Способ получения аминогидроксидифосфоновых кислот
Изобретение относится к способу получения аминогидроксидифосфоновых кислот для использования в химической промышленности. Предложено получать аминогидроксидифосфоновую кислоту взаимодействием при 40°C-180°C соответствующей аминокарбоновой кислоты и P4O6 в присутствии сульфоновой кислоты. Аминокарбоновую кислоту и P4O6 используют в молярных соотношениях от 4:1 до 1:1, на моль аминокарбоновой кислоты используют от 1 до 30 эквивалентов сульфоновой кислоты. Аминокарбоновая кислота имеет формулу (A)(B)N-X1-COOH, D-X2-COOH или Е-Х3-СООН, где X1 и X2 являются необязательно замещенными углеводородными линейными, разветвленными, циклическими или ароматическими группами, имеющими от 2 до 20 атомов углерода; А и В выбраны из Н или необязательно замещенной разветвленной, линейной, циклической, ароматической, гетероциклической или гетероароматической группы, имеющей от 1 до 20 атомов углерода; D представляет собой необязательно замещенную 4-8-членную гетеромоноциклическую или гетеромоноароматическую группу, которая через атом азота присоединена к X2, причем заместитель может быть конденсирован с D; или D вместе с X2 представляют собой имид; X3 представляет собой связь или необязательно замещенную С1-С20 линейную, разветвленную, циклическую или ароматическую углеводородную группу, Е является необязательно замещенным гетероциклическим или гетероароматическим 4-14-членным кольцом, присоединенным к X3 через атом углерода; гетероциклические и гетероароматические группы содержат от 1 до 4 гетероатомов, выбранных из N, S и O, разница между числом атомов и гетероатомов в циклах не менее 2. Предложен новый селективный способ получения ценных аминогидроксидифосфоновых кислот. 14 з.п. ф-лы, 5 пр., 3 табл.
Реферат
ОБЛАСТЬ ТЕХНИКИ
Данное изобретение относится к способу получения гидроксидифосфоновых кислот, содержащих аминогруппировку. В частности, способ предусматривает взаимодействие жидкого P4O6 с аминокарбоновой кислотой и выбранной сульфоновой кислотой, при котором в конкретных примерах осуществления жидкий P4O6 добавляют к раствору аминокарбоновой кислоты в сульфоновой кислоте, или жидкий P4O6 добавляют к сульфоновой кислоте с последующим добавлением аминокарбоновой кислоты. Аминокарбоновая кислота может быть выбрана из группы, состоящей из 3 различных соединений, демонстрирующих узко определенные структурные признаки. Реакцию осуществляют путем нагревания реакционной смеси при температуре в диапазоне от 40°С до 180°С в течение периода времени от 10 минут до 30 часов с последующим выделением образовавшегося реакционного продукта подходящим образом.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Из предшествующего уровня техники, относящегося к получению аминогидроксидифосфоновых кислот, известно множество изобретений, представляющих несколько десятилетий интенсивных исследований и разработок. Аминогидроксидифосфоновые кислоты могут быть использованы в различных установленных применениях, включающих применение в качестве ингибитора образования накипи, хелатирующего агента, агента для обработки воды, детергента, противокоррозионного агента, и для фармацевтических применений, включающих лечение остеопороза и других костных состояний.
Традиционное производство бисфосфорилированных продуктов основано на применении комбинаций фосфористой кислоты и галогенидов фосфора. Эта технология описана в большом количестве документов, основные примеры из уровня техники рассмотрены кратко. US 5908959 относится к способу получения аминогидроксибутилиденбисфосфоновой кислоты, где соответствующую аминокарбоновую кислоту подвергают взаимодействию со смесью фосфористой кислоты и трихлорида фосфора в растворе полиалкиленгликоля. US 5648491 также относится к способу получения аминогидроксибутилиденбисфосфоновой кислоты. Конкретно, аминоалканкарбоновую кислоту непрерывно смешивают с фосфористой кислотой и трихлоридом фосфора в метансульфоновой кислоте, причем водное основание непрерывно добавляют в избыточную смесь, содержащую промежуточные продукты, с последующим гидролизом избыточной смеси и извлечением образовавшейся бисфосфоновой кислоты. US 2001/0041690 относится к способу получения бисфосфонатов с высокими выходами и небольшими количествами остаточных побочных продуктов элементарного фосфора. Фактически, этот способ требует применения расплавленной фосфористой кислоты, аминокарбоновой кислоты, тригалогенида фосфора и основания. Количество тригалогенида фосфора относительно аминокарбоновой кислоты составляет примерно 2 эквивалента. Фосфористая кислота и основание действуют в качестве растворителя с получением однородной реакционной смеси или раствора. В US 4407761 описан способ получения аминогидроксиалкилиденбисфосфоновой кислоты путем взаимодействия аминокарбоновой кислоты с фосфонирующим реагентом, состоящим из смеси фосфористой кислоты и трихлорида/оксихлорида фосфора, с последующим гидролизом реакционной смеси концентрированной соляной кислотой и извлечением образовавшейся бисфосфоновой кислоты.
