Износо-коррозионностойкий медно-никелевый сплав

Изобретение относится к разработке прецизионных сплавов для микрометаллургических процессов, в том числе для получения функциональных покрытий, пленок, микропроводов, порошковых материалов, конструкционно-функциональные элементы из которых эффективно работают в жестких условиях эксплуатации, таких как негативное воздействие механических нагрузок, износа, химических реагентов, положительных и отрицательных температур. Сплав содержит, мас.%: никель 33,0-56,0, цирконий 3,0-5,0, хром 5,0-9,0, гафний 3,0-8,0, церий 0,2-2,0, лантан 0,5-1,5, иттрий 1,5-3,0, нитрид бора 0,6-1,2, медь - остальное, при этом размер частиц нитрида бора составляет 60-80 нм. Технический результат изобретения заключается в расширении диапазона рабочих температур, повышении адгезии до более 10 МПа и микротвердости до более 20 ГПа. 2 пр.

Реферат

Изобретение относится к разработке прецизионных сплавов для микрометаллургических процессов, в том числе для получения функциональных покрытий, пленок, микропроводов, порошковых материалов, конструкционно-функциональные элементы из которых эффективно работают в жестких условиях эксплуатации (негативное воздействие механических нагрузок, износа, химических реагентов, положительных и отрицательных температур).

Из литературных источников известно, что к таким современным материалам предъявляют следующие требования:

- микротвердость не менее 20 ГПа;

- адгезия не менее 10 МПа;

- коррозионная стойкость 3 класса;

- температурная стабильность (отсутствие растрескивания и отслоений покрытий):

- положительные температуры 650-700°C;

- отрицательные температуры -196°C.

Практика показывает, что наиболее перспективной базовой системой является двойной сплав медь-никель [Джуринский Д.В. Структура и свойства функционально-градиентных покрытий из аморфных и микрокристаллических сплавов, полученных методом сверхзвукового "холодного" газодинамического напыления для создания конкурентоспособных изделий. Диссертация на соискания звания кандидата технических наук. Санкт-Петербург. 2006 г.]. Образование неограниченных твердых растворов в этой системе весьма благоприятно для введения легирующих компонентов, повышающих определяющие технологические и эксплуатационные характеристики сплава.

Известны сплавы на основе системы медь-никель для различных видов микрометаллургического передела, обеспечивающих широкую гамму свойств. Однако создание новых видов техники для работы в экстремальных условиях эксплуатации требует, в свою очередь, создания новых сплавов.

Из современных сплавов наиболее применимы сплавы системы НМжМц (ГОСТ 492-73, ТУ 48-21-7-72 (монель-металл)) и константан МНМц 40-1,5 (ГОСТ 5307-77).

Состав монель-металла 400 (Nicorros): Cu - 28,0-34,0%, Fe - 1,0-2,5%, Mn - максимально 2,0%, Ni - минимально 63,0%.

Состав константана: Ni - 39,0-41,0%; Mn - 1,0-2,0%; остальное - Cu.

Это базовые сплавы. Кроме этого, имеется еще целая гамма медно-никелевых сплавов, используемых для конкретных условий эксплуатации в зависимости от химического и фазового состава. Отличительной особенностью известных сплавов этого класса является то, что они являются деформируемыми со сложной схемой обработки (регулируемая закалка при высоких температурах с последующей обработкой только на малых скоростях и малых подачах). Это, например, медно-никелевый деформируемый сплав (патент №2303641, C22C 9/06, опубл. 27.07.2007), имеющий состав, мас.%: Ni - 5,0-33,0; Fe - 0,4-2,0; Mn - 0,3-1,5, Mg - 0,006-0,04; Cu - остальное.

Деформируемые сплавы используются для получения листов, лент, проволоки методами пластической деформации. Эти сплавы отличает высокая коррозионная стойкость в различных агрессивных средах (растворы щелочей, кислот, солей, морская вода).

Другой тип медно-никелевых сплавов - литейные, то есть сплавы для получения, в основном, литых микропроводов в стеклянной изоляции. Это более широкий спектр сплавов по химическому составу с учетом специфики охлаждения системы сплав-стекло из жидкой фазы со скоростями до миллиона градусов в секунду (а.с. 345222, 456023, 456842, 528342, 235328).

В качестве прототипа выбран сплав по патенту RU 2453621 (МПК C22C 9/06, опубликовано 20.06.2012), имеющий следующий химический состав, мас.%:

Ni - 35,0-45,0

Mn - 3,9-10,0

Fe - 0,1-5,0

Cu - 40,0-61,0

и элементы из группы: углерод, кремний, алюминий, магний, титан, хром, РЗМ, молибден, иттрий в сумме не более 2%.

