Распределение ресурсов для формата pucch 1в с выбором канала в системе lte-a tdd
Иллюстрации
Показать всеИзобретение относится к беспроводным системам связи, которые предоставляют телекоммуникационные услуги для фиксированных и мобильных абонентов, и раскрывает варианты осуществления способов и устройства для распределения ресурсов для физических каналов управления восходящей передачи. 5 н. и 25 з.п. ф-лы, 11 ил., 1 табл.
Реферат
Уровень техники
Существует постоянная потребность в предоставлении телекоммуникационных услуг для фиксированных и мобильных абонентов, предоставляемых как можно более эффективно и как можно более дешево. Кроме того, все большее использование мобильных приложений заставляет выполнять разработку беспроводных систем, которые позволяют передавать большие объемы данных с высокой скоростью. Развитие более эффективных и более широкополосных беспроводных сетей становится все более важным и направлено на решение задачи обеспечения максимальной эффективности таких сетей.
Краткое описание чертежей
Аспекты, свойства и преимущества вариантов осуществления настоящего изобретения будут понятны из следующего описания изобретения со ссылкой на приложенные чертежи, на которых одинаковыми номерами обозначены одинаковые элементы и на которых:
на фиг.1 показан пример блок-схемы беспроводной сети в соответствии с различными вариантами осуществления;
на фиг.2 показана блок-схема последовательности операций, представляющая примерный способ для распределения ресурсов в соответствии с различными вариантами осуществления;
на фиг.3 показана схема, представляющая пример распределения ресурсов в соответствии с различными вариантами осуществления;
на фиг.4 показана схема, представляющая пример распределения ресурсов в соответствии с различными вариантами осуществления;
на фиг.5 показана схема, представляющая пример распределения ресурсов в соответствии с различными вариантами осуществления;
на фиг.6 показана схема, представляющая пример распределения ресурсов в соответствии с различными вариантами осуществления;
на фиг.7 показана схема, представляющая пример распределения ресурсов в соответствии с различными вариантами осуществления;
на фиг.8 показана схема, представляющая пример распределения ресурсов в соответствии с различными вариантами осуществления;
на фиг.9 показана схема, представляющая пример распределения ресурсов в соответствии с различными вариантами осуществления;
на фиг.10 показана схема, представляющая пример распределения ресурсов в соответствии с различными вариантами осуществления; и
на фиг.11 показана блок-схема, представляющая пример системы беспроводной передачи, выполненной с возможностью передачи данных в беспроводной сети.
Подробное описание изобретения
Хотя в следующем подробном описании изобретения описаны примерные варианты осуществления настоящего изобретения в отношении широкополосных беспроводных глобальных сетей (WWAN), изобретение не ограничено ими и может применяться для других типов беспроводных сетей, в которых могут быть получены аналогичные преимущества. Такие сети, в частности, включают в себя, если применимо, беспроводные локальные вычислительные сети (WLAN), беспроводные персональные вычислительные сети (WPAN) и/или беспроводные городские вычислительные сети (WMAN). Кроме того, хотя конкретные варианты осуществления могут быть описаны со ссылкой на беспроводные сети с использованием мультиплексирования с ортогональным частотным разделением (OFDM) или множественного доступа с ортогональным частотным разделением каналов (OFDMA), варианты осуществления настоящего изобретения не ограничены этим и, например, могут быть воплощены и/или могут быть скомбинированы с другими интерфейсами радиопередачи, включая в себя каналы передачи данных одиночной несущей, включающие в себя множественный доступ с частотным разделением каналов с одиночной несущей (SC-FDMA) или другие протоколы и радиоинтерфейсы для восходящей (UL) и нисходящей (DL) передачи данных, в случае, где это, соответственно, применимо.
Следующие варианты осуществления изобретения можно использовать в различных вариантах применения, включающих в себя передатчики и приемники радиосистемы, хотя варианты осуществления изобретения не ограничены в этом отношении. Радиосистемы, в частности, включенные в объем настоящего изобретения, включают в себя, но не ограничены этим, фиксированные или мобильные устройства, устройства релейной передачи, шлюзы, мосты, коммутаторы, маршрутизаторы, карты сетевого интерфейса (NIC), сетевые адаптеры или другие сетевые устройства. Кроме того, радиосистемы могут быть воплощены в сотовых радиотелефонных системах, спутниковых системах, двухсторонних радиосистемах, а также как вычислительные устройства, включающие в себя такие радиосистемы, включая в себя персональные компьютеры (PC), нетбуки, планшеты и соответствующие периферийные устройства, карманные персональные компьютеры (PDA), персональные вычислительные приспособления, портативные устройства передачи данных, такие как смартфоны и все системы, отнесенные к ним по своей сути, и в которых могут быть соответствующим образом применены принципы вариантов осуществления настоящего изобретения. Кроме того, каждая система может быть выполнена с возможностью работы с использованием множества радиоустройств гетерогенно, через множество сетей, в которой две или больше сетей наложены друг на друга и сосуществуют, таких как WWAN, WLAN и/или WPAN.
