Установка для обработки воды озоном и способы его дозирования (варианты)

Иллюстрации

Показать все

Группа изобретений относится к технике обработки воды озоном и может быть использована в системах водоснабжения городов и населенных пунктов для обеззараживания питьевой воды из поверхностных источников воды, в частности, с большими сезонными колебаниями степени загрязненности воды, требующими изменения дозы озона до 6 раз. Озоно-воздушную смесь подают ступенями с постоянным расходом на каждой ступени и изменением концентрации озона в озоно-воздушной смеси. Отношение максимального расхода озоно-воздушной смеси на последней ступени к минимальному на первой принимают равным не более 2. Размеры пузырьков озоно-воздушной смеси от 0,8 до 1,2 мм. Установка для обработки воды озоном содержит систему подготовки осушенного и охлажденного воздуха, обеспечивающую его подачу в генератор озона и озоно-воздушной смеси на диспергатор ступенями, а также три отдельные линии однотипных диспергаторов. Группа изобретений обеспечивает снижение потерь произведенного генератором озона, эффективность использования произведенного озона не менее 95%, увеличение точности дозирования озона, повышение надежности функционирования установки и ее безопасности. 3 н. и 9 з.п. ф-лы, 14 ил., 6 табл.

Реферат

1. Краткое описание чертежей схем, графиков

Способы дозирования озона и установка поясняются следующими чертежами, схемами, графиками:

На фигуре 1 представлен график зависимости степени поглощения озона водой от удельного расхода озоно-воздушной смеси (ОВС) через 1 см2 рабочей площади пористых пластин диспергаторов двух типов: штатный ПА-2.1 с пластинами из пористого титана и опытный из пористого стекла (фильтры Шотта). Испытания проведены в модернизированном контактном резервуаре (КР) Восточной станции водоподготовки г. Москвы с улучшенной схемой течения воды в КР.

На фигуре 2 представлен график зависимости степени поглощения озона водой от удельного расхода ОВС через 1 см2 рабочей площади пористых пластин штатных диспергаторов ПА-2.1 в штатном КР.

На фигуре 3 показана экспериментальная зависимость размера диспергируемых пузырьков воздуха от перепада давления на отверстиях диспергаторов при разных нормированных диаметрах отверстий 70, 80 и 100 мкм.

На фигуре 4 представлена расчетно-экспериментальная зависимость степени поглощения озона водой от размера пузырьков ОВС при разной глубине погружения пластин диспергаторов в воду КР: 4,5; 5,0; 5,5 м.

На фигуре 5 показана экспериментальная зависимость удельного расхода ОВС от перепада давления через единичное отверстие перфорированной пластины диспергаторов 2-х типов: диспергатор с тонкой пластиной из титана с отверстиями диаметром 70 мкм и диспергатор AFD-270 с упругой пластиной с щелевыми отверстиями (прорезями).

На фигуре 6 представлена экспериментальная зависимость удельного расхода ОВС через 1 см2 площади пористой пластины диспергаторов двух типов: штатный диспергатор ПА-2.1 с пластиной из пористого титана, опытный диспергатор с фильтрами Шотта.

На фигуре 7 показана зависимость отношения фактических энергозатрат на производство 1 кг озона к минимальному значению от отношения фактической концентрации озона в ОВС к оптимальной величине, соответствующей минимуму энергозатрат на производство 1 кг озона. Зависимость получена по результатам экспериментального определения энергозатрат на опытной установке производительностью 25 кг озона в час.

На фигуре 8 представлен график 4-ступенчатой зависимости расхода ОВС от дозы озона, соответствующей закону арифметической прогрессии для установки с расходом обрабатываемой воды 10200 м3/ч и диапазоном дозы озона от 1,25 до 4,27 г/м3.

На фигуре 9 представлен график 3-ступенчатой зависимости расхода ОВС от дозы озона, соответствующей закону арифметической прогрессии для установки с расходом обрабатываемой воды 13333 м3/ч и диапазоном дозы озона от 1,0 до 3,4 г/м3.

