Устройство для неинвазивного потенциометрического определения оксидантной/антиоксидантной активности биологических тканей
Иллюстрации
Показать всеГруппа изобретений относится к медицине, косметологии, производству продуктов питания, витаминов, БАДов, лекарственных средств и описывает варианты устройства для реализации неинвазивного потенциометрического определения оксидантной/антиоксидантной активности биологических тканей, включающего прибор для измерения потенциалов и двухсторонний электрод, выполненный в виде пластины с одинаковыми рабочими поверхностями, покрытыми электропроводящим гелем, содержащим медиаторную систему. Электроды закрепляют на биологической ткани таким образом, что одна рабочая поверхность, выполняющая роль измерительного электрода, находится в непосредственном контакте с биологической тканью через гель, вторая рабочая поверхность выполняет роль электрода сравнения. При этом электроды через гель контактируют друг с другом, а оксидантную/антиоксидантную активность определяют по формулам, используя разность конечного и начального потенциалов. Достигается упрощение, а также повышение точности и достоверности определения. 2 н. и 12 з.п. ф-лы, 3 табл., 4 ил.
Реферат
Изобретение относится к области электрохимических методов анализа, в частности к анализу поверхности биологических тканей (в т.ч. кожи) на предмет определения интегральной оксидантной/антиоксидантной активности объекта исследования.
Известен способ оценки антиоксидантного состояния кожи (Международная публикация WO 2007/077360). Измерения проводят методом вольтамперометрии с использованием рабочего электрода, электрода сравнения и противоэлектрода, помещенных в контактирующий с кожей раствор.
Недостатком этого способа является использование контактирующего с кожей раствора, питающего потенциостата и тока в качестве источника информации. Последний не является однозначной функцией содержания антиоксидантов в объекте исследования. Он зависит, наряду с другими, не поддающимися учету параметрами, также от наличия примесей, температуры и состояния поверхности рабочего электрода.
Известен способ определения уровня каротиноидов в поверхностном слое биологических тканей как показателя их антиоксидантного состояния. В основе измерения лежит принцип рамановской спектроскопии. Луч определенной длины волны взаимодействует с молекулами каротиноидов, при этом происходит смещение из голубой в зеленую часть спектра (Патент США №6205354).
Недостатком этого метода является то, что он позволяет оценить только антиоксидантную активность, обусловленную каротиноидами, которые являются лишь одним из видов большого количества антиоксидантов, содержащихся, в частности, в коже, то есть их концентрация не позволяет судить об общем содержании антиоксидантов в поверхностном слое биологической ткани.
Наиболее близким техническим решением к заявленному изобретению является устройство для неинвазивного потенциометрического определения оксидантной/антиоксидантной активности биологических тканей, включающее открытый с одной стороны корпус, в котором размещены подсоединенные к прибору для измерения потенциалов, электрически связанные между собой электропроводящим гелем, содержащим медиаторную систему, электрод сравнения и измерительный электрод (Патент РФ №2433405).
Данное устройство имеет следующие недостатки.
Процесс измерения при использовании данного устройства включает много стадий: нанесение на поверхность биологической ткани электропроводного геля с введенной в него медиаторной системой, установка на поверхности биологической ткани рабочего электрода, контактирующего с гелем, содержащим медиаторную систему, введение в контакт с гелем электрода сравнения и лишь затем измерение. Электрод сравнения является одноразовым, что удорожает процесс измерения. При наклеивании электрода сравнения на кожу невозможно обеспечить плотное прилегание измерительного электрода к неровной поверхности исследуемого объекта. Это влечет за собой проникновение воздуха и, как следствие, образование воздушных пузырей, что искажает результаты измерений. Кроме того, известное устройство сложно по конструкции, а выполнение электродов из разных материалов и разной формы исключает их взаимозаменяемость.
Задачей, решаемой настоящим изобретением, является упрощение конструкции и эксплуатации устройства, улучшении эксплуатационных свойств.