US 5019651 относится к способу получения
аминогидроксибутилиденбисфосфоновой кислоты, при котором аминокарбоновую кислоту подвергают взаимодействию со смесью фосфористой кислоты и трихлорида фосфора в присутствии метансульфоновой кислоты с последующим приведением полученной таким образом смеси в контакт в гидролизующей смесью, возможно фосфатным буфером, таким образом поддерживая рН между 4 и 10 и выделяя конечный продукт.
В US 6573401 описан способ получения амино-1-гидроксибутилиден-1,1-дифосфоновой кислоты и ее тригидратированной мононатриевой соли с использованием фосфонирующей смеси фосфористой кислоты/ангидрида метансульфоновой кислоты в молярных соотношениях от 2:5 до 5:2, предпочтительно 1:1. Аминомасляную кислоту и фосфонирующую кислоту используют в молярных соотношениях масляная кислота: фосфористая кислота от 2:1 до 5:1, предпочтительно 3:1. Тригидратированная мононатриевая соль может быть отфильтрована перед превращением в фосфоновую кислоту. Как указано, технология позволяет проводить синтез гомогенно без отверждения реакционной смеси. Кроме того, реакция не требует применения опасных исходных веществ -хлорида фосфора.
DD 235068 относится к способу получения аминогидроксидифосфоновой кислоты, начиная с аминокарбоновой кислоты, фосфорной кислоты и P4O6 в молярных соотношениях карбоновая кислота: H3PO4: P4O6 от 3:10:1 до 1:0,1:1, предпочтительно 2:2:1. DD 222030 также относится к способу получения аминогидроксидифосфоновых кислот, начиная с соответствующей аминокарбоновой кислоты и Р4О6 в инертном растворителе, например, диоксане.
Различные технологии из предшествующего уровня техники, взятые отдельно или в комбинации, не предлагают эффективного решения известных недостатков и минусов получения аминогидроксидифосфоновых кислот. Потребности производства обычно касаются селективности и/или выхода и/или чистоты и/или эффективности, в дополнение к экологическим ограничениям, и необходимости в промышленной установке, которая позволяет легко рециклизировать все партнеры по реакции, в особенности, непрореагировавшие исходные вещества. В частности, реакционные системы из предшествующего уровня техники в основном работают в присутствии галогенидов фосфора, которые, несмотря на создание значительных трудностей, часто применяются. Некоторые технологии из предшествующего уровня техники допускают образование оранжево-желтых побочных продуктов, связанных с LOOPS (низшие оксиды фосфора), которые могут представлять угрозу безопасности и опасность при эксплуатации.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Поэтому основная задача данного изобретения состоит в том, чтобы предложить способ получения аминогидроксидифосфоновых кислот, при котором возможен синтез по существу стехиометрических соотношений дифосфоновой кислоты, начиная по существу со стехиометрических соотношений необходимых исходных веществ. Другая задача данного изобретения состоит в создании улучшенного способа получения аминогидроксидифосфоновых кислот с замечательной селективностью и высокими выходами. Другая задача данного изобретения касается получения очень чистых аминогидроксидифосфоновых кислот при существенном исключении LOOPS. Еще одна задача состоит в том, чтобы предложить способ выгодной и удобной рециклизации непрореагировавших партнеров по реакции. Еще одна задача состоит в том, чтобы предложить технологию производства, способную давать дифосфоновые кислоты высокой чистоты, требующие минимальной/уменьшенной очистки для применений с высокими требованиями в этом отношении, включая фармацевтические и квазифармацевтические применения. Одна особенно важная задача изобретения состоит в том, чтобы предложить способ экономичного производства выбранных аминогидроксидифосфоновых кислот с высокими выходами и чистотой в одностадийной производственной схеме, а именно:
- 3-(диметиламино)-1-гидроксипропилиден-1,1-бисфосфоновой кислоты, также известной как олпадроновая кислота;
- (1-гидрокси-2-имидазо[1,2-а]пиридин-3-илэтилиден)бисфосфоновой кислоты, также известной как минодроновая кислота;
- 1-гидрокси-2-(3-пиридинил)этилиденбисфосфоновой кислоты, также известной как ризедроновая кислота;
- (3-амино-1-гидроксипропилиден)-1,1 -бисфосфоновой кислоты, также известной как памидроновая кислота;
- 6-амино-1-гидроксигексан-1,1-дифосфоновой кислоты, также известной как неридроновая кислота;
- [1-гидрокси-3-(метилпентиламино)пропилиден]дифосфоновой кислоты, также известной как ибандроновая кислота;
- 4-амино-1-гидроксибутан-1,1-дифосфоновой кислоты, также известной как алендроновая кислота, и
- 2-(имидазол-1-ил)-1-гидрокси-1,1'-этилидендифосфоновой кислоты, также известной как золедроновая кислота.
