Металлический материал, устойчивый к карбюризации
Изобретение относится к области металлургии, а именно к составу металлического материала, используемого на нефтеперерабатывающих, газоперерабатывающих и химических производствах в качестве материала для крекинговых, реформинговых и нагревательных печей, теплообменников. Материал содержит, в мас.%: C: от 0,03 до 0,075, Si: от 0,6 до 2,0, Mn: от 0,05 до 2,5, P: 0,04 или менее, S: 0,015 или менее, Cr: больше 16,0 и меньше 20,0, Ni: 20,0 или больше, но меньше 30,0, Cu: от 0,5 до 10,0, Al: 0,15 или менее, Ti: 0,15 или менее, N: от 0,005 до 0,20, O: 0,02 или менее, остальное Fe и примеси. Материал может дополнительно содержать по меньшей мере один компонент, выбранный из: Co, Mo, W, Ta, B, V, Zr, Nb, Hf, Mg, Ca, Y, La, Ce и Nd. Материал обладает устойчивостью к науглероживанию, пылящему износу и закоксовыванию, имеет повышенную свариваемость и характеристики ползучести. 2 н. и 3 з.п. ф-лы, 2 табл., 4 пр.
Реферат
Область техники
Настоящее изобретение относится к металлическому материалу, обладающему превосходной жаропрочностью и очень высокой устойчивостью к коррозии, который используется, в частности, в карбюризирующих средах, содержащих газообразные углеводороды и оксид углерода. Конкретнее, изобретение относится к металлическому материалу, обладающему превосходной свариваемостью и устойчивостью к пылящему износу, который пригоден в качестве конструкционного материала для изготовления крекинговых печей, печей для реформинга, термических печей, теплообменников и прочего оборудования для нефтегазовой, химической и т.п. промышленности.
Уровень техники
В ближайшем будущем ожидается значительное повышение спроса на экологически чистые виды топлива, такие, как водород, метанол, диметиловый эфир, синтетическое жидкое топливо (полученное путем сжижения топлива в газовой фазе по технологии GTL, Gas-To-Liquid). Соответственно, размеры установок для реформинга и производства синтетического газа со временем будут увеличиваться, а сами установки при этом должны характеризоваться высоким термическим КПД и промышленными объемами на выходе. Кроме того, для улучшения показателей энергоэффективности реформинговых установок на традиционных нефтеперерабатывающих, нефтехимических и сходных с ними заводах, а также для улучшения показателей энергоэффективности установок по производству аммиака, водорода и т.п., использующих в качестве сырья нефть, часто применяются теплообменники для отработанных газов.
Для эффективного использования тепловой энергии разогретого газа важную роль играет теплообмен в диапазоне относительно низких температур от 400 до 800°С, при этом остро встает проблема коррозии, которая при этих температурах вызывается карбюризацией материала на основе высокохромистого высоконикелевого железного сплава, из которого изготавливаются реакционные трубы, теплообменники и т.п.
Обычно после реформинга в вышеописанных установках синтетический газ, содержащий H2, CO, CO2, H2O и углеводород (например, метан) вступает в контакт с металлическим материалом реакционной трубы (или сходных с ней устройств) при температуре около 1000°C или выше. В этом диапазоне температур на поверхности материала трубы избирательно окисляются имеющиеся в его составе хром и кремний, обладающие большей склонностью к окислению, чем железо, никель и т.п. В результате образуется плотная пленка оксида хрома, оксида кремния и т.п., которая сдерживает коррозию. Однако, в узлах вроде теплообменника, где температура относительно низкая, диффузия элементов из толщи материала к его поверхности оказывается недостаточной. Поэтому формирование сдерживающей коррозию оксидной пленки замедляется, а вдобавок ко всему газ, в составе которого имеется углеводород, способен приводить к карбюризации - процессу, когда углерод проникает в материал через его поверхностный слой.
Если в трубе этиленовой крекинговой печи (и схожих с ней) происходит карбюризация и образуется слой карбида хрома, железа и т.п., то объем этого слоя постоянно увеличивается. В результате резко возрастает вероятность образования волосных трещин, а в худшем случае возможно разрушение трубы. Кроме того, если металлическая поверхность не защищена, на ней протекают процессы осаждения углерода (коксование), в которых металлический материал участвует в качестве катализатора, вследствие чего уменьшается просвет трубы, и ухудшаются показатели теплопередачи.
В каталитических крекинговых печах для повышения октанового числа лигроина, получаемого также перегонкой сырой нефти, применяются нагревательные и подобные им трубы, в которых формируется среда из углеводородов и водорода, приводящая к сильной карбюризации и пылящему износу металлического материала.