Технический результат, обеспечиваемый настоящим изобретением, заключается в сокращении времени на подготовку к измерению, уменьшении количества операций при эксплуатации устройства, обеспечении возможности его многократного использования, повышении точности и достоверности результатов измерения.
Технический результат и решение поставленной задачи достигаются тем, что электроды выполнены идентичными в виде электропроводящего металлосодержащего слоя, нанесенного на противоположные стороны общей диэлектрической подложки в форме пластины, поверх электропроводящего металлосодержащего слоя расположен слой изолятора, разделяющий электропроводящий слой на контактную и рабочую зоны, при этом гель с медиаторной системой нанесен на рабочие зоны электродов равномерным слоем одинаковой толщины не более 0,3 мм. Также технический результат достигается тем, что расстояние между наружными поверхностями электродов составляет 1,1…2,2 мм; диэлектрическая подложка выполнена из высокотемпературного керамического материала; корпус выполнен из гибкого материала, в качестве которого предпочтительно используют лейкопластырь на синтетической основе; ширина слоя изолятора не менее ширины пластины диэлектрической подложки.
Технический результат достигается также другим вариантом исполнения, характеризующимся тем, что электроды выполнены идентичными в виде планарных толстопленочных электродов, поверх электропроводящей пленки которого расположен слой изолятора, разделяющий пленку на контактную и рабочую зоны, при этом подложки электродов соединены между собой сторонами, обратными поверхностям с электропроводящей пленкой, а гель с медиаторной системой нанесен на рабочие зоны обоих электродов равномерным слоем одинаковой толщины.
Указанные отличительные признаки существенны и в своей совокупности обеспечивают достижение технического результата.
Выполнение электродов идентичными на общей подложке или соединенными обратными непроводящими сторонами обеспечивает упрощение конструкции и эксплуатации, повышает точность и достоверность измерений за счет исключения факторов, связанных с влиянием на процессы измерения разных материалов, а расположение рабочих зон электродов на противоположных сторонах подложки препятствует диффузии исследуемой среды в зону электрода сравнения. Данный признак также упрощает эксплуатацию устройства. Выполнение корпуса из гибкого материала, предпочтительно лейкопластыря, позволяет легко адаптировать устройство к неровным поверхностям, исключить образование воздушных пузырей между гелем и корпусом, а также обеспечивает более плотное прилегание геля и электрода к исследуемой поверхности. Использование лейкопластыря в сочетании с двухсторонней конструкцией идентичных электродов существенно упрощает и ускоряет процесс подготовки к измерениям, что минимизирует влияние внешней среды на медиаторную систему в геле и, соответственно, повышает точность измерений. Заявленные толщина слоя геля и расстояние между поверхностями электродов выбраны оптимальными по результатам исследований с позиции минимизации влияния побочных процессов и времени измерения, что также повышает точность и достоверность результатов измерений.
На фиг. 1 изображено устройство в целом.
На фиг. 2 представлен вид на электроды в плане.
На фиг. 3 представлен вид на электроды с боку.
На фиг. 4 изображены электроды по второму варианту изобретения, выполненные на отдельных подложках.
Устройство для неинвазивного потенциометрического определения оксидантной/антиоксидантной активности биологических тканей содержит электрод сравнения 1 и измерительный электрод 2, выполненные идентичными в виде электропроводящего металлосодержащего слоя 3, нанесенного на противоположные стороны общей диэлектрической подложки в форме пластины 4. Расстояние между наружными поверхностями электродов составляет 1,1…2,2 мм. Диэлектрическая подложка выполнена из высокотемпературного керамического материала. Поверх электропроводящего слоя 3 расположен слой изолятора 5, разделяющий электропроводящий слой 3 на контактную 6 и рабочую 7 зоны. Ширина слоя изолятора 5 не менее ширины пластины 4 диэлектрической подложки. На рабочие зоны 7 электродов 1 и 2 равномерным слоем одинаковой толщины не более 0,3 мм нанесен электропроводящий гель 8 с медиаторной системой. Рабочие зоны 7 электродов во время измерения расположены в корпусе 9, помещенном открытой стороной на исследуемый объект, выполненным из гибкого материала, предпочтительно лейкопластыря с синтетической подложкой. Контактные зоны 6 электрически связаны с прибором для измерения потенциалов 10. Устройство размещают на исследуемом объекте 11.