С целью подробного описания изобретения фраза "A/B" означает A или B. Фраза "A и/или B" означает "(A), (B) или (A и B)". Фраза "по меньшей мере, один из A, B и C" означает "(A), (B), (C), (A и B), (A и C), (B и C) или (A, B и C)". Кроме того, фраза "(A)B" означает "(B) или (AB)", то есть A представляет собой дополнительный элемент.
Возвращаясь к фиг.1, пример сети 100 беспроводной передачи данных в соответствии с различными вариантами осуществления изобретения может представлять собой любую беспроводную систему, выполненную с возможностью обеспечения беспроводного доступа между базовой сетью или сетью (PN) (110) провайдера, одним или больше развернутыми узлами 114 и 116 B (eNodeB) и одним или больше оборудованием 120-126 пользователя (UE), включая в себя мобильных и/или стационарных абонентов. В различных вариантах осуществления eNodeB 114 и/или 116 может представлять собой фиксированную станцию (например, фиксированный узел) или мобильную станцию/узел. В альтернативных вариантах осуществления узлы релейной передачи (не показаны) могут также выполнять обмен данными с одним или больше из UE 120-126 и/или eNodeB - донором. Кроме того, множество UE 120-126 также могут выполнять обмен данными с одной или больше другими беспроводными сетями 100, включая в себя различные типы беспроводных сетей через гетерогенные сети (не показаны).
Сеть 100 может представлять собой сеть беспроводной передачи данных, такую как предусмотрена, как сеть мобильной телефонной связи долгосрочного развития (LTE) проекта партнерства 3-го поколения (3GPP) и его развитие, усовершенствованное LTE (LTE-A), мобильная сеть широкополосного беспроводного доступа (BWA) Института инженеров по электротехнике и электронике (IEEE) 802.16, IEEE 802.11 WLAN или другой тип сети, в которой могут быть соответствующим образом применены принципы вариантов осуществления в соответствии с изобретением. Используемый здесь термин "LTE-A" относится к любому прошлому, настоящему или будущему стандарту LTE, включая в себя, но без ограничений, издание версии 10.
Здесь ссылка на оборудование (UE) пользователя может представлять собой платформу, такую как станция абонента (SS), станция (STA), терминал, мобильная станция (MS), усовершенствованная мобильная станция (AMS), станция (STA) с высокой пропускной способностью (НТ) или STA с очень высокой пропускной способностью (VHT STA), помимо прочих. Различные формы платформы, включая в себя UE, терминал, SS, MS, НТ STA и VHT STA, могут быть взаимно заменяемыми, и ссылка на конкретную платформу не исключает замену другими платформами в другом варианте (вариантах) осуществления. eNodeB может представлять собой базовую станцию (BS), усовершенствованную базовую станцию (ABS), точку доступа (АР), узел или узел B. Кроме того, эти термины могут быть концептуально взаимно заменяемы, в зависимости от используемого протокола беспроводной передачи, таким образом, что ссылка на eNodeB здесь может также рассматриваться как ссылка на BS, ABS или AP, в различных вариантах осуществления.
UE 120-126 и/или eNodeB 114, и/или 116, могут включать в себя множество антенн, для воплощения системы передачи с "множеством входов, множеством выходов" (MIMO), которая может работать в различных режимах MIMO, включая в себя MIMO с одним пользователем (SU-MIMO), MIMO для множества пользователей (MU-MIMO), MIMO с замкнутым контуром, MIMO с разомкнутым контуром или вариации обработки интеллектуальной антенны. Кроме того, каждое UE 120-126 и/или eNodeB 114 и/или 116 может быть выполнено с множеством входных антенн и одной выходной антенной (MISO) или одной входной антенной и множеством выходных антенн (SIMO).
UE 120-126 может обеспечивать некоторый тип обратной связи для передачи информации о состоянии канала (CSI), в один или больше из eNodeB 114 и/или 116 через один или больше каналов соединения, и eNodeB 114 и/или 116 может регулировать один или больше каналов DL на основе принятой обратной связи CSI. Точность обратной связи CSI может влиять на рабочие характеристики системы MIMO. Обратная связь CSI может включать в себя информацию, относящуюся к индексу качества канала (CQI), индикатору матрицы предварительного кодирования (PMI) и показанию ранга (RI). PMI может обращаться или по-другому уникально идентифицировать предварительный кодер в кодовой книге. eNodeB 114 и/или 116 может регулировать канал DL на основе предварительного кодера, обозначенного, как PMI.
