Способ восстановления коренных опор блоков двигателей
Изобретение относится к области ремонта деталей машин и может быть использовано на ремонтно-технических предприятиях, машинно-технологических станциях, в мастерских хозяйства для восстановления постелей коренных опор блоков двигателей внутреннего сгорания. В способе осуществляют нанесение на поверхность изношенных коренных опор покрытия электроискровой наплавкой и расточку, а на изношенных коренных опорах формируют комбинированное покрытие из двух слоев. Первый электроискровой слой наносят невращающимся нихромовым электродом сечением 12-20 мм2 в ручном режиме с энергией импульса 4,3-10 Дж, длительностью импульса 1000-2000 мкс, амплитудным значением тока импульса 240-280 А и количеством рабочих импульсов в секунду 50-100. Второй слой образуют холодным газодинамическим напылением алюминийсодержащего порошка с последующей расточкой полученного комбинированного покрытия и хонингованием всех коренных опор до получения требуемых геометрической точности размеров. Изобретение позволяет повысить производительность процесса путем изменения режимов электроискровой наплавки и сокращения времени технологического процесса. 1 табл.
Реферат
Изобретение относится к области ремонта деталей машин и может быть использовано на ремонтно-технических предприятиях, машинно-технологических станциях, в мастерских хозяйства для восстановления постелей коренных опор блоков двигателей внутреннего сгорания.
Известен способ восстановления отверстий в тяжелонагруженных корпусных деталях, включающий предварительное нанесение на поверхность отверстия покрытия электроискровым методом вращающимся вокруг своей оси с частотой 200-700 с-1 электродом из нихрома Х20Н80 сечением 20-25 мм2 при частоте подачи импульсов 200-250 Гц и силе тока 5-10 А, расточку и последующее нанесение полимерной композиции, содержащей анаэробный герметик Анатерм-6В с наполнителями (RU, №2220834, МПК В23Р 6/00, В23Н 9/00, опубл. 10.01.2004 г.).
Недостатком указанного способа является низкая надежность модернизированного коммутирующего устройства, низкая производительность электроискровой наплавки покрытия толщиной до 3 мм и сплошностью до 99% формируемого со скоростью 10 мин/см2 и продолжительная длительность полной полимеризации анаэробного герметика Анатерм-6В - 24 ч.
Технический результат заключается в повышении производительности процесса путем изменения режимов электроискровой наплавки и сокращении времени технологического процесса.
Технический результат достигается тем, что в способе восстановления коренных опор блоков, включающем нанесение на поверхность изношенных коренных опор покрытия электроискровой наплавкой нихромовым электродом и расточку, на изношенных коренных опорах формируют комбинированное покрытие, состоящее из двух слоев. Первый электроискровой слой наносят невращающимся электродом сечением 12-20 мм2 в ручном режиме с энергией импульса 4,3-10 Дж, длительностью импульса 1000-2000 мкс, амплитудным значением тока импульса 240-280 А и количеством рабочих импульсов в секунду 50-100. Второй слой образуют холодным газодинамическим напылением алюминийсодержащим порошком с последующей расточкой полученного комбинированного покрытия и хонингованием всех коренных опор до получения требуемой эксплуатационной размерной точности.