По второму варианту изобретения электроды 1 и 2 выполнены в виде отдельных планарных толстопленочных электродов, поверх электропроводящего слоя 12 которых расположен слой изолятора 13, разделяющий электропроводящий слой на контактную 14 и рабочую 15 зоны. Подложки 16 электродов 1 и 2 соединены между собой сторонами, обратными поверхностям с электропроводящим слоем 12.
Устройство работает следующим образом.
Пластина 4 с электродами 1 и 2, покрытыми электропроводным гелем 8 с введенной в него медиаторной системой, крепится на поверхности биологической ткани 11, в частности кожи, с помощью лейкопластыря, выполняющего функции корпуса 9 устройства. За счет гибкости корпуса обеспечивается плотное прилегание устройства к поверхности любой формы без образования воздушных пузырей и доступа воздуха к гелю 8. Необходимым условием является нахождение рабочих зон 7 электродов 1 и 2 в контакте с проводящим гелем 8. Установившийся в системе электрический потенциал измеряют с помощью прибора 10. Изменение разности потенциалов фиксируют от момента установления контакта геля и электрода с исследуемым объектом и до истечения 5-15 мин.
Оксидантную/антиоксидантную активность определяют, используя разность конечного и начального потенциалов по формулам:
где ΔЕ - разница между начальным потенциалом системы и значением потенциала, установившегося в конце измерения, COx - концентрация окисленной формы медиаторной системы, М; CRed - концентрация восстановленной формы медиаторной системы, М; АОА - антиоксидантная активность, М-экв; OA - оксидантная активность, М-экв.
Расстояние между наружными поверхностями электродов, которое составляет 1,1…2,2 мм при условии толщины геля на рабочих поверхностях электродов не более 0,3 мм, является оптимальным, так как, с одной стороны, создает условия, при которых за время измерения оксиданты/антиоксиданты из объекта исследования не достигают рабочей поверхности электрода сравнения, а с другой стороны, обеспечивает минимальное время установления стационарного состояния диффузионных процессов в геле и, как следствие, приводит к корректному измерению потенциала.
При толщине слоя геля между кожей и рабочим электродом более 0,3 мм возрастает время диффузии определяемых веществ к рабочему электроду, что приводит к значительному увеличению времени измерения. При расстоянии между электропроводящими поверхностями электродов менее 1,1 мм определяемые объекты (оксиданты/антиоксиданты) успевают за время измерения продиффундировать к поверхности электрода сравнения, что искажает результаты измерения. При расстоянии между электропроводящими поверхностями электродов более 2,2 мм повышается электрическое сопротивление между ними, что вносит существенную погрешность в результат измерения.
Зависимость точности (погрешности) измерения от толщины слоя электропроводящего геля и расстояния между наружными поверхностями электродов показана измерением АОА модельной системы электропроводящий гель, содержащий медиаторную систему и аскорбиновую кислоту в концентрации 2×10-5 М-экв. Время измерения - 10 мин.
Погрешность измерений в зависимости от толщины слоя электропроводящего геля приведена в таблице 1.
Как видно из таблицы 1, с увеличением толщины слоя геля на электродах растет погрешность результатов измерений. При толщине более 0,3 мм она существенно возрастает и становится неприемлемой - более 15%.
Погрешность измерений в зависимости от расстояния между электропроводящими поверхностями электродов представлена в таблице 2.