Каналы UL и каналы DL могут быть ассоциированы с одной или больше полосами частот, которые могут совместно использоваться или могут не использоваться каналами UL и каналами DL. В одном варианте осуществления каналы UL расположены в первой полосе частот, и каналы DL расположены во второй полосе частот в дуплексной конфигурации с частотным разделением (FDD). В другом варианте осуществления каналы UL и каналы DL расположены в общей полосе частот в дуплексной конфигурации с разделением по времени (TDD). Кроме того, каждая полоса частот может быть или может не быть непрерывной полосой частот. Каждая полоса частот может быть дополнительно разделена на одну или больше подполос, которые могут совместно использоваться или могут не использоваться каналами UL и DL. Каждая подполоса частот, несущая или поднесущая, одной или больше объединенных подполос, или одной или больше полос частот для каналов UL или DL (широкая полоса пропускания) могут называться частотным ресурсом.
На фиг.2 иллюстрируется примерный вариант осуществления способа для распределения ресурсов физического канала управления восходящей передачи (PUCCH), таких как блоки физического ресурса (PRB) и схемы модуляции и кодирования (MCS), используя формат 1b PUCCH с выбором канала для обратной связи гибридного запроса автоматического повторения (HARQ) информации подтверждения (АСК)/отрицательного подтверждения (NACK) в дуплексных системах с разделением по времени (TDD), поддерживающих объединение несущих для множества несущих, для множества обслуживающих сот. Обслуживающие соты могут включать в себя первичную соту (PCell) и вторичную соту (SCell), хотя варианты осуществления не ограничены этим и также могут содержать одну или больше дополнительных обслуживающих сот. Например, дополнительные SCell могут быть добавлены в других вариантах осуществления.
Системы TDD также могут быть выполнены с возможностью работы, используя дуплексирование с частотным разделением (FDD), или могут сосуществовать с системами, выполненными с возможностью работы с использованием FDD. Системы TDD могут представлять собой систему 3GPP LTE или LTE-A, поддерживающую объединение несущих для двух несущих, или другую беспроводную систему, выполненную с возможностью передачи данных TDD, используя две или больше несущих. При использовании формата 1b PUCCH с выбором канала может быть передано четыре (4) или меньшее количество битов информации, используя выбор канала среди четырех уникальных ресурсов PUCCH, каждый из которых позволяет переносить два (2) бита.
Для устройств LTE и LTE-A, таких как UE 120-126 и/или eNodeB 114 и/или 116, выполненных с возможностью обмена данными с использованием TDD, информацию HARQ ACK/NACK, соответствующую множеству подфреймов для PCell и SCell, передают с помощью UE в eNodeB, в подфрейме UL, в соответствии с набором ассоциаций нисходящего канала. Один такой индекс набора ассоциаций нисходящего канала K:{k0, k1 … kM-1} для TDD представлен в таблице 1.
Таблица 1 | ||||||||||
Конфигурация UL-DL | Подфрейм n | |||||||||
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
0 | - | - | 6 | - | 4 | - | - | 6 | - | 4 |
1 | - | - | 7, 6 | 4 | - | - | - | 7, 6 | 4 | - |
2 | - | 8, 7, | - | - | - | - | 8, 7, 4, 6 | - | - | |
4, 6 | ||||||||||
- | 7, 6, | 6, | 5, | - | - | - | - | - | ||
3 | 11 | 5 | 4 | |||||||
- | 12, | 6, | - | - | - | - | - | - | ||
4 | 8, 7, | 5, | ||||||||
11 | 4, | |||||||||
7 | ||||||||||
- | 13, | - | - | - | - | - | - | - | ||
12, | ||||||||||
5 | 9, 8, | |||||||||
7, 5, | ||||||||||
4, | ||||||||||
11, 6 | ||||||||||
6 | - | - | 7 | 7 | 5 | - | - | 7 | 7 | - |
В качестве примера того, как используется индекс набора ассоциации нисходящего канала по таблице 1, для конфигурации 1 UL-DL, ACK/NACK подфрейма 2 (где n=2, который представляет собой подфрейм UL, который может использоваться для передачи информации HARQ ACK/NACK, используя PUCCH), соответствующего данным DL, ранее переданным через совместно используемый физический канал нисходящей передачи (PDSCH) и запланированным ассоциированным физическим каналом управления нисходящей передачи (PDCCH), в котором соответствующие данные DL были переданы в n-k подфрейме(подфреймах) (k=7 или 6 в данном примере, имеющем два элемента), передают в подфрейме n (n=1 в данном примере). Если рассмотреть, что имеется 10 подфреймов на фрейм в данных вариантах осуществления для k=7, n-k=2+10(из предыдущего фрейма)-7=5. Для k=6, k=2+10(из предыдущего фрейма)-6=6. Таким образом, ACK/NACK для PDSCH конфигурации 1 UL-DL, переданного в подфрейме 5 и 6 предыдущего фрейма, будут переданы в подфрейме 2 следующего фрейма. В этом примере подфрейм n=2 представляет собой подфрейм UL для всех конфигураций. В другом примере, в конфигурации 4 UL-DL, подфрейм 3 представляет собой другой подфрейм UL, имеющий четыре элемента.