На фигуре 10 представлен график 6-ти ступенчатой зависимости расхода ОВС от дозы озона, соответствующей закону арифметической прогрессии для установки с расходом обрабатываемой воды 10700 м3/ч и диапазоном дозы озона от 1,0 до 6,0 г/м3 с тремя автономными линиями диспергаторов в каждом КР. На графике надписями со стрелками показаны три разные части полного диапазона дозы, на которых величина дозы обеспечивается произведением выбранной концентрации озона в ОВС и расхода ОВС на данной ступени: рабочий диапазон, зона совмещения с диапазоном, соответствующим низкой ступени расхода ОВС, и резервный диапазон, минимальная доза на котором соответствует минимально допустимой концентрации озона в ОВС, равной 10 г/нм3.

На фигуре 11 показана циклограмма изменения суммарного расхода ОВС, расхода по линиям диспергаторов, концентрации озона в ОВС и дозы озона в воде по времени для установки с тремя автономными линиями диспергаторов, подключаемых последовательно, с расходом обрабатываемой воды 10700 м3/ч и диапазоном дозы озона от 1,0 до 6,0 г/м3.

На фигуре 12 представлена пневмогидравлическая схема установки с несколькими компрессорами одинаковой постоянной производительности в системе подготовки воздуха. Цифрами на схеме обозначены:

1 - система подготовки воздуха, которая включает компрессоры 7, устройство перепуска воздуха с выхода на вход - 15; блок осушителей воздуха - 8, трубопровод подачи воздуха в генератор озона с запорными элементами - 84, измерители давления 10, 17 и расхода воздуха 11.

2 - генератор озона, который включает: модуль генератора озона 16 с системой охлаждения, источники электропитания 17, измерители концентрации озона в ОВС 18.

3 - магистраль подачи ОВС, которая включает: трубопровод 19, измеритель давления 21, запорный элемент 20, автоматическое дросселирующее устройство 22.

4 - контактный резервуар, который включает: реакционную емкость 23, трубопроводы подачи необработанной воды 24, трубопроводы слива обработанной воды 25, диспергаторы ОВС, которые объединены питающими трубопроводами 26, 27, 28 в три отдельные линии, сообщенные с распределительным коллектором 29 через входные автоматически управляемые дроссели 30, 31, 32. Коллектор снабжен измерителем давления 34 и концентрации 35. Отводной трубопровод, сообщающий коллектор с магистралью ОВС, снабжен запорным элементом 36 и фильтром 80 и измерителем расхода 33. КР снабжен датчиком предельной концентрации озона 55 и датчиком остаточной концентрации озона в газовой подушке при штатной работе 56.

5 - система отведения отработанной ОВС и деструкции остаточного озона содержит: трубопровод отведения 57 с запорным элементом 60, вытяжной вентилятор 65, деструктор остаточного озона 64, измеритель давления разрежения 61 в газовой подушке, датчик предельно допустимой концентрации озона 66 выброса ОВС в атмосферу, автоматически регулируемый дроссель 62, дренажный патрубок 58 с дополнительным мини-деструктором остаточного озона 59.

6 - система продувки включает: магистральный воздухопровод 12, компрессор низкого давления 81, редуктор 82, охладитель 83, автоматически регулируемый дроссель 14, фильтр 79, измеритель расхода 45, отсечной клапан 51. Система продувки дополнительно включает распределительный коллектор 44, измеритель давления 46, отсечные клапаны 48, 49, 50, выходы которых сообщены с выходами дросселей 30, 31, 32 и линиями диспергаторов 26, 27, 28, а также трубопроводами 41, 42, 43 с полостями измерителей перепада давления на диспергаторах 37, 38, 39, другие измерительные полости которых сообщены трубопроводом 40 с водным массивом КР на уровне диспергаторов.

На фигуре 13 представлена пневмогидравлическая схема установки с одним регулируемым компрессором в составе системы подготовки воздуха и с отбором воздуха продувки от воздухосборника этой системы. Состав остальных систем 2, 3, 4, 5 аналогичен установке, представленной на фигуре 12.

1 - система продувки воздуха включает: компрессор высокого давления 7, охладитель 8, воздухосборник 76, редуктор 77, трубопровод подачи воздуха в генератор озона 9 с запорным элементом 84, измеритель давления 10 и расхода воздуха 11.

