Способ изготовления чип-резисторов
Изобретение относится к электронной технике, а именно к производству постоянных резисторов, и может быть использовано в электронной, радиотехнической и других смежных отраслях промышленности. В способе изготовления чип-резисторов, включающем формирование резистивного слоя путем напыления с последующей фотолитографией, формирование планарных контактов на лицевой стороне подложки, лазерную подгонку, формирование защитного слоя, разделение подложки на полосы, формирование торцевых контактов по тонкопленочной технологии, нанесение припоя, разделение полос на чипы, планарные контакты на лицевой стороне подложки формируют по тонкопленочной технологии с использованием фотолитографии, а планарные контакты на тыльной стороне подложки формируют одновременно с торцевыми контактами, дополнительно введены операции термообработки, термотренировки и импульсной тренировки, при этом термообработку осуществляют после формирования резистивного слоя, термотренировку и импульсную тренировку проводят после разделения полос на чипы, а также повышение технологичности. 1 ил., 1 табл.
Реферат
Изобретение относится к электронной технике, а именно к производству постоянных резисторов, и может быть использовано в электронной, радиотехнической и других смежных отраслях промышленности.
По тонкопленочной технологии изготовления чип-резисторов - резистивный и проводниковый слои формируются путем вакуумного напыления на изолирующую подложку с последующей фотолитографией.
Известен прецизионный тонкопленочный чип-резистор, защищенный патентом РФ №2123735, кл. H01C 7/00, опубл. 20.12.1998 г.
В прецизионном тонкопленочном чип-резисторе, содержащем диэлектрическое основание с нанесенной на него керметной резистивной пленкой, контактные элементы и защитное покрытие, нанесенное непосредственно на резистивную пленку, между контактными элементами, защитным покрытием является кремнийорганический материал из ряда алкилалкоксисиланов, на который по всей рабочей поверхности резистора нанесен дополнительно эпоксидно-фенольный материал.
К недостаткам упомянутого способа можно отнести недостаточные эксплуатационные характеристики чип-резисторов, а именно надежность, стабильность.
Известен способ изготовления тонкопленочных резисторов, защищенный патентом РФ №2213383, кл. H01C 17/00, опубл. 27.09.2003. На подложку напыляют резистивный слой и многослойную проводящую структуру. После первой фотолитографии и травления структуры получают проводники и контактные площадки. При второй фотолитографии фоторезистом покрывают все проводники и площадки, за исключением площадок перекрытия резисторов с проводниками, и формируемые резисторы. Затем травлением резистивного слоя формируют тонкопленочные резисторы.
К недостаткам упомянутого способа можно отнести недостаточные эксплуатационные характеристики чип-резисторов, а именно надежность, стабильность.
Наиболее близким к заявляемому по технической сущности и достигаемому результату, выбранным в качестве прототипа, является способ изготовления прецизионных чип-резисторов по гибридной технологии, защищенный патентом РФ №2402088, МПК H01C 17/06, H01C 17/28, опубл. 20.10.2010 г.
Способ содержит следующие технологические операции: 1) нанесение на шлифованную (тыльную) поверхность изоляционной подложки методом трафаретной печати слоя серебряной или серебряно-палладиевой пасты с последующим ее вжиганием, образуя тем самым электродные контакты на тыльной стороне подложки; 2) напыление на полированную (лицевую) сторону изоляционной подложки методом вакуумной (тонкопленочной) технологии резистивного слоя; 3) формирование методом фотолитографии и ионного травления топологии резистивного слоя на подложке; 4) нанесение методом трафаретной печати на лицевой стороне подложки поверх резистивного слоя низкотемпературной серебряной пасты с последующим ее вжиганием, образуя тем самым электродные контакты на лицевой стороне; 5) подгонку методом лазерной подгонки величины сопротивления резисторов в номинал; 6) нанесение методом трафаретной печати на резистивный слой с последующим вжиганием слоя низкотемпературной защитной пасты, образуя защитный слой; 7) скрайбирование и ломку пластины изоляционной подложки на полосы; 8) напыление методом вакуумной (тонкопленочной) технологии из сплава никеля с хромом на торцы, соединяя тем самым между собой электродные контакты лицевой и тыльной сторон подложки; 9) ломку рядов пластины на чипы; 10) нанесение гальваническим методом поверх электродных контактов - торцевого, на лицевой и на тыльной сторонах - слоя никеля; 11) нанесение поверх слоя никеля гальваническим методом слоя припоя в виде сплава олова со свинцом.