Варианты осуществления изобретения обеспечивают выделение ресурсов в подфрейме UL, когда M=2, M=3, или M=4, где M представляет собой кардинальное число установленных К элементов, таких как элементы по таблице 1. В конфигурации 1 UL-DL, подфрейм 2, M=2, поскольку присутствуют два элемента. Значение M также может быть идентифицировано, как размер окна построения для временной области (то есть подфрейма).
Выделение ресурсов для канала может быть выполнено в скрытой форме и/или явно. Скрытое выделение ресурсов может возникать, когда предполагаемое выделение ресурса выполняют через передачу информации, которую передают с целью чередования. Использование неявного распределения ресурсов позволяет передавать больше дополнительной информации без использования дополнительных ресурсов, обеспечивая, таким образом, более эффективный процесс передачи сигналов. Явное выделение ресурсов может возникать, когда предполагаемое выделение ресурса передают по сигналам, используя ресурсы, обозначенные для передачи при выделении ресурсов.
Сигналы для распределения ресурсов для передачи(передач) UL, подаваемые путем передачи подфреймов DL, могут быть эффективно обозначены, измерены или определены, используя скрытую передачу сигналов, для уменьшения количества битов, которые, в противном случае, должны были бы быть переданы во фрейме(фреймах) или в подфрейме(подфреймах) DL, улучшая, таким образом, потребление энергии, пропускную способность и задержку, помимо других критериев рабочих характеристик. Кроме того, сигналы для распределения ресурсов, для передачи(передач) UL, выполняемой путем передачи подфреймов DL, могут быть обозначены в явном виде, используя существующее поле(поля) подфрейма, передаваемое в DL, для упрощения формата(форматов) подфрейма DL и для обеспечения улучшенной совместимости.
В вариантах осуществления информацию о выделении ресурсов для формата 1b PUCCH с выбором канала передают по PDCCH. В LTE или LTE-A модуляцию для формата 1b PUCCH с выбором канала выполняют, используя квадратурную фазовую манипуляцию (QPSK) с двумя битами. Альтернативные схемы модуляции и/или количество битов можно использовать в других вариантах осуществления.
Как показано на фиг.2, примерный способ 200 для передачи данных в сети 100 беспроводной передачи данных может включать в себя ассоциирование UE, такого как UE3 124, с eNodeB, таким, как eNodeB1 114, в первичной соте (PCell), в элементе 205. Ассоциирование UE с eNodeB может включать в себя процедуру поиска соты, в которой UE получает синхронизацию по времени и частоте с PCell и детектирует идентификацию (ID) соты физического уровня для PCell. Процедура поиска соты может включать в себя передачу, при передаче DL, первичного и вторичного сигналов синхронизации в UE из eNodeB. В элементе 210 UE ассоциируют себя с eNodeB, таким как eNodeB2 116, во вторичной соте (SCell), в которой UE может ассоциироваться с SCell после приема команды активации.
UE может определять все или, по меньшей мере, часть выделенных ресурсов PUCCH UE в элементе 215. Для передачи PDSCH, выполняемой через множество подфреймов, передаваемых по PCell и/или SCell, в случае, когда передача обозначена путем детектирования соответствующего PDCCH по PCell, ряд ресурсов PUCCH могут быть обозначены в скрытой форме, неявно используя соответствующую функцию самого нижнего или первого индекса (nCCE) или (nCCE, m) элемента канала управления (ССЕ), используемого для передачи назначения информации управления нисходящим каналом (DCI), соответствующего PDCCH. Индекс элемента канала управления, в контексте 3GPP LTE или LTE-A, представляет собой набор элементов ресурса, где часть или все сообщения PDCCH могут быть отображены. В наборе может присутствовать 36 элементов ресурса, хотя дополнительное или меньшее количество элементов ресурса можно использовать в других вариантах осуществления.