С другой стороны, в более агрессивных карбюризирующих газовых средах (в реформинговой печи, теплообменнике и т.п.) карбид оказывается перенасыщенным, и поэтому графит осаждается непосредственно. В результате отслаивается металлический материал и уменьшается толщина стенок устройства, то есть происходят коррозионные потери, называемые пылящим износом металлического материала. Более того, отслоившаяся металлическая пыль служит катализатором для процесса закоксовывания.
Если со временем трещины увеличиваются, коррозионные потери возрастают, а просвет трубы уменьшается, происходит отказ оборудования и, следовательно, приостановка производства. Поэтому к выбору материала для оборудования следует подходить тщательно и вдумчиво.
Были исследованы многочисленные методы противодействия вышеупомянутым карбюризации и коррозии вследствие пылящего износа металлического материала.
Например, Патентный документ 1 для повышения устойчивости к пылящему износу металлического материала в газовых средах температурой от 400 до 700°С, содержащих H2, CO, CO2 и H2O, предлагает использовать сплав на железной или никелевой основе, содержащий от 11 до 60% (массовых %, здесь и далее) хрома. Высокоэффективными оказались, в частности: сплав на железной основе, содержащий 24% или более хрома и 35% или более никеля; сплав на никелевой основе, содержащий 20% или более хрома и 60% или более никеля; сплавы, получаемые добавлением ниобия к предыдущим сплавам. Тем не менее, если просто увеличить долю хрома или никеля в сплаве на основе железа или никеля, то будет невозможно в достаточной степени сдерживать карбюризацию. Поэтому существует необходимость в металлическом материале с большей устойчивостью к пылящему износу.
Способ, раскрытый в Патентном документе 2, предлагает предотвращать коррозию, вызванную пылящим износом жаропрочного сплава железа, никеля и хрома, путем обычного химического или физического нанесения на его поверхность одного или нескольких металлов VIII, IB, IV и V групп, после чего сплав отжигается в инертной атмосфере и на нем образуется защитный слой толщиной от 0,01 до 10 мкм. Для образования защитного слоя особенно пригодны олово, свинец, висмут и т.п. Несмотря на свою эффективность в краткосрочном периоде, этот метод может проигрывать в долгосрочном из-за постепенного отслаивания защитного слоя.
Патентный документ 3 относится к устойчивости металлического материала к пылящему износу в газовых средах, содержащих H2, CO, CO2 и H2O, при температуре от 400 до 700°С. Согласно Патентному документу 3, изучение взаимодействия присутствующих в железном сплаве элементов с углеродом показало, что присадка в сплав элементов вроде титана, ниобия, ванадия и молибдена, которые образуют в металлическом материале устойчивые карбиды, или элементов с положительным значением коэффициента взаимодействия Ω, таких, как кремний, алюминий, никель, медь и кобальт, позволяет эффективно сдерживать пылящий износ, а также улучшает защитные качества оксидной пленки. Однако, увеличение доли кремния, алюминия и пр. приводит иногда к ухудшению свариваемости и эксплуатационных качеств при высоких температурах. Поэтому, с точки зрения стабильности производства и работоспособности завода, этот материал нуждается в доработке.
Далее, для предотвращения контакта между карбюризирующей газовой средой и металлической поверхностью был раскрыт способ предварительного окисления металлического материала и способ обработки поверхности.
Например, Патентный документ 4 и Патентный документ 5 раскрывают способ предварительного окисления низкокремнистой жаропрочной стали 25Cr-20Ni (HK40) или низкокремнистой жаропрочной стали 25Cr-35Ni на воздухе при температуре около 1000°С на протяжении 100 часов или более. Также Патентный документ 6 раскрывает способ предварительного окисления на воздухе аустенитной жаропрочной стали, содержащей от 20 до 35% хрома. Далее, Патентный документ 7 предлагает способ повышения устойчивости к карбюризации путем нагрева высоконикелевого высокохромистого сплава в вакууме с образованием пленки окалины.