Термин "процент" или "%", как использовано в данной работе, означает, если не указано иное, "процент по массе" или "% по массе". Термины "фосфоновая кислота" и "фосфонат" также используются взаимозаменяемо, в зависимости, разумеется, от преобладающих условий основности/кислотности среды. Термин "LOOPS" означает "низшие оксиды фосфора". Термин "аминогидроксидифосфоновые кислоты" охватывает 1-гидрокси-1,1-бисфосфоновые кислоты, содержащие по меньшей мере один атом азота, как определено далее в данной работе. Термины "циклический; ароматический; гетероциклический и гетероароматический" могут охватывать "полициклические; полиароматические; гетерополициклические и гетерополиароматические" структуры и будут иметь это значение, если не определено иное. Гетерополициклические соединения и гетерополиароматические соединения охватывают полициклические и полиароматические соединения, в которых по меньшей мере один цикл содержит по меньшей мере один гетероатом, выбранный из азота, кислорода и серы. Термин "% масс/масс", как использовано в Примерах, относится к производным Р, как определено посредством 31Р ЯМР. Термин "жидкий P4O6" охватывает чистый P4O6 в жидком состоянии, растворы P4O6 в подходящем растворителе, твердый P4O6 и газообразный P4O6.
Вышеуказанные и другие задачи изобретения теперь могут быть решены посредством способа получения, где жидкий P4O6 и аминокарбоновую кислоту подвергают взаимодействию в присутствии сульфоновой кислоты в узко определенных условиях. Более конкретно, способ получения аминогидроксидифосфоновой кислоты, начиная с соответствующей аминокарбоновой кислоты, жидкого P4O6 и сульфоновой кислоты, включает следующие стадии:
а: добавление жидкого P4O6 к раствору аминокарбоновой кислоты в сульфоновой кислоте; или
б: добавление жидкого P4O6 к сульфоновой кислоте с последующим добавлением аминокарбоновой кислоты;
где сульфоновая кислота выбрана из гомогенных и гетерогенных сульфоновых и полисульфоновых кислот; и аминокарбоновую кислоту и P4O6 используют в молярных соотношениях от 4:1 до 1:1, и сульфоновую кислоту используют в количестве от 1 до 30, предпочтительно от 3 до 20, в частности, от 6 до 18 эквивалентов на моль аминокарбоновой кислоты; и где аминокарбоновая кислота выбрана из группы:
1) (A)(B)N-X1-COOH
где X1 является таким, что имеются по меньшей мере два углеродных звена между СООН и N; X1 может представлять собой углеводородную группу, выбранную из линейных, разветвленных, циклических и ароматических группировок, имеющих от 2 до 20 атомов углерода, возможно замещенных одной или более группами, выбранными из CF3, F, Cl, SR, NR'2, SO2R и OR; А и В независимо выбраны из Н, углеводородных групп, имеющих от 1 до 20 атомов углерода в разветвленной, линейной, циклической, ароматической, гетероциклической или гетероароматической конфигурации, которые могут быть замещены OR, SR, CF3, F, Cl, NR'2l SO2R и/или R, где R представляет собой алкильную группу, имеющую от 1 до 12 атомов углерода в линейной, разветвленной, циклической, ароматической, гетероциклической или гетероароматической конфигурации, которая может быть замещена OR", SR", CF3, F, Cl, NR'"2 и/или SO2R'', где R' выбран из R и водорода и может быть выбран независимо; R" представляет собой углеводородную группу, имеющую от 1 до 12 атомов углерода в линейной, разветвленной, циклической, ароматической, гетероциклической или гетероароматической конфигурации; R'" выбран из R" и водорода, и группы R'" могут быть выбраны независимо; где гетероциклические и гетероароматические группы могут содержать от 1 до 4 гетероатомов, независимо выбранных из азота, серы и кислорода; так что разница между числом атомов в индивидуальных циклах этих гетероциклических или гетероароматических колец и числом гетероатомов в индивидуальных циклах этих гетероциклических или гетероароматических колец равна по меньшей мере 2; при условии, что атом углерода, соседний с карбоновокислотной группой, связан только с атомом водорода и по меньшей мере с одним атомом углерода, который несет группу N(A)(B); когда А представляет собой Н, В также может представлять собой группу COOT, где Т представляет собой С1-С10алкильную группу или С6-С10 ароматическую группировку;
2) D-X2-COOH