Множество ресурсов PUCCH также может быть обозначено в элементе 220. Для передачи PDSCH по SCell, обозначенной путем детектирования соответствующего PDCCH в SCell, один или больше ресурсов PUCCH могут быть обозначены в явной форме, путем повторного использования поля управления мощностью передачи (ТРС) в DCI соответствующего PDCCH, для обозначения одного или больше из вплоть до четырех значений ресурса PUCCH, в котором количество ресурсов PUCCH или значений ресурса PUCCH сконфигурированы по более высоким уровням, которые могут включать в себя уровень управления доступом к среде (MAC), уровень управления радиосоединением (RLC), и/или уровень протокола сходимости пакетных данных (PDCP), как если бы осуществлялась передача сигналов для управления радиоресурсом (RRC). DCI может быть передан через каналы управления (L1/L2), уровня 1/уровня 2, в котором каналы управления L1/L2 предоставляет в UE, такое как UE 124, необходимую информацию для приема и декодирования данных DL, и для информации управления UL, используемой для предоставления планировщика и протокола HARQ, наряду с информацией UE. Дополнительные поля или поля замены, кроме поля ТРС, могут использоваться для обозначения множества ресурсов PUCCH в альтернативных вариантах осуществления.
На фиг.3 показана схема, представляющая пример распределения ресурсов PUCCH, в соответствии с различными вариантами осуществления. Первичная сота (PCell) 302 и вторичная сота (SCell) 304, которые могут быть развернуты, соответственно, с использованием eNodeB1 114 и eNodeB2 116 на фиг.1, и множество подфреймов, имеющих размер (М) окна для построения подфрейма, равный 4, при построении окна 300, могут быть переданы в PCell 302 и SCell 304. Большее или меньшее количество подфреймов может использоваться в каждом окне построения, в альтернативных вариантах осуществления. Окно 300 построения PCell 302 содержит подфреймы 310-313 DL, и SCell 304 содержит подфреймы 320-323. В каждом из PCell 302 и SCell 304 используется одна или больше компонентных несущих(ее), которые могут иметь полосу пропускания 1, 4, 3, 5, 10 или 20 мегагерц (МГц). Каждая ее может быть непрерывной или может не быть непрерывной.
На фиг.3, вплоть до двух ее используются по DL для передачи информации планирования в каждом подфрейме DL, используя PDCCH для планирования PDSCH для PCell 332, и для передачи информации планирования, используя PDCCH для планирования PDSCH по SCell 334, в котором четыре ресурса PUCCH планируют в неявной форме по UL в одном или больше подфреймах 350 UL. PDCCH, PDSCH и PUCCH представляют собой физические каналы, в которых каждый физический канал соответствует набору элементов ресурса в сетке время-частота для транспортирования информации и/или данных.
PDCCH может переносить информацию, такую как формат транспортирования, и выделение ресурсов, относящихся к DL-SCH, и канал транспортирования пейджингового канала (РСН), а также соответствующей информации HARQ. PDSCH представляет собой канал DL, который может переносить данные пользователя и другую информацию сигналов, в то время как PUCCH может переносить информацию управления UL, включая в себя индикаторы качества канала (CQI), подтверждение (АСК) и отрицательное подтверждение (NAK) для HARQ в ответ на запросы на передачу DL и планирование UL.
В вариантах осуществления выделение ресурсов UL, представленное на фиг.3, применимо к мультиплексированию TDD HARQ-ACK с форматом 1b PUCCH, с выбором канала для размера окна 300 построения, равного четырем и двум сконфигурированным сотам обслуживания, с планированием между несущими. В варианте осуществления по фиг.3, могут быть выведены от двух до четырех ресурсов PUCCH, полученных в результате передачи в подфреймах DL окна 300 построения, ассоциированного с подфреймом 350 UL, в котором каждый ресурс PUCCH может быть обозначен путем соответствующей передачи PDSCH, например, первый ресурс PUCCH обозначен первым PDSCH, переданным в PCell 302 в первом подфрейме 310 нисходящего канала, и второй ресурс PUCCH обозначен вторым PDSCH, переданным в PCell 302 во втором подфрейме 311 нисходящего канала, и так образом, в результате получают четыре ресурса PUCCH. Меньшее количество ресурсов PUCCH может быть обозначено в альтернативных вариантах осуществления.
На фиг.4 показан вариант осуществления, в котором PDCCH передают по PCell 302 и SCell 304. Выделение ресурсов UL, представленное на фиг.4, применяют к мультиплексированию TDD HARQ-ACK с форматом 1b PUCCH, с выбором канала для размера окна 300 построения, равного четырем, и двум сконфигурированным сотам обслуживания без планирования между несущими. От двух до четырех выделений ресурсов PUCCH могут быть обозначены в неявной форме для UL. Каждый ресурс PUCCH может быть обозначен в неявной форме путем соответствующей передачи PDSCH, например, первый ресурс PUCCH обозначен первым PDSCH, переданным по PCell 302, второй ресурс PUCCH обозначен вторым PDSCH, переданным по PCell 302, и так далее, в котором каждый ресурс PUCCH может быть обозначен PDSCH, переданным для PCell 302 и/или SCell 304.