Патентный документ 8 предлагает аустенитный сплав, в котором доля кремния, хрома и никеля отвечает формуле Si<(Cr+0,15Ni-18)/10; таким образом, формируется хромсодержащая оксидная пленка с высокой адгезионной способностью даже в условиях постоянных циклов нагрева/охлаждения, которая превосходно защищает сплав от карбюризации даже в среде высокотемпературного коррозионного газа. Патентный документ 9 предлагает аустенитную нержавеющую сталь, получаемую присадкой меди и редкоземельного элемента (иттрий и лантаноиды) с последующим образованием однородной оксидной пленки, содержащей высокую концентрацию хрома и обладающей превосходной устойчивостью к отслаиванию даже в условиях постоянных циклов нагрева/охлаждения. В этом документе, однако, не рассматривается влияние добавки меди на свариваемость или пластичность при ползучести. Патентный документ 10 предлагает повышать устойчивости к карбюризации путем нанесения концентрированного слоя кремния или хрома в процессе поверхностной обработки. К сожалению, весь предшествующий уровень техники требует специальной термической или поверхностной обработки и поэтому проигрывает с точки зрения экономичности. Кроме того, невозможно предсказать последствия при повреждении поверхности материала, поскольку не предусмотрены способы восстановления отслоившейся защитной пленки, первоначально сформированной в ходе предварительного окисления или поверхностной обработки.
Патентный документ 11 предлагает трубу из нержавеющей стали, которая содержит от 20 до 55% хрома и обладает превосходной устойчивостью к карбюризации за счет наличия на поверхности стальной трубы слоя с долей хрома 10% и более, но не выше доли хрома в материале основы. Однако в этом патентном документе никоим образом не решается проблема ухудшения свариваемости, возникающая вследствие добавления хрома или кремния. Патентный документ 12 предлагает сплав, где склонность к растрескиванию в зоне термического влияния (HAZ), которая относится к характеристикам свариваемости, снижается за счет увеличения доли углерода в кремнийсодержащей и медесодержащей стали. Тем не менее, данный патентный документ не содержит действенного решения проблемы, так как высокое содержание углерода увеличивает склонность к усадочному растрескиванию при сварке и снижает пластичность при ползучести.
Помимо прочего, продумывался способ добавления сероводорода (H2S) в газовую среду. Но применимость этого способа весьма ограничена, поскольку сероводород (H2S) может заметно снизить активность катализатора, используемого в процессе реформинга.
Патентный документ 13 и Патентный документ 14 предлагают металлический материал, в котором диссоциативная адсорбция газа (поверхностная реакция взаимодействия газа и металлического материала) сдерживается подходящим количеством фосфора, серы, сурьмы и висмута, относящихся к одному или нескольким классам. Данные элементы разделяются на поверхности металлического материала и, даже если они присутствуют не в избытке, они могут значительно сдерживать карбюризацию и коррозию металлического материала из-за пылящего износа. Однако эти элементы разделяются не только на поверхности металлического материала, но и на границах зерен металлического материала, и поэтому проблема жаропрочности и свариваемости остается нерешенной.
Также предлагались технологии повышения устойчивости к коррозии и к щелевой коррозии посредством добавления меди. Патентный документ 15 описывает, с одной стороны, технологию улучшения коррозионной устойчивости с помощью медной присадки, и, с другой стороны, технологию повышения жаропрочности путем добавления бора и минимизации содержания серы и кислорода. Патентный документ 16 описывает высокоэффективную технологию повышения устойчивости к коррозии и к щелевой коррозии в сернокислотных и сульфатных средах путем установки значения показателя общей коррозии (G.I.), представляемого формулой "-Cr+3,6Ni+4,7Mo+11,5Cu", в диапазоне от 60 до 90, и путем установки значения показателя щелевой коррозии (C.I.), представленного формулой "Cr+0,4Ni+2,7Mo+Cu+18,7N", в диапазоне между 35 и 50. Патентный документ 17 описывает технологию повышения жаропрочности посредством увеличения содержания бора более 0,0015% при увеличении доли меди и минимизации доли кислорода. Во всех описанных технологиях максимальное значение содержания углерода снижено во избежание потери коррозионной устойчивости. Поэтому нельзя ожидать законченного решения по увеличению концентрации углерода и невозможно добиться достаточного уровня жаропрочности. По этой причине описанные технологии непригодны для металлических материалов, эксплуатируемых при высоких температурах.
ЦИТИРУЕМЫЕ ПАТЕНТНЫЕ ДОКУМЕНТЫ
1 - JP9-78204A
2 - JP11-172473A
3 - JP2003-73763A
4 - JP53-66832A
5 - JP53-66835A
6 - JP57-43989A
7 - JP11-29776A
8 - JP2002-256398A
9 - JP2006-291290A
10 - JP2000-509105A
11 - JP2005-48284A
12 - WO 2009/107585 A
13 - JP2007-186727A
14 - JP2007-186728A
15 - JP1-21038A
16 - JP2-170946A
17 - JP4-346638A
ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Техническая проблема
Выше были описаны разнообразные технологии, традиционно предлагаемые для повышения устойчивости металлического материала к пылящему износу, карбюризации и закоксовыванию. Тем не менее, все описанные технологии требуют специальной термической или поверхностной обработки, а значит - сопряжены с трудозатратами и финансовыми расходами. Кроме того, описанные технологии не предусматривают восстановления отслоившейся защитной пленки, первоначально сформированной в ходе предварительного окисления или поверхностной обработки. Вследствие этого, после повреждения поверхности материала невозможно предотвратить дальнейший пылящий износ. Также Описанные технологии также порождают проблемы, связанные со свариваемостью металлического материала, пределом ползучести и пластичностью при ползучести.