где X2 представляет собой по меньшей мере один атом углерода между СООН и N; X2 представляет собой углеводородную группу в линейной, разветвленной, циклической или ароматической конфигурации, имеющую от 1 до 20 атомов углерода в указанной группе, возможно замещенную CF3, F, Cl, NR'2, SR, SO2R и/или OR; при условии, что когда между СООН и N присутствует только один атом углерода, тогда D представляет собой гетеромоноароматическую группу, причем следует понимать, что гетеромоноароматические и гетеромоноциклические группы содержат по меньшей мере один атом азота, во всех других случаях D представляет собой гетеромоноциклическую или гетеромоноароматическую группу, содержащую по меньшей мере один атом азота, непосредственно присоединенный к X2, где указанный гетеромоноциклический цикл или гетеромоноароматический цикл представляет собой 4-8-членное кольцо и содержит от 1 до 3 дополнительных гетероатомов, выбранных из азота, кислорода и серы, и может быть замещен одной или более группами, выбранными из CF3, F, Cl, NR'2, SR, SO2R и OR, и гетеромоноцикл или гетеромоноароматический цикл может быть дополнительно замещен одной или более С1С10 линейными, разветвленными, циклическими, ароматическими, гетероциклическими или гетероароматическими группировками, которые могут быть замещены одной или более группами, выбранными из CF3, F, Cl, NR'", SR", SO2R" и OR", где R, R', R" и R'" имеют значение, приведенное выше; и циклические, гетероциклические, ароматические или гетероароматические группировки, содержащие от 1 до 4 гетероатомов, выбранных из азота, кислорода и серы, могут быть конденсированы с группой D или присоединены к группе D посредством одинарной связи, причем в циклической структуре, конденсированной с группой D, присутствуют не более четырех индивидуальных циклов; причем гетероциклические и гетероароматические группировки, конденсированные с группой D или присоединенные к ней посредством одинарной связи, и сама группа D являются такими, что разница между числом атомов в индивидуальных циклах этих гетероциклических или гетероароматических колец и числом гетероатомов в индивидуальных циклах этих гетероциклических или гетероароматических колец равна по меньшей мере 2; причем группа D также может представлять собой имид, происходящий из группы NH2, присоединенной к группировке X2, образованный посредством взаимодействия с циклическим ангидридом; при условии, что атом углерода, соседний с карбоновокислотной группой в (2), связан только с атомом водорода и по меньшей мере с одним атомом углерода, который несет группу D, и, когда в (2) X2 представляет собой только одно углеродное звено между СООН и N в D, тогда этот атом углерода может быть замещен только атомами водорода и углерода, и
3) Е-Х3-СООН
где X3 представляет собой прямую связь или С1-С20 линейную, разветвленную, циклическую или ароматическую углеводородную группу, возможно замещенную CF3, F, Cl, NR'2, SR, SO2R и/или OR; при условии, что когда X3 представляет собой прямую связь, или когда X3 представляет собой звено из одного атома углерода, тогда присутствуют по меньшей мере два атома углерода между группой СООН и атомом азота из Е; причем Е непосредственно присоединен к X3 через атом углерода и представляет собой гетероциклическое или гетероароматическое 4-14-членное кольцо, содержащее атом азота, где гетероциклическая или гетероароматическая группа может быть замещена одной или более группами, выбранными из CF3, F, Cl, NR'2, SR, SO2R и OR; такие гетероциклические и/или гетероароматические кольца могут содержать от 1 до 3 дополнительных гетероатомов, выбранных из кислорода, азота и серы; такие гетероциклические и/или гетероароматические группы могут быть дополнительно замещены одной или более группами, выбранными из С1-С10 линейных, разветвленных, циклических, ароматических, гетероциклических или гетероароматических углеводородных групп, которые могут быть замещены CF3, F, Cl, NR'"2, SR", SO2R" и/или OR", где R, R', R" и R'" имеют значение, приведенное выше; так что разница между числом атомов в индивидуальных циклах этих гетероциклических или гетероароматических колец и числом гетероатомов в индивидуальных циклах этих гетероциклических или гетероароматических колец равна по меньшей мере 2; при условии, что когда X3 не является прямой связью, тогда атом углерода, соседний с карбоновокислотной группой, связан только с атомом водорода и по меньшей мере с одним атомом углерода, который несет группу Е, и когда в (3) X3 представляет собой только одно углеродное звено между СООН и группой Е, тогда этот атом углерода может быть замещен только атомами водорода и углерода; и нагревание реакционной смеси при температуре в диапазоне от 40°С до 180°С в течение периода времени от 10 минут до 30 часов.
