Способ обнаружения неоднородностей линейной формы в оптически непрозрачных средах

Изобретение относится к области радиовидения и может быть применено для обнаружения в миллиметровом диапазоне волн неоднородностей линейной формы в оптически непрозрачных средах. Достигаемый технический результат изобретения - определение точной формы линейных неоднородностей и повышение надежности их обнаружения при наличии мешающих факторов. Указанный результат достигается за счет того, что исследуемый объект освещается плоскополяризованной радиоволной и для каждой элементарной площадки на поверхности объекта исследования проводятся измерения, при которых угол поворота плоскости поляризации падающей волны к оси X принимает значения φ=180°·i/n, где i=0,…, n-1, n - число измерений. Если на рассмотренном участке расположена неоднородность линейной формы, то параметры отраженной волны зависят от угла φ, что позволяет обнаружить наличие неоднородности в области, соответствующей данной площадке. Способ может быть реализован аппаратурой, в состав которой входит генератор линейно поляризованного СВЧ излучения, поляризационная отражающая решетка, антенный блок с системой сканирования, приемник СВЧ излучения, аналого-цифровой преобразователь, блок управления и обработки результатов измерений. 2 ил.

Реферат

Изобретение относится к области радиовидения и может быть применено для обнаружения в миллиметровом диапазоне (ММ) волн неоднородностей линейной формы в оптически непрозрачных средах (трещин, арматуры, электрических и оптоволоконных кабелей и т.д., скрытых в стенах).

Радиоволновые методы широко применяются для неразрушающего контроля и основаны на том, что наличие неоднородностей в исследуемых объектах приводит к дополнительным отражениям электромагнитных волн, которые влияют на вид интерференционной картины (Ермолов И.Н. Методы и средства неразрушающего контроля качества. // Учеб. пособие для инж.-техн. спец. вузов. - М.: Высш. шк., 1988. - 368 с.; Клюев В.В., Соснин Ф.Р., Ковалев А.В. и др. под ред. Клюева. В.В. Неразрушающий контроль и диагностика: справ. - М.: Машиностроение, 2005. - 656 с.).

Эти методы наиболее эффективны для контроля в неметаллических, плохо проводящих электрический ток оптически непрозрачных средах. Общим недостатком радиоволновых методов является сравнительно низкая разрешающая способность устройств, реализующих эти методы.

Наиболее близким аналогом можно считать способ обнаружения неоднородностей линейной формы в оптически непрозрачных средах, реализованный радиоволновым интроскопом, работающим в ММ диапазоне волн (Чигряй Е.Е., Хохлов Г.И., Игнатов Б.Г. и др. Радиоволновый интроскоп в миллиметровом диапазоне. // Электромагнитные волны и электронные системы, т.15, №1, 2010 г., стр.50-54).

В соответствии с данным способом объект освещается плоско-поляризованной радиоволной и используется эффект деполяризации радиоволн при рассеянии на неоднородностях линейной формы. Под эффектом деполяризации подразумевается появление в отраженной волне составляющей с поляризацией ортогональной поляризации падающей волны при наличии угла рассогласования между вектором поляризации падающей волны и неоднородностью линейной формы. Однако данный эффект используется не для поиска неоднородностей, а только для того, чтобы избавится от мешающего влияния интерференции радиоволн, отраженных на границах разделов, т.е. для повышения контраста полезного сигнала. Параметры отраженной волны при изменении угла рассогласования в широком диапазоне не измеряются, что снижает надежность и точность способа.

Технический результат изобретения заключается в том, что определяется точная форма линейных неоднородностей и повышается надежность их обнаружения при наличии мешающих факторов (интерференции радиоволн, отраженных на границах разделов, присутствии строительных материалов со структурной анизотропией и т.д.).