6 - система продувки отличается от представленной на фигуре 12 трубопроводом подачи воздуха 12, который сообщен с воздухосборником 76 и снабжен измерителем давления воздуха 78 и редуктором 13.

На фигуре 14 изображена схема трубопроводов распределения ОВС между диспергаторами отдельной линии в единичном КР. Цифрами на схеме обозначены: 19 - отвод ОВС от магистрали, 31, 32 - регулируемые входные дроссели, 27, 28 - питающие трубопроводы, 91, 92 -вертикальные питающие трубопроводы, 85, 86 - продольные придонные распределительные трубопроводы, 87 - сливной трубопровод, 88 - поперечные трубопроводы, 89 - вертикальные патрубки, 90 - диспергаторы, 53 - сбросовый трубопровод гидрозатвора.

2. Обозначения, индексы, сокращения

G - расход воздуха, озоно-воздушной смеси, нормальные куб. метры в час (нм3/ч)

Q - производительность генератора озона, кг/ч, (г/ч)

c - концентрация озона в озоно-воздушной смеси, г/нм3

GH2O - расход обрабатываемой воды, м /ч

β - доза озона, вводимого в воду, г/м3

n - порядковый номер ступени расхода озоно-воздушной смеси

N - количество отверстий в диспергаторах

Δp - перепад давления озоно-воздушной смеси на отверстиях диспергаторов, кПа

max - максимальное значение величины

min - минимальное значение величины

opt - оптимальное значение величины

уд - удельное значение величины, отнесенное к 1 см2 площади поверхности или 1 отверстию

уст - установленное проектом значение величины

зад - заданное значение величины

тек - текущее в данный момент времени значение величины

лин - значение величины параметра, отнесенного к отдельной линии диспергаторов

отв - отверстие диспергатора

оп - опытное значение

КР - контактный резервуар

ОВС - озоно-воздушная смесь

ДСУ - диспетчерская система управления

ЛАСУ - локальная система управления

СПВ - система подготовки воздуха

ССО - система синтеза озона

СОД - система отведения ОВС и деструкции озона

СПД - система подачи и диспергирования ОВС

3. Область техники и аналоги заявленной установки

Изобретение относится к технике обработки воды озоном и может быть использовано, в частности, для обеззараживания питьевой воды в системе водоснабжения городов и населенных пунктов.

Известен аналог заявленной установки по своему назначению и совокупности сходных существенных конструктивных признаков.

Это устройство содержит: систему подготовки воздуха, соединенную с генератором озона, снабженным источником электропитания, реакционную емкость, снабженную системами подачи и слива обрабатываемой воды, а также диспергаторами озоно-воздушной смеси, размещенными у дна емкости и сообщенными между собой в единый блок, соединенный трубопроводом с генератором озона, при этом диспергаторы снабжены пористыми пластинами с размерами пор 10~150 мкм или пластинами с отверстиями в виде каналов в форме усеченного конуса, диаметр которых на входе и выходе озоно-воздушной смеси составляет соответственно 180-200 мкм и 100-150 мкм, систему обработки избыточного озона (Патент №2169122 C02F 1/78, опубл. 20.06.2001).

Недостатком известного устройства является наличие в его составе дополнительной системы снижения концентрации избыточного озона в объеме газовой подушки контактного резервуара, который остается в восходящем потоке пузырьков озоно-воздушной смеси из-за неполноты поглощения его водой.

Способ увеличения степени поглощения озона водой в известном устройстве состоит в том, что необработанную воду дополнительно распыляют в объеме озоно-воздушной подушки контактного резервуара, содержащей остаточный озон.

Дополнительное устройство содержит множество распыляющих форсунок, равномерно распределенных в объеме газовой подушки. Оно существенно усложняет конструкцию реакционной емкости и увеличивает стоимость его изготовления и эксплуатации.

Без дополнительного устройства степень поглощения озона в известной установке не превышает 85-90%.