P4O6 может представлять собой по существу чистое соединение, содержащее по меньшей мере 85%, предпочтительно более 90%; более предпочтительно по меньшей мере 95%, и в одном конкретном примере осуществления по меньшей мере 97% P4O6. Хотя гексаоксид тетрафосфора, подходящий для применения в контексте данного изобретения, может быть получен с помощью любой известной технологии, в предпочтительных примерах осуществления гексаоксид может быть получен согласно способу, описанному в WO 2009/068636 и/или ЕР 08168898.8, под названием "Способ получения P4O6 с улучшенным выходом". Конкретно, кислород, или смесь кислорода и инертного газа, и газообразный или жидкий фосфор подвергают взаимодействию по существу в стехиометрических количествах в реакционной установке при температуре в диапазоне от 1600 до 2000 К путем удаления тепла, генерируемого экзотермической реакцией фосфора и кислорода, поддерживая предпочтительное время пребывания в реакции от 0,5 до 60 секунд с последующими гашением реакционного продукта при температуре ниже 700 К и очисткой неочищенного реакционного продукта путем отгонки. Полученный таким образом гексаоксид представляет собой чистый продукт, обычно содержащий по меньшей мере 97% оксида. Полученный таким образом P4O6 обычно представляет собой жидкое вещество с высокой степенью чистоты, содержащее, в частности, низкие количества элементарного фосфора Р4, предпочтительно менее 1000 м.д., как выражено относительно P4O6, принятого за 100%. Предпочтительное время пребывания в реакции составляет от 5 до 30 секунд, более предпочтительно от 8 до 30 секунд. В одном из предпочтительных примеров осуществления реакционный продукт можно гасить до температуры ниже 350 К.
Термин "жидкий P4O6" охватывает, как описано, любое состояние Р406. Однако предполагается, что P4O6, участвующий в реакции при температуре от 45°С до 180°С, обязательно является жидким или газообразным, хотя теоретически для получения реакционной среды может быть использовано твердое вещество.
Соединение сульфоновой кислоты выбрано из гомогенных и гетерогенных сульфоновых и полисульфоновых кислот. Хотя было обнаружено, что соединение сульфоновой кислоты выгодно облегчает реакцию и одностадийное образование выбранных соединений фосфоновой кислоты высокой чистоты с высокими выходами, начиная с P4O6, механизм, посредством которого действует сульфоновая кислота, до сих пор не совсем понятен; можно сказать, что для получения необычно выгодных по любым стандартам результатов требуются заявленные существенные параметры.
Подходящие гомогенные сульфоновые кислоты имеют формулу:
(R-(SO3H)x)
где R может быть выбран из С1-24 углеводородных групп линейной, разветвленной, циклической или полициклической конфигурации, возможно замещенных группами F и/или CF3, где х равно от 1 до 4 или представляет собой С6-14 ароматические или алкил ароматические группы, где алкильная группа может представлять собой С6-20, где х равно от 1 до 3 для моноароматических систем и от 1 до 4 для диароматических и высших систем. R также может представлять собой дифенилэфир или дифенилметан, или С6-20 алкилдифенилметан или С6-20 алкилдифенилэфир, где х равно от 1 до 2.
Предпочтительные гетерогенные сульфоновые кислоты могут представлять собой следующие соединения из независимо выбранных подклассов:
(1) могут быть использованы сульфоновые кислоты, привитые на смолы, содержащие сополимеры стирола, этилвинилбензола и дивинилбензола, функционализированные таким образом, чтобы переносить группы SO3H на ароматические группы. Эти кислотные смолы могут быть использованы в различных физических конфигурациях, например, в форме геля, в макро-сетчатой конфигурации или нанесенные на вещество-носитель, такое как диоксид кремния, или углерод, или углеродные нанотрубки. Известным примером таких смол является AMBERLYST 15 от фирмы Rohm and Haas. Другие типы смол включают в себя перфорированные смолы, несущие сульфоновокислотные группы. Фторированные смолы могут быть использованы как таковые или нанесенные на инертное вещество, такое как диоксид кремния, или углерод, или углеродные нанотрубки, заключенные в высокодисперсной сети из оксидов металлов и/или кремния. Примером таких фторированных смол является NAFION. NAFION является товарным знаком компании Du Pont. AMBERLYST 15 является товарным знаком компании Rohm and Haas.