Способ осуществляют следующим образом. На изношенных коренных опорах формируют комбинированное покрытие, состоящее из двух слоев. Первый слой является основным, воспринимающим нагрузку, действующую на коренную опору, второй слой применяется для обеспечения 100% контактной сплошности комбинированного покрытия. Первый слой образуют электроискровой наплавкой при нанесении электродом из нихрома Х20Н80 сечением 12-20 мм2 в ручном режиме, штатным коммутирующим устройством с невращающимся электродом, с энергией импульса 4,3-10 Дж, длительностью импульса 1000-2000 мкс, амплитудным значением тока импульса 240-280 А и количеством рабочих импульсов секунду 50-100. Наплавку производят короткими замыканиями с периодическим принудительным охлаждением электрода. Второй слой образуют холодным газодинамическим напылением на установке ДИМЕТ-404 алюминийсодержащим порошком на следующих режимах: температурный режим 400°С, расход порошкового материала 0,1 г/с, давление сжатого воздуха 0,7 МПа. Затем восстановленные поверхности растачивают на горизонтально-расточном станке на величину 0,02-0,03 мм меньше номинального диаметра коренной опоры. Крышки коренных опор, на поверхностях которых не формировалось комбинированное покрытие, занижают на величину 0,03-0,04 мм. После чего постели коренных опор хонингуют универсальным хоном при частоте вращения 200-250 мин и с частотой возвратно-поступательных движений 40-50 ходов минуту. Хонингование проводят до обеспечения шероховатости 1,25-1,6 мкм, овальности, конусности и отклонения от соосности всех коренных опор не более 0,01 мм.
Снижение энергии импульса менее 4,3 Дж увеличивает время обработки поверхности и не позволяет получить требуемую толщину покрытия. Увеличение энергии импульса более 10 Дж ограничено техническими характеристиками электроискровой установки, снижением сплошности покрытий до 70% и ниже.
Исследование заявленных режимов формирования электроискровых покрытий осуществляли в ручном режиме на установке БИТ-5.
Результаты исследования толщины и сплошности покрытий, полученных при обработке электродом из нихрома Х20Н80 серого СЧ-21-40 и ковкого чугуна КЧ-35-10 в зависимости от времени обработки, представлены в табл.1.
Заявленные пределы параметров электроискровой наплавки обеспечивают получение покрытий толщиной 3-3,5 мм со сплошностью 90-100% за время 2,08-2,5 мин/см2.
Хронометрирование этапов технологического процесса показало, что время образования холодного газодинамического слоя и формирования требуемой геометрической точности коренных опор составляет 3,0-3,5 ч.
Таким образом, за счет изменения режимов электроискровой наплавки достигается снижение времени обработки одного см2 в 4,0-4,8 раза и за счет применения холодного газодинамического напыления достигается снижение времени формирования требуемой геометрической точности коренных опор в 6,8-8,0 раз без изменения динамической точности при эксплуатации отремонтированной сборочной единицы. Все это позволяет повысить производительность труда.
Таблица 1 | ||
Время обработки, τ, с | Толщина покрытия, мм | Сплошность, % |
Основа серый чугун СЧ-21-40 | ||
τ=30 | 0,65-0,70 | 90-95 |
2τ | 1,15-1,25 | 95-100 |
3τ | 2,25-2,40 | 95-100 |
4τ | 3,05-3,30 | 95-100 |
5τ | 3,45-3,55 | 95-100 |
Основа ковкий чугун КЧ-35-10 | ||
τ=25 | 0,60-0,70 | 85-90 |
2τ | 0,95-1,45 | 90-95 |
3τ | 2,05-2,45 | 95-100 |
4τ | 2,85-3,15 | 95-100 |
5τ | 3,25-3,45 | 95-100 |
Примечание. τ - время обработки одного см2. |
Способ восстановления коренных опор блоков двигателей внутреннего сгорания, включающий нанесение на поверхность изношенных коренных опор покрытия с использованием электроискровой наплавки и расточку, отличающийся тем, что на изношенных коренных опорах формируют комбинированное покрытие из двух слоев, первый из которых наносят электроискровой наплавкой невращающимся нихромовым электродом сечением 12-20 мм2 в ручном режиме с энергией импульса 4,3-10 Дж, длительностью импульса 1000-2000 мкс, амплитудным значением тока импульса 240-280 А и количеством рабочих импульсов в секунду 50-100, а второй слой образуют холодным газодинамическим напылением алюминийсодержащего порошка с последующей расточкой полученного комбинированного покрытия и хонингованием всех коренных опор до получения требуемых геометрической точности размеров.