Известна также установка для озонирования воды, содержащая генератор озоно-газовой смеси, контактный резервуар с системой подачи воды и системой слива потребителю, в придонной части которого установлены газо-диспергирующие элементы, соединенные трубопроводом с генератором озона. Газо-диспергирующие элементы, выполненные в виде пустотелых двухслойных панелей с равномерно перфорированным верхним слоем, состыкованных между собой без зазоров с образованием замкнутого пространства между нижним слоем панелей и днищем контактного резервуара. Для прохода воды в панелях предусмотрены гильзы. Газо-диспергирующие элементы снабжены узлами закрутки водного потока в виде центробежных форсунок, выходные сопла которых выполнены как круговые щели, которые размещены над поверхностью перфорированного слоя панелей и параллельны ему, а входные отверстия форсунок сообщены с пространством под панелями и системой подачи воды в контактный резервуар (Патент №2374184 C02F 1/00, опубл. 2007).

В установке используется способ увеличения степени поглощения озона водой за счет принудительного отрыва образующихся пузырьков озоно-газовой смеси тангенциально направленной струей воды и уменьшения их размеров по сравнению с естественными условиями их отрыва.

К недостаткам данной установки относится отсутствие в ней устройства для регулирования расхода воды через форсунки, которое необходимо для эффективного смыва пузырьков при различных расходах озоно-газовой смеси, обеспечивающих различные дозы озона в воде.

Другим недостатком данной установки является техническая сложность создания беззазорных стыков между поворотными пустотелыми панелями, устанавливаемыми на всей площади пола контактного резервуара, равной 70…100 м2 и последующей эксплуатации оборудования, в том числе проведение регламентных работ, включающих санобработку контактного резервуара. Наличие реальных зазоров между панелями и стенами контактного резервуара, намного превышающих суммарную площадь проходного сечения щелевых форсунок, требует существенного увеличения дополнительного напора обрабатываемой воды в пространстве под панелями для эффективного функционирования щелевых форсунок.

При перепаде давления воды на форсунках ~0,05 кгс/см2 нагрузка снизу на полые панели и соединения между ними с учетом архимедовой выталкивающей силы составляет около 45-50 т. В связи с этим возникают дополнительные проблемы с обеспечением прочности полых панелей и узлов стыка между ними.

В первом из известных, приведенных выше, аналогов установки озонирования эффективность использования озона повышается путем вторичного использования остаточного озона в газовой подушке, а во втором путем дополнительного воздействия струи воды на естественный процесс диспергирования пузырьков озоно-воздушной смеси.

4. Результаты экспериментальных исследований влияния различных факторов на эффективность использования произведенного озона

Для установления основного физического фактора процесса диспергирования озоно-воздушной смеси, влияющего на степень поглощения озона водой с участием авторов настоящего изобретения, были проведены сравнительные испытания модернизированной и штатной систем диспергирования озоно-воздушной смеси в промышленном масштабе на Восточной станции водоподготовки г.Москвы [«Отчет по результатам сравнительных испытаний модернизированный и штатной систем диспергирования озоно-воздушной смеси в контактных резервуарах №8 и №10 Восточной водопроводной станции г. Москвы», ЗАО «Московские озонаторы, 2004]. Условия и результаты этих испытаний приведены в Таблицах 1 и 2 и на Фигурах 1 и 2. Степень поглощения озона водой определялась по концентрации остаточного озона в газовой подушке штатного и опытного контактных резервуаров.

Из рассмотрения этих результатов следует, что для однотипных диспергаторов с пористыми пластинами из титанового порошка с размерами пор 40…120 мкм, установленных в штатном и опытном резервуарах, степень поглощения озона водой самым существенным образом зависит от величины удельного расхода озоно-воздушной смеси, приходящегося на 1 см2 площади пористой пластины диспергатора. В опытном контактном резервуаре при удельном расходе озоно-воздушной смеси ~ 1 нл/ч на 1 см2 площади пластины была получена степень поглощения озона 96-99,5%. В штатном (контрольном) контактном резервуаре при изменении удельного расхода с 1 см2 площади от 2 до 8 нл/ч коэффициент использования (поглощения) озона значительно ниже 92-85%.

При этом следует учитывать также, что глубина погружения диспергаторов в опытном резервуаре была 3,5 м, тогда как в штатном 4,5 м, что на 28% больше. Фильтры Шотта из стеклянного порошка с пористостью 100 мкм, испытанные в опытном резервуаре, обеспечили степень поглощения озона водой 96-97% при удельном расходе с 1 см2 площади от 1 до 3 нл/ч.