Также существует описанный выше способ предотвращения пылящего износа не за счет улучшения свойств металлического материала, а за счет введения сероводорода в газовую среду внутри трубы реформинговой установки и производственной установки для синтетического газа. Однако, поскольку сероводород может заметно снижать активность катализатора, применяемого в реформинге углеводородов, технология предотвращения пылящего износа путем изменения состава газа имеет лишь ограниченную применимость.
Настоящее изобретение учитывает предшествующий уровень техники и, соответственно, задачей настоящего изобретения является металлический материал, который устойчив к карбюризации, пылящему износу и закоксовыванию, а также обладает улучшенными свариваемостью и характеристиками ползучести за счет ограничения реакций между поверхностным слоем металлического материала и карбюризирующим газом в трубе крекинговой печи этиленового завода, в нагревательной трубе каталитической реформинговой печи, в трубе печи для реформинга синтетического газа и т.п.
Решение проблемы
Авторы настоящего изобретения исследовали проникновение молекулярного углерода в металлический материал и обнаружили, что этот процесс состоит из следующих стадий с (а) по (с).
(a) Молекулы газа, состоящего из соединений углерода, таких, как углеводороды и окись углерода (СО), приближаются к поверхности металлического материала.
(b) Приблизившиеся молекулы газа диссоциативно адсорбируются поверхностью металлического материала.
(c) Диссоциированный атомарный углерод проникает в металлический материал и диффундирует.
В результате изучения способов сдерживания вышеописанных процессов была выявлена эффективность следующих способов (d) и (e).
(d) В ходе эксплуатации металлического материала на его поверхности формируется оксидная пленка, которая препятствует контакту металлического материала с молекулами газа, состоящего из соединений углерода.
(e) На поверхности металлического материала сдерживаются процессы диссоциативной адсорбции молекул газа, состоящего из соединений углерода.
Как только выяснилось, что оксидная пленка препятствует контакту металлического материала с молекулами газа согласно пункту (d), была обнаружена также эффективность оксидной пленки, состоящей из хрома и кремния. В карбюризирующей газовой среде в трубе крекинговой печи этиленового завода, в нагревательной трубе каталитической реформинговой печи и в трубе печи для реформинга синтетического газа парциальное давление кислорода в газе оказывается низким. Поэтому добавляя подходящие количества хрома и кремния можно добиться формирования оксидной пленки, состоящей со стороны газа преимущественно из хрома, а со стороны металлического материала - преимущественно из кремния.
С другой стороны, исследования проводились с точки зрения диссоциативной адсорбции согласно пункту (е), и поэтому было обнаружено, что добавление подходящих количеств благородных металлов вроде меди, серебра, платины и элементов групп VA и VIA подавляет диссоциативную адсорбцию молекул газа, состоящего из соединений углерода. В частности, медь является самым дешевым из благородных металлов и порождает меньше проблем при плавлении и отвердевании, будучи добавлена в сплавы на основе железа, никеля и хрома. Поэтому использование меди является предпочтительным.
Было обнаружено, что способы (d) и (e) позволяют эффективно ограничить проникновение углерода в металлический материал в ходе процесса, описанного выше в пунктах с (a) по (c), а одновременное использование способов (d) и (e) резко повышает устойчивость к пылящему износу, карбюризации и закоксовыванию.