Результаты измерений показывают, что при расстоянии в пределах 1,1…2,2 мм погрешность находится в допустимых значениях и не превышает 10%, изменяясь пропорционально задаваемому расстоянию. При расстоянии за пределами указанного диапазона расстояний значительно возрастают как сами величины погрешности измерений, так и разброс их значений.
Устройство было использовано для оценки оксидант-антиоксидантной активности кожи у групп пациентов как здоровых, так и страдающих различными заболеваниями. В таблице 3 приведена выборка результатов таких измерений с помощью заявленного устройства (число параллелей n=4-5).
Как видно из приведенных примеров, устройство обеспечивает достоверное определение оксидантной/антиоксидантной активности кожи человека в зависимости от состояния организма.
Предлагаемое устройство, обеспечивая достоверное и точное определение оксидантного/антиоксидантного состояния живой биологической ткани, существенно упрощает и удешевляет процесс измерения.
1. Устройство для неинвазивного потенциометрического определения оксидантной/антиоксидантной активности биологических тканей, включающее открытый с одной стороны корпус, в котором размещаются подсоединенные к прибору для измерения потенциалов, электрически связанные между собой электропроводящим гелем, содержащим медиаторную систему, электрод сравнения и измерительный электрод, отличающееся тем, что электроды выполнены идентичными в виде электропроводящего металлосодержащего слоя, нанесенного на противоположные стороны общей диэлектрической подложки в форме пластины, причем поверх электропроводящего металлосодержащего слоя расположен слой изолятора, разделяющий электропроводящий слой на контактную и рабочую зоны, при этом гель с медиаторной системой нанесен на рабочие зоны электродов равномерным слоем одинаковой толщины.
2. Устройство по п.1, отличающееся тем, что толщина слоя геля на рабочих зонах электродов составляет не более 0,3 мм.
3. Устройство по п.1, отличающееся тем, что расстояние между наружными поверхностями электродов составляет 1,1…2,2 мм.
4. Устройство по п.1, отличающееся тем, что диэлектрическая подложка выполнена из высокотемпературного керамического материала.
5. Устройство по п.1, отличающееся тем, что корпус выполнен из гибкого материала.
6. Устройство по пп.1, 5, отличающееся тем, что в качестве материала корпуса используют лейкопластырь на синтетической подложке.
7. Устройство по п.1, отличающееся тем, что ширина слоя изолятора не менее ширины пластины диэлектрической подложки.
8. Устройство для неинвазивного потенциометрического определения оксидантной/антиоксидантной активности биологических тканей, включающее открытый с одной стороны корпус, в котором размещаются подсоединенные к прибору для измерения потенциалов, электрически связанные между собой электропроводящим гелем, содержащим медиаторную систему, электрод сравнения и измерительный электрод, отличающееся тем, что электроды выполнены идентичными в виде планарных толстопленочных электродов, поверх электропроводящего металлосодержащего слоя которых расположен слой изолятора, разделяющий электропроводящий металлосодержащий слой на контактную и рабочую зоны, при этом подложки электродов соединены между собой сторонами, обратными поверхностям с электропроводящим слоем, а гель с медиаторной системой нанесен на рабочие зоны обоих электродов равномерным слоем одинаковой толщины.
9. Устройство по п.8, отличающееся тем, что толщина слоя геля на рабочих зонах электродов составляет не более 0,3 мм.
10. Устройство по п.8, отличающееся тем, что расстояние между наружными поверхностями электродов составляет 1,1…2,2 мм.
11. Устройство по п.8, отличающееся тем, что подложка электродов выполнена из высокотемпературного керамического материала.
12. Устройство по п.8, отличающееся тем, что корпус выполнен из гибкого материала.
13. Устройство по пп.8, 12, отличающееся тем, что в качестве материала корпуса используют лейкопластырь на синтетической подложке.
14. Устройство по п.8, отличающееся тем, что ширина слоя изолятора не менее ширины подложки электродов.