Сплав предназначен для применения в отраслях химической промышленности, таких как нефтедобывающая промышленность, химическая технология и химическое машиностроение, технология опреснения воды, а также электротехнических целей, для изготовления пучковой арматуры, для производства оправ для очков. Кроме того, известный сплав может использоваться для получения покрытий.

Экспериментально установлено, что известный сплав обладает следующими свойствами:

- микротвердость 12 ГПа;

- адгезионная прочность 7 МПа;

- коррозионная стойкость 3 класс;

- диапазон рабочих температур:

- положительные температуры до 600°C;

- отрицательные температуры выше - 60°C.

Недостатком известного сплава является достаточно узкий диапазон рабочих температур и пониженные микротвердость и адгезия.

Технический результат изобретения заключается в расширении диапазона рабочих температур, повышении адгезии (более 10 МПа) и микротвердости (более 20 ГПа).

Технический результат достигается за счет того, что медно-никелевый сплав дополнительно содержит хром, цирконий, гафний, церий, лантан, иттрий и нитрид бора (BN) при следующем соотношении компонентов, мас.%:

Никель 33,0-56,0
Цирконий 3,0-5,0
Хром 5,0-9,0
Гафний 3,0-8,0
Церий 0,2-2,0
Лантан 0,5-1,5
Иттрий 1,5-3,0
Нитрид бора 0,6-1,2
Медь остальное

При этом размер частиц нитрида бора составляет 60-80 нм.

Экспериментально уставлено, что двойной сплав меди с никелем при содержании никеля от 33 до 56% имеет наиболее высокую коррозионную стойкость (3 класс), группа стойкости - «весьма стойкие».

При меньших, чем 33%, и больших, чем 56%, коррозионная стойкость значительно падает в агрессивных средах (кислотных, щелочных, солевых растворах).

Однако двойной медно-никелевый сплав практически не смачивает металлические подложки (сталь, жаростойкие никелевые и титановые сплавы при напылении покрытий известными газотермическими методами) и не удается получить сплошное прочное покрытие с высокой адгезией и микротвердостью.

Надежным поверхностным активатором для медно-никелевых сплавов является цирконий. Введение его в двойной сплав Cu-(33-56)%Ni в количествах от 3,0 до 5,0% обеспечивает устойчивость процесса напыления (например, методами ХГДН, микроплазменного и магнетронного напыления), существенное повышение адгезии (более 10 МПа) и низкий разброс толщины покрытия (±8%) при оптимальных толщинах 40-200 мкм для газотермического нанесения покрытий и (±5%) при магнетронном (для покрытий толщиной 10-12 мкм).

При меньших, чем 3,0% Zr, этого эффекта достичь не удается. При значениях более 5,0 Zr снижается адгезионная прочность.

Однако тройной сплав Cu-Ni-Zr в указанных выше соотношениях имеет относительно узкий для современной техники диапазон рабочих температур: при положительных температурах более 600°C и отрицательных температурах ниже -60°C происходит отслаивание покрытий. Для устранения этого негативного эффекта в сплав дополнительно вводится хром в количестве (5,0-9,0)%, обеспечивающий повышение положительных рабочих температур до 750-780°C, и гафний, который исключает отслаивание покрытий до отрицательных температур жидкого азота (-196°C). При меньших количествах хрома и гафния требуемого эффекта не наблюдается; при больших - из-за возможности образования сложных комплексных интерметаллидов типа Cr2Hf - при напылении наблюдается образование капельной фазы с резким и крайне нежелательным для последующей эксплуатации колебанием толщины покрытий.

Практика создания сплавов для микрометаллургических процессов (прежде всего для получения тонких пленок и покрытий) показывает, что разрабатываемый состав сплава необходимо комплексно модифицировать малыми добавками редкоземельных элементов, удаляющих из сплава вредные неметаллические примеси (кислород, азот, водород). В противном случае в ходе длительной эксплуатации покрытий при жестких температурных и динамических нагрузках эти неметаллические включения, являясь концентраторами напряжений, реально приводят к разрушению покрытий.

Известно, что наиболее эффективными модификаторами являются малые добавки церия, иттрия и лантана, имеющие наибольшее сродство к кислороду, азоту и водороду соответственно. Обязательным является комплексное введение всех трех указанных элементов для достижения максимального интеграционного эффекта модифицирования разрабатываемого прецизионного сплава.