Добавление элементов наподобие кремния и меди повышает устойчивость к коррозии, однако ухудшает свариваемость. На участке, подвергающемся при сварке тепловому циклу быстрого нагрева/быстрого охлаждения (сварочная зона термического влияния), могут возникать трещины вследствие плавления межзеренной границы. В частности, если кремний, медь и им подобные элементы сегрегируются на кристаллической межзеренной границе в металлическом материале основы, точка плавления межзеренной границы снижается и пластичность увеличивается. В результате, из-за теплового напряжения во время сварки происходит разрыв межзеренной границы и образование трещины, которая называется трещиной зоны термического влияния. Поэтому в случаях, когда металлический материал предполагается сваривать, необходимо принять меры для предотвращения таких трещин в сварных швах. В Патентном документе 12 изобретатели осаждали карбиды хрома с высокой температурой плавления с помощью добавления больших количеств углерода. В результате, поверхностная зона межзеренной границы увеличивалась благодаря созданным препятствиям к укрупнению зерна, поэтому уменьшалась сегрегация кремния, меди и т.п. на межзеренных границах, и, следовательно, подавлялось трещинообразование в зоне термического влияния. С другой стороны, обнаружено, что при высоком содержании углерода он сегрегируется дендритной структурой в отвердевающем свариваемом металлическом материале, вследствие чего растет склонность к усадочному трещинообразованию. Далее, было обнаружено, что предел ползучести чрезмерно возрастает по причине осаждения карбидов хрома в зернах и на межзеренных границах в металлическом материале основы, в результате чего ухудшается пластичность при ползучести.
Авторы настоящего изобретения исследовали разнообразные способы подавления трещинообразование в зоне термического влияния при сварке и одновременного повышения устойчивости к коррозии путем повторного добавления значительных количеств кремния или меди. В качестве результата авторы изобретения предложили решение, позволяющее подавить трещинообразование в зоне термического влияния без ухудшения показателей склонности к усадочному трещинообразованию и пластичности при ползучести. Соответствующие этому решению способы изложены в пунктах с (f) по (h).
(f) Содержание углерода следует ограничить, поскольку высокое содержание углерода заметно усиливает склонность к усадочному трещинообразованию и ухудшает пластичность при ползучести.
(g) Склонность к трещинообразованию в зоне термического влияния вызывается дисбалансом прочности между зернами металлического материала основы и межзеренными границами. Дисбаланс прочности соразмерно компенсируется путем снижения прочности в зернах, в результате чего снижается склонность к трещинообразованию в зоне термического влияния.
(h) Было обнаружено, что прочность в зернах увеличивается осаждением интерметаллических соединений алюминия и титана, либо карбида титана, поэтому полезно ограничивать содержание этих элементов, насколько возможно.
На базе этих решений проводились исследования свариваемости (склонность к трещинообразованию в зоне термического влияния, склонность к усадочному трещинообразованию) и характеристик ползучести при меняющемся содержании углерода, кремния, меди, титана и алюминия в металлическом материале с долей хрома от 15,0 до 30,0%. В результате, были улучшены показатели свариваемости и пластичности при ползучести благодаря снижению содержания углерода до 0,075% или менее, титана и алюминия - до 0,15% или менее. Далее, при снижении содержания углерода, титана и алюминия, соответственно, до 0,07%, 0,05%, 0,12% или менее, заметно улучшились показатели свариваемости и пластичности при ползучести.
Тем не менее, впоследствии было обнаружено, что уменьшение прочности зерна влечет за собой также и уменьшение предела ползучести. Поэтому авторы настоящего изобретения стремились к увеличению предела ползучести при сохранении вышеупомянутого выигрыша в производительности. В результате были найдены способы решения проблемы, описанные в позиции (i).
(i) Хром эффективно предотвращает пылящий износ металлического материала, и в то же время увеличение содержания хрома снижает предел ползучести. Поэтому для повышения предела ползучести рекомендовано ограничить содержание хрома. Ограничение содержания хрома упрочняет аустенитную микроструктуру металлического материала основы и поэтому, в отличие от упрочнения осаждением, не снижает пластичность при ползучести.
Авторы настоящего изобретения изучили изменения характеристик ползучести и устойчивости к пылящему износу металлического материала в зависимости от содержания хрома и пришли к выводу, что желаемые характеристики гарантированно достигаются, если содержание хрома находится в диапазоне от 16,0% до 22,0%.
(j) Было показано, что уменьшение размеров кристаллических зерен аустенитной микроструктуры способствует дальнейшему увеличению пластичности при ползучести и склонности к трещинообразованию в зоне термического влияния. Это значит, что поверхностная зона межзеренной границы увеличивается при подавлении процессов укрупнения кристаллического зерна. Таким образом, можно сократить сегрегацию кремния, фосфора, меди и т.п. на межзеренной границе.
Настоящее изобретение основывается на вышеизложенных сведениях. Сущность изобретения описана в нижеследующих пунктах с (1) по (4).