Одним из недостатков пористых пластин диспергаторов, получаемых спеканием частиц титанового порошка или стекла, является большое различие размеров, образующихся сквозных пор, как в одной пластине, так и в разных пластинах. Следствием является большой разброс величины расхода воздуха до 150-200% при одних и тех же значениях перепада давления, что существенно усложняет комплектацию таких диспергаторов в блок с общим давлением подачи озоно-воздушной смеси.

Минимальный разброс расходно-напорных характеристик имеют пластины из листового титана с нормализованными отверстиями, выполненными с использованием лазерной технологии.

Были изготовлены и испытаны в лабораторных условиях модельные дисковые диспергаторы диаметром 290 мм с титановыми пластинами толщиной 0,4-0,5 мм, в которых лазером были выполнены 1500 отверстий диаметром 70±5 мкм. В результате испытаний была получена зависимость удельного расхода воздуха от перепада давления при глубине погружения диспергаторов 5 м, аппроксимация которой представлена следующей зависимостью

где - удельный расход воздуха через одно нормированное отверстие, нормальные кубические метры в час (нм3/ч);

ΔP - перепад давления воздуха между входом в отверстие и выходом из него в воду, кПа;

ΔP0=3 кПа - критический перепад давления воздуха на отверстии, при котором расход воздуха равен 0;

kcp=0,52·10-3 - экспериментальный коэффициент пропорциональности, зависящий от фактического среднего значения диаметра отверстия в пластине и коэффициента расхода. Разброс от среднего значения в 10 испытанных пластинах составил ±15%.

Лабораторными испытаниями были также получены зависимости размеров пузырьков от перепада давления для отверстий ⌀70, 80 и 100 мкм. Результаты представлены на Фигуре 3.

Зависимость степени поглощения озона от размеров пузырьков, полученная в работе [Озон и другие экологически чистые окислители. Наука и технологии. Издательство «Университет и школа», 2004], приведена на Фигуре 4.

Из сопоставления зависимостей, представленных на Фигуре 3 и Фигуре 4, следует, что степень поглощения озона более 95% может быть получена при размерах пузырьков от 0,8 до 1,2 мм. Диспергирование таких пузырьков через нормализованные отверстия диаметром 70±5 мкм может быть обеспечено при перепаде давления от 4 до 6,5 кПа. Согласно формуле (1) удельный расход будет:

Таким образом, при использовании в предлагаемой установке диспергаторов с перфорированными лазером нормализованными отверстиями диаметром 70±5 мкм, степень поглощения озона водой более 95% может быть получена в диапазоне перепадов давления озоно-воздушной смеси от 4 до 6,5 кПа, при этом удельный расход через единичное отверстие составляет от 0,52 до 0,97 нл/ч или от 145 до 270 нмм3/с.

Из практики использования диспергирующих устройств для очистки воды известны диспергаторы типа AFD-270, допускающие периодическую подачу озоно-воздушной смеси в воду и имеющие эластичную мембрану из синтетического каучука со щелевидными самоочищающимися при наддутии отверстиями, которые при перепаде давления ~2 кПа диспергируют пузырьки размером около 1 мм.

Характеристики четырех типов диспергаторов с перфорированными и пористыми пластинами, которые могут обеспечить степень поглощения озона водой более 95%, приведены в Таблице 3, а на Фигурах 5 и 6 приведены графики зависимости удельного расхода от перепада давления.

5. Техническая задача изобретения и варианты способов ее решения

Установление основного фактора, влияющего на величину степени поглощения озона водой на установках обработки воды озоном, позволяет сформулировать техническую задачу предлагаемого изобретения.

Она состоит в устранении противоречия между необходимостью увеличения общего расхода озоно-воздушной смеси для достижения заданной дозы озона в воде и необходимостью ограничения величины удельного расхода озоно-воздушной смеси через отверстия диспергаторов для обеспечения высокой степени поглощения озона водой, например, не менее 95%.

Доза озона, вводимого в воду контактного резервуара, определяется по формуле:

где β - доза озона, г/м3;

с - концентрация озона в озоно-воздушной смеси, г/нм3;

G - расход озоно-воздушной смеси, нм3/ч;

G H 2 O - расход воды, м3/ч.