(2) сульфоновые кислоты, нанесенные на твердые вещества, имеющие неподеленную пару электронов, такие как диоксид кремния, комбинации диоксид кремния-оксид алюминия, оксид алюминия, цеолиты, диоксид кремния, активированный уголь, песок и/или гель диоксида кремния, могут быть использованы в качестве подложки для сульфоновых кислот, таких как метансульфоновая кислота или пара-толуолсульфоновая кислота. Твердые вещества, такие как цеолиты, диоксид кремния, или мезопористый диоксид кремния, например МСМ-41 или -48, или полимеры, такие как, например, полисилоксаны, могут быть функционализированы посредством химической прививки с получением таким образом сульфоновокислотных групп или их предшественников. Функциональные группы можно вводить различными способами путем прямой прививки на твердое вещество, например, путем взаимодействия групп SiOH диоксида кремния с хлорсульфоновой кислотой; или можно присоединять к твердому веществу посредством органических промежуточных элементов, которые могут представлять собой, например, производное перфторалкилсилана. Функционализированный сульфоновой кислотой диоксид кремния также может быть получен посредством золь-гель процесса, приводящего, например, к тиол-функционализированному диоксиду кремния, посредством соконденсации Si(OR)4 и, например, 3-меркаптопропил-три-метоксисилана с использованием либо нейтральных, либо ионных матричных способов, с последующим окислением тиола до соответствующей сульфоновой кислоты, например, с помощью Н202. Функционализированные твердые вещества могут быть использованы как есть, т.е. в форме порошка, в форме цеолитной мембраны, или многими другими путями, например, в смеси с другими полимерами в мембранах, или в форме твердых экструдатов, или в покрытии, например, структурной неорганической подложки, например, монолитов кордиерита.
Гомогенные сульфоновые кислоты адаптированы для образования отдельной жидкой фазы в реакционной среде в реакционных условиях. Следует понимать, что сульфоновые кислоты, которые являются нерастворимыми в реакционной среде и, таким образом, негомогенными, в условиях окружающей среды, например при 20°С, могут становиться растворимыми, например, при реакционной температуре и, таким образом, считаться "гомогенными". Сульфоновая кислота может выделена из реакционной среды с помощью известных методов, таких как, например, фильтрация нерастворимых кислот, или с помощью других обычно доступных методов, таких как ионный обмен, нанофильтрация или электродиализ. Гомогенная природа сульфоновой кислоты может быть определена рутинным способом, например, посредством визуального наблюдения за осаждением или свойствами фазового разделения.
Термин "гетерогенный" означает, что сульфоновая кислота является в основном нерастворимой в реакционной среде в реакционных условиях. Нерастворимая природа кислоты может быть определена рутинным способом, например, посредством визуального наблюдения.
В одном из примером осуществления сульфоновая кислота может быть использована в комбинации с водой в молярном соотношении P4O6: вода от 1:≤3, в частности, 1:2, до 1:0,1. Следует понимать, что реакция может быть осуществлена без присутствия воды. Число эквивалентов сульфоновой кислоты гетерогенной сульфоновой кислоты основано на определениях кислотности.
Подходящие гомогенные сульфоновые кислоты могут быть твердыми при температуре окружающей среды и предпочтительно должны использоваться в комбинации с органическими растворителями, которые являются инертными в отношении необходимых партнеров по реакции. Подходящие растворители перечислены в тексте ниже.
Сульфоновая кислота не является и не может быть приравнена к реагенту в контексте заявленной технологии. Фактически, сульфоновая кислота в конечном счете химически не изменяется в результате заявленного способа, хотя вполне может быть, и скорее всего так и есть, что сульфоновая кислота влияет на образование промежуточных соединений в реакции. Также примечательно, что сульфоновая кислота может взаимодействовать с аминокарбоновой кислотой с образованием соли сульфоновой кислоты. Таким образом, может быть желательным использование малых количеств сульфоновой кислоты, например, от 1 до 2 эквивалентов на моль аминокарбоновой кислоты, для применения соли аминокарбоновой кислоты, как указано выше.