(1) Металлический материал, устойчивый к карбюризации, отличающийся тем, что содержит, в массовых %, C: от 0,03 до 0,075%, Si: от 0,6 до 2,0%, Mn: от 0,05 до 2,5%, P: 0,04% или менее, S: 0,015% или менее, Cr: больше 16,0% и меньше 20,0%, Ni: 20,0% или больше, но меньше 30,0%, Cu: от 0,5 до 10,0%, Al: 0,15% или менее, Ti: 0,15% или менее, N: от 0,005 до 0,20%, и O (кислород): 0,02% или менее, остаток представлен железом (Fe) и примесями.
(2) Металлический материал, устойчивый к карбюризации, отличающийся тем, что содержит, в массовых %, C: от 0,04 до 0,07%, Si: от 0,8 до 1,5%, Mn: от 0,05 до 2,5%, P: 0,04% или менее, S: 0,015% или менее, Cr: 18,0% или больше, но меньше 20,0%, Ni: от 22,0 до 28,0%, Cu: от 1,5 до 6,0%, Al: 0,12% или менее, Ti: 0,05% или менее, N: от 0,005 до 0,20%, и O (кислород): 0,02% или менее, остаток представлен железом (Fe) и примесями.
(3) Металлический материал, устойчивый к карбюризации, описанный выше в пунктах (1) или (2), отличающийся тем, что дополнительно содержит, в массовых %, компонент одного или нескольких видов, выбранных, по меньшей мере, в одной из пяти описанных ниже групп:
Первая группа: Co: 10% или менее,
Вторая группа: Mo: 5% или менее, W: 5% или менее, и Ta: 5% или менее,
Третья группа: B: 0,1% или менее, V: 0,5% или менее, Zr: 0,5% или менее, Nb: 2% или менее, и Hf: 0,5% или менее,
Четвертая группа: Mg: 0,1% или менее, и Ca: 0,1% или менее,
Пятая группа: Y: 0,15% или менее, La: 0,15% или менее, Ce: 0,15% или менее, и Nd: 0,15% или менее.
(4) Металлический материал, устойчивый к карбюризации, описанный выше в пунктах с (1) по (3), отличающийся тем, что имеет мелкое зерно, причем число, характеризующее размер аустенитного зерна, больше или равно 6.
Преимущества изобретения
Металлический материал, согласно настоящему изобретению, способен сдерживать реакции взаимодействия между карбюризирующим газом и поверхностью металлического материала, и обладает превосходной устойчивостью к пылящему износу, карбюризации и закоксовыванию. Кроме того, благодаря улучшенным характеристикам свариваемости и пластичности при ползучести, металлический материал может применяться для изготовления сварных конструкций в крекинговых, реформинговых, нагревательных печах, теплообменниках и т.п. на нефтеперерабатывающих, нефтехимических и т.п. производствах. Также металлический материал может значительно повысить производительность и износостойкость оборудования.
Согласно настоящему изобретению, металлический материал пригоден для использования, в частности, как конструкционный материал для реакционных труб и теплообменников, функционирующих при температурах от 400 до 800°С (то есть, ниже обычных). Проблема пылящего износа металлического материала, возникающая в этом диапазоне температур, эффективно решается благодаря применению данного конструкционного материала.
Описание вариантов осуществления
(А) Химический состав металлического материала
Причины ограничений, которые, согласно изобретению, накладываются на состав металлического материала, изложены ниже. Во всех нижеследующих разъяснениях «%» обозначает «массовый %» содержания каждого элемента.
C: от 0,03 до 0,075%
C (углерод) является одним из наиболее важных элементов в настоящем изобретении. Углерод повышает жаропрочность и в сочетании с хромом образует карбиды. Для этой цели в металлическом материале должно содержаться, как минимум, 0,03% углерода. С другой стороны, присутствие углерода заметно усиливает склонность к усадочному трещинообразованию во время сварки, а при высоких температурах ухудшает пластичность при ползучести. С этой целью верхний предел содержания углерода ограничен 0,075%. Желательно, чтобы содержание углерода находилось в диапазоне от 0,03% до 0,07%. Предпочтительным является диапазон от 0,04% до 0,07%.
Si: от 0,6 до 2,0%
Si (кремний) - один из важных элементов в настоящем изобретении. Поскольку кремний имеет сильное сродство к кислороду, он образует пленку оксида кремния в нижнем слое защитной оксидной пленки и, таким образом, изолирует металлический материал от карбюризирующего газа. Это происходит при содержании кремния 0,6% или выше. Тем не менее, увеличение доли кремния выше 2,0% заметно ухудшает свариваемость, так что предельное верхнее значение доли кремния равно 2,0%. Желательно, чтобы содержание кремния находилось в диапазоне от 0,8 до 1,5%. Предпочтительным является диапазон от 0,9 до 1,3%.
