшение массы (общая убыль массы ~77%), связанное в основном с удалением воды, CO2+ и СН3СО+. Изменение массы навески при температурах, не превышающих 150°C (первая стадия - порядка 7,5%), обусловлено удалением физически связанной воды. В интервале 200-500°C происходит термическая деструкция органоиттрийоксаналюмоксана, удаляются продукты разложения органической составляющей олигомера CO2+, СН3СО+ и других органических радикалов и углерода, потеря массы на второй, третьей и четвертой стадиях составляет 67,25%. Выделение CO2+, С+ и выделение химически связанной воды продолжается до температур порядка 600°C, при дальнейшем повышении температуры до 1500°C убыль массы минимальна. Керамический остаток составляет 23,58 масс %.
Результаты элементного анализа и содержание гидроксильных групп (определяемых газометрическим методом с алюмогидридом лития), синтезированного органоиттрийоксаналюмоксана с. 1, представлены в таблице 1. Технологические (характеристические) температуры органоиттрийоксаналюмоксана с. 1 представлены в таблице 2.
Определение характеристических температур - размягчения (Т1), волокнообразования (Т2) и каплепадения - расплава (Т3) проводили по методу, разработанному в ГНЦ ФГУП «ГНИИХЭОС». Твердые органоиттрийоксаналюмоксаны помещали в грушевидную колбу и нагревали в токе инертного газа от комнатной температуры до 170-185°C за 20-30 мин. Температуры Т1, Т2, Т3 определяли при помощи термометра и стеклянной палочки, опущенных в массу органоиттрийоксаналюмоксана (Т1 - органоиттрийоксаналюмоксан становится эластичным мягким и прилипает к стеклянной палочке; Т2 - температура, при которой при энергичном удалении стеклянной палочки из массы органоиттрийоксаналюмоксана вытягивается длинное тонкое эластичное волокно; Т3 - при подъеме стеклянной палочки органоиттрийоксаналюмоксан стекает с нее в виде капель).
Остальные примеры выполнены аналогично примеру 1, данные приведены в таблице 1 и таблице 2.
Способ получения предкерамических волокнообразующих органоиттрийоксаналюмоксанов, заключающийся в том, что проводят взаимодействие полиалкоксиалюмоксанов с раствором гидрата ацетилацетоната иттрия {[СН3(O)ССН=С(СН3)O]3Y·2,5Н2O}, концентрация которого 4,5-5,0 мас.% в ацетоуксусном эфире, в среде органического растворителя (гексан, толуол, этиловый спирт и т.п.) при температуре 20-50°C, при этом мольное отношение алюминий : иттрий (Al :Y) менее 200, с последующей отгонкой растворителей сначала при атмосферном давлении, а затем при пониженном давлении и температуре до 150°C.