На фиг.3 и 4 ресурсы PUCCH могут быть выделены, используя самый нижний индекс (NCCE) элемента канала управления (ССЕ) для PDCCH, переданного по PCell 302, для планирования PDSCH по PCell 302 и/или SCell 304 в пределах четырех подфреймов DL, то есть подфрейма DL №i - подфрейма DL №i+3, для неявного обозначения четырех ресурсов PUCCH.
В других вариантах осуществления количество ресурсов PUCCH может быть обозначено в скрытом виде с помощью PDCCH, передаваемых по PCell для планирования передачи(передач) PDSCH по PCell 302, и количество ресурсов PUCCH может быть неявно обозначено PDCCH, переданным по PCell, для планирования передачи(передач) PDSCH по SCell 304 в вариантах осуществления с планированием поперек несущих, или обозначено с помощью PDCCH, переданных по SCell, для планирования передачи(передач) PDSCH по SCell 304 в вариантах осуществления без планирования поперек несущих, для обозначения, в общей сложности, четырех ресурсов PUCCH для подфрейма 350 UL.
На фиг.5 иллюстрируется выделение ресурсов UL для мультиплексирования HARQ-ACK TDD с форматом 1b PUCCH, с выбором канала для размера окна 300 построения, равным трем, и двух сконфигурированных сот обслуживания для планирования поперек несущей. Четыре ресурса PUCCH могут быть выведены из передачи в подфреймах DL окна 300 построения, ассоциированного с подфреймом 350 UL. Меньшее количество ресурсов PUCCH может быть обозначено в альтернативных вариантах осуществления.
На фиг.5 можно использовать вплоть до двух компонентов несущей DL, и все PDCCH передают по DL PCell 302. PDSCH по SCell 304 планируют с помощью PDCCH по PCell 302, используя планирование поперек несущей. Четыре выделения ресурса PUCCH обозначено для подфрейма 350 UL в этом варианте осуществления. Когда выделение ресурсов обеспечивают, используя формат 1b TDD PUCCH LTE-A с выбором канала, ресурсы UL выделяют, используя первый из самых меньших (или самый нижний) индексов ССЕ (NCCE) для PDCCH, переданного по PCell 302, для планирования PDSCH по PCell 332 в пределах трех подфреймов DL, для неявного обозначения трех ресурсов PUCCH. Кроме того, первый или самый нижний индекс ССЕ для (NCCE) любого одного PDCCH, переданного по PCell 302 для планирования PDSCH no SCell 334 в пределах подфреймов 3 DL, могут неявно обозначать один дополнительный ресурс PUCCH, для обеспечения в общей сложности четырех ресурсов UL.
На фиг.6 иллюстрируется выделение ресурсов UL для мультиплексирования TDD HARQ-ACK с форматом 1b PUCCH, с выбором канала для размера окна 300 построения, равного трем, и двух сконфигурированных обслуживающих сот без планирования поперек несущих. Четыре ресурса PUCCH могут быть выведены из передачи в подфреймах DL окна 300 построения, ассоциированного с подфреймом 350 UL. В этом варианте осуществления PDCCHs передают как по DL PCell 302, так и по DL SCell 304, используя независимое планирование. Далее, ресурсы могут быть выделены, используя самый нижний из первого индекса (самый нижний или первый индекс) ССЕ (NCCE) для PDCCH, переданного для планирования PDSCH по PCell 302 в пределах трех подфреймов DL, для неявного обозначения трех ресурсов PUCCH. Кроме того, используя следующий самый нижний NCCE+1 любого PDCCH, переданного для планирования PDSCH по PCell 302 в пределах трех подфреймов DL, можно неявно обозначить еще один дополнительный ресурс PUCCH.
На фиг.7 иллюстрируется распределение ресурсов UL для мультиплексирования TDD HARQ-ACK с форматом 1b PUCCH, с выбором канала для размера окна 300 построения, равного трем, и две сконфигурированные обслуживающие соты без планирования поперек несущих. Четыре ресурса PUCCH выводят из передач в DL подфреймах окна 300 построения, ассоциированного с подфреймом 350 UL. Один или больше ресурсов PUCCH могут быть обозначены неявно с помощью PDCCH, передаваемых по PCell, для планирования передачи(передач) PDSCH по PCell 302, и один или больше ресурсов PUCCH могут быть обозначены через PDCCH, переданные по SCell, для планирования передачи(передач) PDSCH по SCell 304, для обозначения в общей сложности четырех ресурсов PUCCH для подфрейма UL 350. Каждый ресурс PUCCH может быть обозначен неявно путем передачи соответствующей передачи PDSCH, например, первый ресурс PUCCH обозначен по первому PDSCH, переданному по PCell 302, второй ресурс PUCCH обозначен по второму PDSCH, переданному по PCell 302, и так далее, в котором каждый ресурс PUCCH может быть обозначен по PDSCH, переданному по PCell 302 и/или SCell 304.