Mn: от 0,05 до 2,5%
Mn (марганец) обладает восстановительными свойствами, а также улучшает свариваемость и обрабатываемость, поэтому в сплав добавляется 0,05% или более марганца. Являясь аустенитообразующим элементом, марганец также может заменить некоторую часть никеля. Избыточное добавление марганца ухудшает защитные свойства оксидной пленки, поэтому предельное верхнее значение доли марганца равно 2,5%. Желательно, чтобы содержание марганца находилось в диапазоне от 0,1 до 2,0%. Предпочтительным является диапазон от 0,6 до 1,5%.
P: 0,04% или меньше
P (фосфор) снижает жаропрочность и свариваемость, поэтому предельное верхнее значение доли фосфора составляет 0,04%. Влияние фосфора особенно заметно при высоком содержании Si и Cu. Желательно, чтобы предельное верхнее значение доли фосфора равнялось 0,03%, предпочтительным же является значение 0,025%. Тем не менее, фосфор способен подавлять реакции диссоциативной адсорбции карбюризирующего газа на поверхности металлического материала, и поэтому присутствие фосфора разрешается в случаях, когда допустимо некоторое снижение свариваемости.
S: 0,015% или меньше
S (сера), подобно фосфору, снижает жаропрочность и свариваемость, поэтому предельное верхнее значение доли серы составляет 0,015%. Влияние серы особенно заметно при высоком содержании Si и Cu. Желательно, чтобы предельное верхнее значение доли серы равнялось 0,005%, предпочтительным же является значение 0,002%. Тем не менее, сера, как и фосфор, способна подавлять реакции диссоциативной адсорбции карбюризирующего газа на поверхности металлического материала, и поэтому присутствие серы разрешается в случаях, когда допустимо некоторое снижение свариваемости.
Cr: больше 16,0% и меньше 20,0%
Cr (хром) - один из самых важных элементов в настоящем изобретении. Хром образует пленку из стабильного оксида Cr2O3 и таким образом изолирует металлический материал от карбюризирующего газа. Таким образом, даже в агрессивных карбюризирующих газовых средах хром придает металлическому материалу достаточную устойчивость к карбюризации, пылящему износу и закоксовыванию. Для этого доля хрома должна быть выше 16,0%. С другой стороны, хром вступает в реакцию с углеродом, образуя карбиды, которые уменьшают пластичность при ползучести. Присутствие хрома также уменьшает предел ползучести аустенитной микроструктуры. Этот эффект проявляется особенно сильно при высоком содержании одновременно кремния и меди. Для предотвращения этого вредного эффекта содержание хрома должно быть меньше 20,0%. Желательно, чтобы содержание хрома составляло 18,0% или выше, но меньше 20,0%, а предпочтительнее - 18,0% или выше, но меньше 19,5%.
Ni: 20,0% или выше, но меньше 30,0%
Ni (никель) - это элемент, обеспечивающий стабильность аустенитной микроструктуры в соответствии с содержанием хрома, и поэтому доля никеля должна составлять 20,0% или больше. Никель также снижает интенсивность проникновения углерода в сталь. В дополнение к этому, никель обеспечивает прочность микроструктуры металлического материала при высоких температурах. Тем не менее, если содержание никеля превышает необходимое, растут затраты, возникают производственные трудности, может ускоряться коксование и пылящий износ металлического материала, особенно в углеводородных газовых средах. По этой причине содержание никеля должно быть меньше 30,0%. Желательный диапазон содержания никеля - от 22,0 до 28,0%, более предпочтительный - от 23,0 до 27,0%.
Cu: от 0,5 до 10,0%
Cu (медь) - один из самых важных элементов в настоящем изобретении. Медь тормозит реакции между поверхностным слоем металлического материала и карбюризирующим газом, повышая устойчивость к пылящему износу и т.п. Являясь аустенитообразующим элементом, медь может заменить некоторую часть никеля. Чтобы добиться повышения устойчивости к пылящему износу, следует добавлять 0,5% меди или больше. Однако, если доля меди превышает 10,0%, ухудшается свариваемость, поэтому верхний предел доли меди составляет 10,0%. Желательный диапазон содержания меди - от 1,5 до 6,0%, более предпочтительным является диапазон от 2,1 до 4,0%.