К недостаткам упомянутого способа можно отнести использование дополнительной операции по формированию планарных (электродных) контактов на тыльной стороне подложки, усложняющей технологический процесс производства чип-резистора, а также недостаточные эксплуатационные характеристики чип-резисторов, а именно надежность, стабильность.
Задача, решаемая предлагаемым изобретением, - усовершенствование способа изготовления чип-резисторов.
Технический результат от использования изобретения заключается в улучшении эксплуатационных характеристик, а именно улучшении стабильности получаемых резистивных пленок за счет дополнительных операций - термообработки и термотренировки, повышении надежности вследствие отбраковки потенциально ненадежных чип-резисторов на операции импульсная тренировка. Также техническим результатом от использования изобретения является повышение технологичности за счет использования вакуумно-дугового (тонкопленочного) способа формирования планарных контактов на обратной стороне подложки одновременно с торцевыми контактами, позволяющего исключить операцию формирования планарных контактов на тыльной стороне подложки.
Указанный результат достигается тем, что в способе изготовления чип-резисторов, включающем формирование резистивного слоя путем напыления с последующей фотолитографией, формирование планарных контактов на лицевой стороне подложки, лазерную подгонку, формирование защитного слоя, разделение подложки на полосы, формирование торцевых контактов по тонкопленочной технологии, нанесение припоя, разделение полос на чипы, пленарные контакты на лицевой стороне подложки формируют по тонкопленочной технологии с использованием фотолитографии, а планарные контакты на тыльной стороне подложки формируют одновременно с торцевыми контактами, дополнительно введены операции термообработки, термотренировки и импульсной тренировки, при этом термообработку осуществляют после формирования резистивного слоя, термотренировку и импульсную тренировку проводят после разделения полос на чипы.
Сущность предлагаемого способа изготовления чип-резисторов состоит в следующем.
На чертеже изображена конструкция чип-резистора, способ изготовления которого предлагается в данном изобретении.
В качестве основы чип-резистора используется изолирующая подложка (алюмооксидная пластина) 1. Вначале проводят подготовку изолирующих подложек, заключающуюся в очистке и отжиге. Отжиг проводят в печи при температуре (600±20)°C в течение (60±10) минут. Далее формируют резистивный слой 2 и планарные контакты 3 на лицевой стороне подложки посредством напыления с последующей фотолитографией. Далее проводят термообработку, заключающуюся в выдерживании чип-резисторов при температуре в диапазоне (350- 550)°C в течение (15-60) минут, лазерную подгонку сопротивления чип-резисторов, формируют защитный слой 4 посредством нанесения низкотемпературной защитной пасты с последующей сушкой, производят разделение подложки на полосы (плата-ряды). Планарные контакты на тыльной стороне подложки формируют одновременно с торцевыми контактами 5 посредством напыления слоя никеля с подслоем титана с одновременным формированием планарных контактов на тыльной стороне подложки и последующим нанесением припоя (сплава олово-свинец). Далее разделяют полосы на чипы. После этого последовательно производят термотренировку и импульсную тренировку. Термотренировка заключается в выдерживании чип-резисторов в термостате в течение (8±0,5) часов при температуре (130±20)°C. Импульсная тренировка заключается в стабилизации резистивного слоя чип-резисторов приложенным импульсным напряжением в диапазоне (10-1000) В.