При постоянном расходе воды, регулирование дозы озона в автоматическом режиме работы установки возможно выполнить тремя способами:

1. путем изменения только концентрации - с при заданном постоянном общем и удельном расходе через диспергаторы;

2. путем изменения общего и удельного расхода через диспергаторы в допустимых пределах при постоянной, например, оптимальной концентрации с;

3. комбинированным способом: путем ступенчатого закономерного изменения расхода G с сохранением его постоянного уровня на каждой ступени и изменения концентрации с в определенном диапазоне на каждой ступени расхода G.

Положительное свойство первого способа состоит в том, что сохраняется при выборе достаточно большого количества отверстий в диспергаторах постоянство малой величины удельного расхода озоно-воздушной смеси, гарантирующей высокую степень поглощения озона водой. Существенный недостаток состоит в экономической неэффективности ведения процесса озонирования на постоянном максимальном расходе озоно-воздушной смеси, который необходим для обеспечения максимальной дозы озона, а снижение концентрации озона в озоно-воздушной смеси для малых доз озона сопряжено с увеличением энергозатрат на производство 1 кг озона.

Экспериментальная зависимость суммарных энергозатрат от концентрации озона для опытной установки производительностью 25 кг озона в час приведена на Фигуре 7. По оси абсцисс отложена величина отношения реализуемой концентрации к оптимальной, по оси ординат величина отношения фактических энергозатрат к минимальному значению, соответствующему оптимальной концентрации.

Зависимость относительной величины энергозатрат от отношения максимальной установленной дозы озона к минимальной при регулировании дозы озона путем изменения концентрации приведена в Таблице 4.

Из Таблицы 4 следует, что при энергозатраты увеличиваются на 10%, при

Повышение степени поглощения озона водой этим способом дозировки озона на 5-10% приводит к увеличению энергозатрат на производство озона на 10-20%. В связи с этим его использование нецелесообразно.

Второй способ регулирования дозы озона путем пропорционального изменения расхода озоно-воздушной смеси при постоянной оптимальной концентрации в ней озона используется на Французской установке озонирования воды, установленной на Рублевской станции водоподготовки г.Москвы. Установка содержит воздушный компрессор с плавным регулированием производительности в 3,5-4 раза. Этот способ обеспечивает минимум энергозатрат на производство 1 кг озона. Вместе с тем степень поглощения озона водой не менее 95% может быть реализована при увеличении минимальной дозы не более чем в 2 раза.

Приемлемое решение поставленной технической задачи может обеспечить третий предлагаемый комбинированный способ дозирования озона, в котором в различные периоды времени эксплуатации установки озонирования воды, озоно-воздушную смесь пропускают через диспергаторы различными ступенями с постоянным расходом, а изменение дозы на каждой ступени обеспечивают изменением концентрации озона в озоно-воздушной смеси в допускаемых пределах.