Поле, такое как поле управления мощностью передачи (ТРС) в формате DCI, соответствующее PDCCH в DL SCell 304 в пределах трех подфреймов DL, как биты индикатора (ARI) ресурса ACK/NAK, можно использовать для явного обозначения ресурса PUCCH, сконфигурированного более высокими уровнями, такими, как через сигналы управления радиоресурсом (RRC). В результате три ресурса PUCCH обозначены неявно, и еще один ресурс PUCCH обозначен явно для обозначения, в общей сложности, четырех ресурсов PUCCH для подфрейма 350 UL.
На фиг.8 иллюстрируется выделение ресурсов UL для мультиплексирования TDD HARQ-ACK с форматом 1b PUCCH, с выбором канала для размера окна 300 построения, равного двум, и две сконфигурированных обслуживающих соты с планированием поперек несущих. Множество ресурсов PUCCH может быть выведено из передач в подфреймах DL окна 300 построения, ассоциированного с подфреймом 350 UL. Третье окно 300 построения содержит первый подфрейм 310 DL и второй под фрейм 311 DL с двумя PDCCH для планирования двух PDSCH по PCell 332 и двумя PDCCH для планирования двух PDSCH по SCell 334, используя планирование поперек несущих для SCell 304. На фиг.8 три ресурса PUCCH могут быть обозначены неявно для подфрейма 350 UL, используя планирование PDCCH передачи PDSCH по PCell 302 и SCell 334 для подфреймов 310 и 311 DL. Дополнительные ресурсы PUCCH могут быть обозначены либо неявно, либо явно в других вариантах осуществления.
На фиг.9 иллюстрируется выделение UL ресурсов для мультиплексирования TDD HARQ-ACK с форматом 1b PUCCH, с выбором канала для размера окна 300 построения, равного двум, и две сконфигурированные обслуживающие соты, без планирования поперек несущих. В варианте осуществления три ресурса PUCCH могут быть выведены из передач в подфреймах DL окна 300 построения, ассоциированного с подфреймом 350 UL.
Ресурсы PUCCH также могут быть выделены, используя первый или самый нижний индекс ССЕ (NCCE) PDCCH, переданного по PCell 302, для планирования PDSCH по PCell 332 в пределах двух подфреймов DL, для неявного обозначения двух ресурсов PUCCH. Далее, используя следующий самый нижний NCCE+1 любого из PDCCH, переданного по PCell 302, для планирования PDSCH по PCell 332 в пределах двух подфреймов DL, можно неявно обозначить еще один ресурс PUCCH, для обозначения трех ресурсов PUCCH для подфрейма 350 UL. Дополнительные ресурсы PUCCH могут быть обозначены либо неявно, либо явно в других вариантах осуществления.
На фиг.10 иллюстрируются выделение ресурсов UL для TDD HARQ-ACK мультиплексирования с форматом 1b PUCCH, с выбором канала для размера окна 300 построения, равного двум, и две сконфигурированных обслуживающих соты без планирования поперек несущих. Три ресурса PUCCH могут быть выведены из передач в подфреймах DL окна 300 построения, ассоциированного с подфреймом 350 UL. В данном варианте осуществления поле ТРС, соответствующее DCI PDCCH в DL SCell 304, в пределах двух подфреймов DL, как биты индикатора (ARI) ресурса ACK/NAK, может использоваться для обозначения в явной форме дополнительного ресурса PUCCH для подфрейма 350 UL. На фиг.10 два ресурса PUCCH обозначены неявно, используя планирование PDCCH, в PDSCH по PCell 332, и дополнительный ресурс PUCCH обозначается в явном виде, путем повторного использования команд ТРС в PDCCH по SCell, как ARI, для обозначения, в общей сложности, трех ресурсов PUCCH для подфрейма 350 UL. Дополнительные ресурсы PUCCH могут быть обозначены либо в неявной, либо в явной форме в других вариантах осуществления.