Сульфоновая кислота также может быть использована вместе с органическим растворителем. В общем, могут быть использованы органические растворители, инертные в отношении реагентов. Под этим специалист в данной области понимает растворитель, который не реагирует в заметной степени с реагентами, вовлеченными в реакцию. Характерные примеры подходящих растворителей являются следующими: анизол; фторбензол; хлорированные углеводороды, такие как хлорбензол, тетрахлорэтан, тетрахлорэтилен; полярные растворители, такие как сульфолан, диглим, глим, дифенилоксид, производные полиалкиленгликоля с защищенными ОН группами, такими как OR, где R представляет собой низшую алкильную или ацильную группу; алифатические углеводороды, такие как гексан, гептан, циклогексан; нециклические простые эфиры, такие как дибутиловый эфир, диизопропиловый эфир и дипентиловый эфир; циклические простые эфиры, такие как тетрагидрофуран и диоксан; ароматические углеводороды, такие как толуол, ксилол; органические ацетаты, такие как этилацетат; органические нитрилы, такие как ацетонитрил; силиконовые жидкости, такие как полиметилфенилсилоксан или их смеси. Дополнительно могут быть добавлены соразбавители, такие как, например, фосфорная кислота, в молярном соотношении аминокарбоновая кислота: фосфорная кислота от 1:0,01 до 1:1. При использовании гетерогенной сульфоновой кислоты предпочтительно использовать полярные растворители, способные солюбилизировать реагенты и по меньшей мере часть образовавшихся продуктов. Подходящие органические растворители должны использоваться в молярном соотношении аминокарбоновая кислота: органический растворитель от 1:1 до 1:10, предпочтительно от 1:2 до 1:6. Эти органические растворители также могут быть использованы для получения раствора P4O6 и раствора аминокарбоновой кислоты, используемых в реакции. Разумеется, в дополнение к этим растворителям, жидкие сульфоновые кислоты или твердые сульфоновые кислоты, растворенные в растворителе, например, описанном выше, могут быть использованы вместе с другими реагентами в последовательности, приведенной в формуле изобретения.
Предпочтительный пример аминокарбоновой кислоты для применения в данном изобретении может быть определен следующим образом. Термин "циклический" охватывает - алкилен-циклоалкил и -циклоал килал кил, например, метиленциклопентил или метилциклопентил или метилметиленциклопентил или их комбинации. Термины "циклический" или "ароматический" используют в отношении циклической структуры, состоящей минимум из 3 атомов углерода, и в отношении ароматической структуры, содержащей по меньшей мере 6 атомов углерода. Термины "полициклический", "полиароматический", "гетерополициклический" и "гетерополиароматический" охватывают производные конденсированных колец и кольца, присоединенные друг к другу посредством одинарной связи, и их комбинации. Кроме того, термины "полициклический" и "гетерополициклический" также охватывают мостиковые и спиро-производные. Что касается (1), то X1 может представлять собой С3-20 для циклических и полициклических групп и С6-20 для ароматических или полиароматических групп. Ароматические/полиароматические группы могут быть представлены алкилароматическими (арильными), алкиленароматическими и алкилалкиленароматическими группами. Предпочтительный пример X1 содержит С2-10 циклические, линейные или разветвленные алкильные и ароматические группы. А, В предпочтительно выбраны из Н и углеводородных групп, имеющих С1-10 в линейной, разветвленной, циклической, ароматической, гетероциклической или гетероароматической конфигурации; X2 предпочтительно выбран из С1-6 углеводородных групп в линейной, разветвленной, циклической, ароматической, гетероциклической или гетероароматической конфигурации без какого-либо заместителя. Предпочтительные гетероциклы D имеют от 5 до 6 членов и содержат от 1 до 2 гетероатомов, в дополнение к атому азота. D в (2) также может представлять собой С4-6 алкилимид или С8-12 ароматический имид. X3 в (3) предпочтительно выбран из прямой связи или С1-10 углеводородной группы в линейной, разветвленной, циклической, ароматической, гетероциклической или гетероароматической конфигурации, в частности, из С1-6 алкильных групп. Примерами подходящих имидных предшественников являются: янтарный ангидрид, глутаминовый ангидрид и фталевый ангидрид. Предпочтительными Е (3) являются структуры, имеющие 5-10-членные кольца, содержащие от 1 до 3 гетероатомов, в дополнение к атому азота.
Подходящие и предпочтительные аминокарбоновые кислоты в данной заявке включают в себя:
- 4-пиперидинкарбоновую кислоту (3), также известную как изонипекотиновая кислота;
- N,N-диметил-у-аминомасляную кислоту (1);
- N-метил-y-аминомасляную кислоту (1);
- м-аминобензойную кислоту (1); и
- 4-фталимидомасляную кислоту (2).