Пример
В качестве основы чип-резистора использовалась изолирующая подложка (алюмооксидная пластина). Вначале проводили подготовку изолирующих подложек, заключавшуюся в очистке и отжиге. Отжиг проводили в печи при температуре (600±20)°C в течение (60±10) минут. Далее формировали резистивный слой и планарные контакты на лицевой стороне подложки посредством напыления на установке УВН-71П-3 с последующей фотолитографией. Далее проводили термообработку, заключавшуюся в выдерживании чип-резисторов при температуре в диапазоне (350-550)°C в течение (15-60) минут, лазерную подгонку сопротивления чип-резисторов методом удаления части резистивного слоя сфокусированным лучом лазера (на машине лазерной для подгонки резисторов МЛ 5-2), формировали защитный слой посредством нанесения низкотемпературной защитной пасты 4081 (ТУ 031-00387275-09) методом трафаретной печати с последующей сушкой в ИК- печи при 150°C и вжиганием в конвейерной мультизонной печи при температуре (200±20)°C, производили резку подложек на полосы. Планарные контакты на тыльной стороне подложки формировали одновременно с торцевыми контактами посредством напыления слоя никеля с подслоем титана на вакуумной установке НАНОМЕТ-200 и последующим горячим лужением припоем методом окунания в расплавленный припой (сплав олово-свинец при температуре 230-300°C), далее разламывали полосы на чипы. После этого последовательно производили термотренировку и импульсную тренировку. Термотренировка заключалась в выдерживании чип-резисторов в термостате в течение (8±0,5) часов при температуре (130±20)°C. Импульсная тренировка заключалась в стабилизации резистивного слоя чип-резисторов приложенным импульсным напряжением в диапазоне (10-1000) В.
Полученные резисторы имели следующие технические характеристики
Параметр | Значение (лучшее) |
ТКС×10-6 1/°C в диапазоне температур от 20 до 125°C | ±5 |
Гарантированная стабильность в течение 2000 ч при P=Pномин. и Т=85°C, не более | ±0,25% |
Допускаемое отклонение от номинального сопротивления | ±0,25% |
Минимальная наработка | 30000 час |
Сопротивление резисторов измеряли по ГОСТ 21342.20-78 «Резисторы. Метод измерения сопротивления». Температурный коэффициент сопротивления (ТКС) измеряли согласно ГОСТ 21342.15-78 «Резисторы. Метод определения температурной зависимости сопротивления». Наработку оценивали по ГОСТ 25359-82 «Изделия электронной техники. Общие требования по надежности и методы испытаний». Прочность контактных узлов резисторов на воздействие сдвигающей силы контролируют при креплении резисторов путем припаивания за контактные поверхности (торцевые контакты) к металлизированным серебром и облуженным площадкам на керамической плате. Направление приложения усилия - параллельно торцевым контактам резистора. Значение нагрузки для резисторов типоразмера 0805 значительно превысило 0,15 кгс, а для типоразмеров 1206 и 2010 значительно превысило 0,3 кгс.
Таким образом, использование предлагаемого изобретения позволяет улучшить эксплуатационные характеристики чип-резисторов, а именно стабильность получаемых резистивных пленок за счет дополнительных операций - термообработки и термотренировки, надежность вследствие отбраковки потенциально ненадежных чип-резисторов на операции импульсная тренировка. Предлагаемая технология изготовления чип-резисторов является более технологичной по сравнению с прототипом за счет использования вакуумно-дугового (тонкопленочного) способа формирования планарных контактов на тыльной стороне подложки одновременно с торцевыми контактами, позволяющего исключить операцию формирования планарных контактов на тыльной стороне подложки.
Способ изготовления чип-резисторов, включающий формирование резистивного слоя путем напыления с последующей фотолитографией, формирование планарных контактов на лицевой стороне подложки, лазерную подгонку, формирование защитного слоя, разделение подложки на полосы, формирование торцевых контактов по тонкопленочной технологии, нанесение припоя, разделение полос на чипы, отличающийся тем, что планарные контакты на лицевой стороне подложки формируют по тонкопленочной технологии с использованием фотолитографии, а планарные контакты на тыльной стороне подложки формируют одновременно с торцевыми контактами, дополнительно введены операции термообработки, термотренировки и импульсной тренировки, при этом термообработку осуществляют после формирования резистивного слоя, термотренировку и импульсную тренировку проводят после разделения полос на чипы.