При этом экспериментально установлено, что требуемая очистка предлагаемого сплава от кислорода, азота и водорода достигается при комплексном введении церия в количестве - (0,2-2,0)%; иттрия в количестве - (1,5-3,0)%; лантана в количестве - (0,5-1,5)%. При меньших значениях модификации практически не наблюдается, при больших - образуются самостоятельные фазы из указанных РЗМ и появление обратного эффекта - насыщения газами.

В сплав дополнительно вводятся наночастицы нитриды бора, не растворяющиеся в расплаве металла (температура плавления 2700°C) и имеющие аномально высокую микротвердость (73,5-93,1 ГПа). При этом для максимального эффекта упрочнения количество BN должно быть от 0,6 до 1,2%, а размер частиц должен составлять 60-80 нм. При больших содержаниях BN и других размерах наночастиц процесс получения покрытий становится весьма неустойчивым.

Указанное легирование сплава BN приводит к интегральному повышению микротвердости сплава до значений более 20 ГПа.

Пример 1.

Разработанный медно-никелевый сплав получают методом прямого сплавления шихтовых компонентов в высокочастотной печи типа УИР-16-10-0.003 с рабочей частотой 0-66 кГц. Загрузка шихтовых компонентов в алундовый тигель емкостью 1 литр производится в следующей последовательности: (Cu-Ni)→Cr→Zr→Hf→(Ce-La-Y)→BN.

Химический состав сплава следующий (мас.%):

Ni - 33

Zr - 3,0

Cr - 5,0

Hf - 3,0

Се - 0,2

La - 0,5

Y - 1,5

BN - 0,6

Cu - остальное.

При этом наночастицы BN фракции 60-80 нм вводятся с помощью специального приспособления практически на дно тигля и интенсивно перемешиваются в расплаве в высокочастотном поле.

После расплавления фиксированный тигель опрокидывается с определенной скоростью и струя расплава попадает в емкость с водой, образуя при кристаллизации гранулы размером 3-5 мм. Полученные гранулы разламываются на высокоскоростной дезинтегральной установке типа ДЕЗИ-15 при скоростях вращения роторов 12000-15000 об/мин. При этих скоростях и соответствующих расходах гранул в рабочей зоне получают порошки требуемого фракционного состава 40-100 мкм. Полученные порошки напыляют методом сверхзвукового холодного газодинамического напыления типа ДИМЕТ-3М при скоростях 1,5 маха на подложку из стали Х15Ю5.

Полученное покрытие толщиной 120-140 мкм имеют следующие характеристики:

- микротвердость, ГПа - 20;

- адгезионная прочность, МПа - 12,4;

- коррозионная стойкость 3 класс;

- температурная стабильность (отсутствие растрескивания и отслоений покрытия):

- положительные температуры, °C - 720°C;

- отрицательные температуры, °C - минус 196°C.

Пример 2.

Выплавка сплава верхнего граничного состава проводилась точно так же, как и в первом примере. Полученный сплав имел следующий химический, мас.%:

Ni - 56

Zr - 5,0

Cr - 9,0

Hf - 8,0

Ce - 2,0

La - 1,5

Y - 3,0

BN - 1,2

Cu - остальное.

Порошки также получались аналогично примеру 1 на установке ДЕЗИ-15.

Полученные порошки напыляют методом микроплазменного напыления на установке типа УГМИ 2/250 при скоростях 1,2 маха на подложку из титанового сплава типа ВТ-6.

Полученное покрытие толщиной 140-180 мкм имеет следующие характеристики:

- микротвердость, ГПа - 35;

- адгезионная прочность, МПа - 13,2;

- коррозионная стойкость 3 класс;

- температурная стабильность (отсутствие растрескивания и отслоений покрытия):

- положительные температуры, °C - 780°C;

- отрицательные температуры, °C - минус 196°C.

Медно-никелевый сплав, в котором основные компоненты образованы медью и никелем, отличающийся тем, что он дополнительно содержит хром, цирконий, гафний, церий, лантан, иттрий и нитрид бора (BN) при следующем соотношении компонентов, мас.%:Ni - 33,0-56,0;Zr - 3,0-5,0;Cr - 5,0-9,0;Hf - 3,0-8,0;Ce - 0,2-2,0;La - 0,5-1,5;Y - 1,5-3,0;BN - 0,6-1,2;Cu - остальное,при этом размер частиц нитрида бора составляет 60-80 нм.