Аминокарбоновая кислота | Аминогидроксидифосфоновая кислота |
N,N-диметил-β-аланин (1) | Олпадроновая кислота |
Имидазо[1,2-а]пиридин-3-уксусная кислота (3) | Минодроновая кислота |
3-Пиридинуксусная кислота (3) | Ризедроновая кислота |
β-Аланин (1) | Памидроновая кислота |
6-Аминогексановая кислота (1) | Неридроновая кислота |
N-метил-М-пентил-В-Аланин (1) | Ибандроновая кислота |
4-Аминобутановая кислота (1) | Алендроновая кислота |
Имидазоилуксусная кислота (3) | Золедроновая кислота |
Аминокарбоновая кислота обычно является твердой в условиях окружающей среды. Когда аминокарбоновую кислоту добавляют к сульфоновой кислоте, содержащей P4O6, она может быть добавлена в реакционную среду в виде твердого вещества, в виде раствора в сульфоновой кислоте или в подходящем растворителе или в смеси с сульфоновой кислотой и растворителем.
Аминокарбоновая кислота может быть использована как таковая или в виде соли, подлежащей добавлению в реакционную среду, при условии, что противоион совместим с P4O6. Примеры подходящих ионов включают в себя: мезилат; фосфат; йодид; бромид и хлорид-ионы.
Поскольку способ по изобретению функционирует в условиях исключения хлоридов и LOOPS и дает продукты с высокой селективностью и чистотой, маточный раствор можно очень легко рециклизировать для оптимизации таким образом количественного применения и конверсии реагентов. Способ по настоящему изобретению является особенно выгодным в том, что по сравнению с предшествующим уровнем техники он делает возможным простую и эффективную рециклизацию маточного раствора после удаления, в соответствии с потребностями, воды и возможно растворителей, которые были использованы на стадии выделения продукта.
Образовавшийся реакционный продукт может быть выделен соответствующим образом стандартными способами, известными специалистам в данной области. Например, реакционный продукт может быть выделен с помощью
В особенно предпочтительных примерах осуществления в данной работе аминокарбоновые кислоты, подходящие для синтеза желаемых реакционных продуктов, являются следующими: известных технологий. Для иллюстрации одного из подходов можно начать с добавления воды в реакционную среду для того, чтобы гидролизовать таким образом путем нагревания, обычно при температуре в диапазоне от 80 до 140°С, образовавшиеся реакционные продукты для превращения этих реакционных продуктов в свободные мономерные аминогидроксидифосфоновые кислоты, которые затем могут быть выделены из гидролизованной реакционной смеси, например, посредством кристаллизации или осаждения при добавлении подходящего сорастворителя / разбавителя. Кристаллизованное вещество или осадок могут быть выделены, например, посредством фильтрации или центрифугирования и дополнительно кристаллизованы для того, чтобы соответствовать, например, фармацевтическим требованиям. В другом подходе можно выделить конечный продукт в виде полностью или частично нейтрализованной соли кислоты. Подходящие примеры солей предпочтительно включают ионы щелочных и щелочноземельных металлов. Конечные солевые продукты могут быть рутинно выделены и очищены, например, посредством перекристаллизации, с получением таким образом очищенной соли, возможно в виде гидрата, которая соответствует требованиям фармакопеи. Альтернативно, соли и их гидраты могут быть получены из эквивалентов выделенной кислоты. Выделение и очистка образовавшихся реакционных продуктов может требовать применения обычных процедур, хорошо известных специалисту в данной области, таких как' обработка активированным углем для удаления остаточных следов серосодержащих соединений.
Реакцию согласно данному изобретению осуществляют рутинным способом, известным в данной области технологии. Как проиллюстрировано в экспериментальных данных, способ может быть осуществлен путем объединения основных партнеров по реакции и нагревания реакционной смеси до температуры обычно в диапазоне от 40°С до 180°С, более предпочтительно от 60°С до 160°С, в частности, от 80°С до 140°С. Длительность реакции при выбранных температурах составляет от 10 минут до 30 часов, предпочтительно от 30 минут до 20 часов, в частности, от 1 часа до 18 часов. Верхний температурный предел направлен на предотвращение значительного чрезмерного разложения реагентов, растворителей или промежуточных соединений, образующихся в этих реакциях. Понятно и хорошо известно, что температура разложения партнеров по реакции или растворителей может варьироваться в зависимости от физических параметров, таких как давление, и качественных и количественных параметров ингредиентов в реакционной смеси. Реакция может быть осуществлена при атмосферном давлении. Длительность реакции может варьироваться от практически мгновенной, например 10 минут, до продолжительного перио