Указанный технический результат в способе обнаружения неоднородностей линейной формы в оптически непрозрачных средах достигается тем, что исследуемый объект освещается плоскополяризованной радиоволной, для каждой элементарной площадки на поверхности исследуемого объекта проводят измерения ортогональной компоненты волны, отраженной от данной площадки, при которых угол поворота плоскости поляризации падающей волны к оси X принимает значения φ=180°·i/n, где i=0,…, n-1, n - число измерений, определяют зависимость величины ортогональной компоненты в отраженной волне от угла поворота u[φ], вычисляют разность Δu[φ]=u[φ+45°]-u[φ], определяют все элементарные площадки, для которых Δu[φ] имеет максимум, и по непрерывной цепочке таких площадок определяют форму неоднородности.

Величина ортогональной компоненты в отраженной волне максимальна, когда плоскость поляризации падающей волны повернута под углом 45° к неоднородности и минимальна, когда она параллельна или перпендикулярна. Поэтому, если некоторая элементарная площадка соответствует области, через которую проходит неоднородность, то разность между величиной ортогональной компоненты отраженной волны, измеренной для данной площадки, при угле поворота плоскости поляризации φ и при угле φ+45° достигнет максимума, когда φ соответствует направлению неоднородности или направлению, перпендикулярному неоднородности. Это позволяет обнаружить наличие неоднородности в области, соответствующей данной площадке, и дает дополнительную информацию о возможном направлении неоднородности.

Способ может быть реализован аппаратурой, блок-схема которой показана на фиг.1. Аппаратура состоит из генератора линейно-поляризованного СВЧ излучения 1, поляризационной отражающей решетки 2, антенного блока с системой сканирования 3, приемника СВЧ излучения 4, аналого-цифрового преобразователя 5, блока управления и обработки результатов измерений 6. Поляризационная отражающая решетка 2 расположена под углом 45° к направлению распространения радиоволны, ее проводники параллельны электрическому полю падающей радиоволны 7 и полностью отражают ее в сторону объекта исследования 8, рассеянная волна ортогональной поляризации 9 не отражается, а пропускается к приемнику 4, сигнал от сенсоров приемника оцифровывается в АЦП 5 и передается на блок управления и обработки результатов измерений 6. Плоскость поляризации падающей волны 10 составляет угол φ с осью X.

Для вычисления точной формы неоднородности для каждой элементарной площадки последовательно проводится n измерений, при которых данная площадка освещается плоскополяризованной радиоволной, плоскость поляризации которой повернута под углом φ к оси X, а величина угла поворота принимает значения φ=180°·i/n, где i=0,…, n-1. Для каждого из n измерений определяется величина ортогональной компоненты в отраженной волне u[φ] и вычисляется разность Δu[φ]=u[φ+45°]-u[φ]. В случае отсутствия неоднородности на рассматриваемом участке Δu[φ] будет меняться только в пределах погрешности измерений, при наличии неоднородности Δu[φ] зависит от угла φ и достигнет максимума, когда угол φ соответствует направлению неоднородности или направлению, перпендикулярному к неоднородности. На поверхности объекта исследования определяются все площадки с неоднородностью и оставляются только те, которые образуют непрерывную цепочку, данная цепочка продемонстрирует точную форму неоднородности, как показано на фиг.2.

Способ обнаружения неоднородностей линейной формы в оптически непрозрачных средах, включающий освещение объекта исследования плоско-поляризованной радиоволной и измерение составляющей отраженной волны с поляризацией, ортогональной поляризации падающей волны, отличающийся тем, что для каждой элементарной площадки на поверхности объекта исследования проводят n измерений, при которых угол поворота плоскости поляризации падающей волны к оси X принимает значения φ=180°·i/n, где i=0, …, n-1, определяют зависимость величины ортогональной компоненты в отраженной волне от угла поворота u[φ], вычисляют разность Δu[φ]=u[φ+45°]-u[φ], определяют все элементарные площадки, для которых Δu[φ] имеет максимум, и по непрерывной цепочке таких площадок определяют форму неоднородности.