Что касается фиг.11, устройство 1100 для использования в сети 100 беспроводной передачи данных может включать в себя схему 1150 обработки данных, включающую в себя логическую схему (например, цепи, процессор и программное обеспечение или их комбинацию), для выполнения сокращенных запросов/предоставления полосы пропускания, как описано в одном или больше упомянутых выше процессах. В определенных неограничительных вариантах осуществления устройство 1100 может, в общем, включать в себя радиочастотный (RF) интерфейс 1110 и контроллер доступа к среде (МАС)/участок 1150 процессора в основной полосе пропускания. Элементы на фиг.11 могут быть размещены для обеспечения средства для воплощения операций и способов, описанных здесь.
В одном примерном варианте осуществления RF интерфейс 1110 может представлять собой любой компонент или комбинацию компонентов, выполненных с возможностью передачи и приема модулированных сигналов множества несущих, хотя варианты осуществления в соответствии с изобретением не ограничиваются каким-либо специфичным интерфейсом передачи по радиоканалу (ОТА) или схемой модуляции. RF интерфейс 1110 может включать в себя, например, приемник 1112, передатчик 1114 и синтезатор 1116 частоты. Интерфейс 1110 также может включать в себя элемент управления смещением, кварцевый генератор и/или одну или больше антенн 1118, 1119, если требуется. Кроме того, RF интерфейс 1110 может, в качестве альтернативы или дополнение, использовать внешние генераторы, управляемые напряжением (VCO), фильтры поверхностной акустической волны, фильтры промежуточной частоты (IF) и/или фильтры радиочастоты (RF), если требуются. Различные конструкции RF интерфейса и их операции известны в данной области техники, и подробное описание их, поэтому, исключено.
Участок 1150 обработки может связываться с RF интерфейсом 1110 для обработки приема/передачи сигналов и может включать в себя, только в качестве примера, аналого-цифровой преобразователь 1152 для преобразования с понижением частоты принимаемых сигналов, цифроаналоговый преобразователь 1154 для преобразования с повышением частоты сигналов для передачи и, если требуется, процессор 1156 в основной полосе пропускания для обработки физического (PHY) уровня соединения соответствующих принимаемых/передаваемых сигналов. Участок 1150 обработки также может включать в себя или может состоять из схемы 1159 обработки данных для обработки управления доступом к среде (МАС)/обработки уровня соединения данных.
В определенных вариантах осуществления схема 1159 обработки MAC может включать в себя планировщик 1180 в комбинации с дополнительной схемой, такой как запоминающее устройство буфера (не показано), и схема 1156 сигнала в основной полосе пропускания может функционировать для выполнения способов, описанных выше. В качестве альтернативы или в дополнение, схема 1156 обработки в основной полосе пропускания может выполнять эти процессы, независимо от схемы 1159 обработки MAC. Обработка, выполняемая MAC и PHY, также может быть интегрирована в одной схеме, если это требуется.
Устройство 1100 может, например, представлять собой базовую станцию, точку доступа, eNodeB, гибридный координатор, беспроводный маршрутизатор или, в качестве альтернативы, фиксированную или мобильную станцию пользователя, такую как UE, платформу или терминал, включая в себя NIC и/или сетевой адаптер для вычислительных устройств. В соответствии с этим, описанные ранее функции и/или специфичные конфигурации устройства 1100 могут быть включены или исключены, в соответствии с потребностью.
Варианты осуществления устройства 1100 также могут быть воплощены с использованием архитектур SISO, MISO или SIMO. Однако, как показано на фиг.11, определенные предпочтительные варианты осуществления могут включать в себя множество антенн (например, 1118, 1119) для передачи и/или приема, используя технологии передачи данных с пространственным мультиплексированием, множественного доступа с пространственным разделением (SDMA), формирования луча и/или множества входов, множества выходов (MIMO). Дополнительно, в вариантах осуществления, в соответствии с изобретением, может использоваться мультиплексирование с разделением кода по множеству несущих (MC-CDMA), мультиплексирование с кодовым разделением прямой последовательности множества несущих (MC-DS-CDMA) или технологии модуляции одной несущей для доступа по каналу ОТА, или любая другая схема модуляции или мультиплексирования, совместимая со свойствами вариантов осуществления с соответствии с изобретением.
Дальнейшее описание относится к дополнительным вариантам осуществления. Устройство 1100 выполнено с возможностью разворачивания PCell в беспроводной сети, содержащей PCell и SCell вторичной соты, устройство 1100, содержащее схему 1150 обработки, выполненную с возможностью распределения ресурсов PUCCH, используя PDSCH в PCell, в которой устройство дополнительно выполнено с возможностью обозначения ресурсов PUCCH в UE, таком как UE3 124, используя первый или самый нижний индекс элемента канала управления для PDCCH в PCell и в котором используются от двух до четырех подфреймов для обозначения ресурсов PUCCH. Устройство 1100 может дополнительно содержать радиоинтерфейс 1110, выполненный с возможностью передачи множества подфреймов DL в PCell. Уст