Al: 0,15% или меньше
Al (алюминий) - это элемент, повышающий предел ползучести за счет дисперсионного упрочнения; однако при одновременно высоком содержании кремния и меди алюминий повышает склонность к трещинообразованию в зоне термического влияния и дополнительно снижает пластичность при ползучести. Ограничение содержания алюминия определенным диапазоном и уменьшение осаждения в зернах металлических соединений эффективно снижает склонность к трещинообразованию в зоне термического влияния, как было описано выше. Поэтому в настоящем изобретении доля алюминия составляет 0,15% или меньше. Желательная доля алюминия - 0,12% или меньше, более предпочтительная - 0,10% или меньше. Алюминий действует как восстановитель на этапе плавления металлического материала. Если необходимо использовать восстановительное действие алюминия, его доля должна составлять предпочтительно 0,005% или больше.
Ti: 0,15% или меньше
Ti (титан) - это элемент, повышающий предел ползучести за счет дисперсионного упрочнения; однако при одновременно высоком содержании кремния и меди титан повышает склонность к трещинообразованию в зоне термического влияния и дополнительно снижает пластичность при ползучести. Ограничение содержания титана определенным диапазоном и уменьшение осаждения в зернах металлических соединений и карбидов эффективно снижает склонность к трещинообразованию в зоне термического влияния, как было описано выше. Поэтому в настоящем изобретении доля титана составляет 0,15% или меньше. Желательная доля титана - 0,08% или меньше, более предпочтительная - 0,05% или меньше. Для того, чтобы титан повысил предел ползучести материала, доля титана должна быть большей или равной 0,005%.
N: от 0,005 до 0,20%
N (азот) повышает жаропрочность металлического материала. Поскольку азот образует Z-фазу с элементами типа ниобия и тантала, он уменьшает склонность к трещинообразованию в зоне термического влияния. Эти эффекты достигаются содержанием азота 0,005% или большим. Однако, если содержание азота превышает 0,20%, ухудшается обрабатываемость материала. Поэтому верхний предел содержания азота составляет 0,20%. Желательный диапазон содержания азота - от 0,015 до 0,15%. Если необходимо предотвратить снижение сопротивления ползучести путем ограничения доли алюминия и титана, можно применять твердорастворное или дисперсионное упрочнение азота. Желательный диапазон содержания азота в этом случае - от 0,05 до 0,12%, предпочтительный - от 0,07 до 0,12%.
O: 0,02% или меньше
O (кислород) - примесный элемент, попадающий из сырья в металлический материал в ходе плавления. Если содержание кислорода превышает 0,02%, в стали образуется большое количество оксидных включений, которые ухудшают обрабатываемость и может приводить к дефектам поверхности. Поэтому верхний предел содержания кислорода равен 0,02%.
Согласно настоящему изобретению, металлический материал содержит вышеупомянутые элементы или дополнительно содержит необязательный элемент из описанных ниже. Остаток представлен железом и примесями.
Описанные здесь «примеси» относятся к компонентам, которые в совокупности влияют на различные факторы производственного процесса. Они включают в себя, в том числе, компоненты, которые образуются в ходе промышленного производства металлического материала при переработке такого сырья, как руда или металлолом. Присутствие этих компонентов допустимо в таких пределах, чтобы они не оказывали отрицательного воздействия на настоящее изобретение.
В случае необходимости, или для дополнительного повышения прочности, пластичности или вязкости, металлический материал может, согласно настоящему изобретению, содержать в дополнение к вышеупомянутым легирующим элементам компонент (в массовых %%) одного или нескольких видов, выбранных, по меньшей мере, в одной из пяти описанных ниже групп:
Первая группа: Co: 10% или менее,
Вторая группа: Mo: 5% или менее, W: 5% или менее, и Ta: 5% или менее,
Третья группа: B: 0,1% или менее, V: 0,5% или менее, Zr: 0,5% или менее, Nb: 2% или менее, и Hf: 0,5% или менее,
Четвертая группа: Mg: 0,1% или менее, и Ca: 0,1% или менее,
Пятая группа: Y: 0,15% или менее, La: 0,15% или менее, Ce: 0,15% или менее, и Nd: 0,15% или менее.
Данные необязательные компоненты описываются далее.
Первая группа (Co: 10% или меньше, в массовых %)
Co (кобальт) стабилизирует аустенитную фазу, а значит, может заменить некоторую часть никеля. Поэтому, в случае необходимости, можно добавлять кобальт. Однако, если содержание кобальта превышает 10%, снижается жаропрочность. По этой причине верхний предел содержания кобальта составляет 10%. С точки зрения жаропрочности, желательное содержание кобальта - не более 5%, предпочтительное - не более 3%. Если необходимо получить эффект от добавления кобальта, его доля должна предпочтительно составлять 0,01% или больше.
Вторая группа (Mo: 5% или меньше, W: 5% или меньше, Ta: 5% или меньше, в массовых %)
Mo (молибден), W (вольфрам), an