5.1. Описание 1-го способа дозирования

Первый вариант предлагаемого комбинированного способа дозирования озона при обработке питьевой воды, включающий подготовку сжатого, охлажденного и осушенного атмосферного воздуха, пропускание воздуха с заданным расходом через генератор озона с источником электропитания, синтез озона с обеспечением заданной концентрации озона в озоно-воздушной смеси, пропускание озоно-воздушной смеси сквозь отверстия диспергаторов с выходом из них восходящего потока мелких пузырьков в объем обрабатываемой воды, протекающей через реакционную емкость контактных резервуаров с обеспечением заданной дозы озона в каждом из них путем распределения общего расхода озоно-воздушной смеси между контактными резервуарами пропорционально расходу воды в каждом из них, отведение отработанной озоно-воздушной смеси из газовых подушек контактных резервуаров на деструктор остаточного озона с последующим выбросом озоно-воздушной смеси с безопасной концентрацией в ней озона в атмосферу, существенно отличается от наиболее близкого аналога тем, что в различные периоды времени эксплуатации установки озонирования воды озоно-воздушную смесь пропускают через диспергаторы различными ступенями с постоянным расходом, а необходимое изменение дозы на каждой ступени обеспечивают изменением концентрации озона в озоно-воздушной смеси в пределах от 70 до 120% от величины оптимальной концентрации, соответствующей минимуму энергозатрат на производство 1 кг озона и характерной для используемой озонаторной установки, причем отношение максимального удельного расхода озоно-воздушной смеси на последней ступени к минимальному на первой принимают равным не более 2, при этом непрерывное изменение дозы озона на стыке ступеней расхода озоно-воздушной смеси обеспечивают путем захода границ каждого диапазона дозы за границу смежного не менее чем на 15% от величины диапазона, например, при переходе на более высокую ступень расхода ОВС минимальную рабочую дозу озона для нее выбирают по величине меньше максимальной рабочей дозы на предшествующей более низкой ступени, причем величину разницы в 15% относят ко всему рабочему диапазону, соответствующему более высокой ступени расхода. Пример совмещения диапазонов приведен на фигуре 10, а размеры пузырьков озоно-воздушной смеси от 0,8 до 1,2 мм, обеспечивающие степень поглощения озона водой в пределах более 95%, получают пропусканием озоно-воздушной смеси либо через тонкие толщиной 0,4-0,5 мм перфорированные пластины диспергаторов из титана, в которых отверстия изготовлены методом лазерной прошивки, причем средний диаметр отверстий установлен в пределах от 65 до 75 мкм, а диаметр любого отверстия в пределах от 60 до 80 мкм, общее количество отверстий в диспергаторах и минимальный перепад давления озоно-воздушной смеси на отверстиях выбирают исходя из условий пропуска через диспергаторы заданного минимального расхода озоно-воздушной смеси при средней величине удельного объемного расхода через одно отверстие, равного 145±15 нмм3/с (нормальных мм3 в сек), либо озоно-воздушную смесь пропускают через диспергаторы с пористыми пластинами толщиной 3-4 мм, изготовленными методом спекания титанового порошка с пористостью от 45 до 50% и размерами сквозных пор от 40 до 120 мкм, причем суммарную рабочую площадь пластин и максимальный перепад давления озоно-воздушной смеси на пластинах выбирают исходя из условия пропуска через диспергаторы заданного минимального расхода озоно-воздушной смеси при средней величине удельного расхода через 1 см2 площади пластины диспергатора равной 290±30 нмм3/с, выбор ступени расхода озоно-воздушной смеси и величины концентрации в ней озона производит соответствующий блок программно-математического обеспечения диспетчерской системы автоматического управления работой установки озонирования воды, который вычисляет заданную текущую производительность генератора озона по следующей формуле:

где Q - производительность генератора озона, кг/ч;

β - доза озона в воде, г/м3;

GH2O - расход воды, м3/ч;

ε1 - фактическая степень поглощения озона водой, которая устанавливается по результатам пуско-наладочных работ;

ε2 - коэффициент потерь озона при транспортировании озоно-воздушной смеси от генератора озона до диспергаторов,

и устанавливает пригодную ступень расхода, на которой выполняется условие:

вычисляет необходимую величину текущей концентрации озона в озоно-воздушной смеси по формуле:

где n - порядковый номер ступени расхода;

затем выдает сообщения в локальные системы автоматического управления (ЛАСУ) блока подготовки воздуха, генератора озона и диспергирования озоно-воздушной смеси о выбранной ступени расхода воздуха и в ЛАСУ генератора озона о необходимой величине концентрации озона и, получив сообщение от ЛАСУ о готовности к запуску, производит запуск установки по принятой циклограмме, при переходе на ступень с большим расходом озоно-воздушной смеси увеличивают раскрытие заслонок дросселей, установленных на входе отдельных линий диспергаторов, и перепад давления на отверстиях и подают дополнительный воздух в генератор озона и дополнительную озоно-воздушную смесь на диспергаторы, при этом величину электрической мощности источника питания генератора озона сохраняют, а концентрацию озона при этом снижают за счет увеличения расхода воздуха, благодаря чему сохраняют на 3-5 минут дозу озона на уровне прежней ступени, а затем, после установления стационарного процесса, увеличивают концентрацию, обеспечивая заданную дозу на новой ступени расхода озоно-воздушной смеси, корректируют в пределах 5-10% уровень расхода озоно-воздушной смеси на действующей ступени, максимальную производительность генератора и величину дозы озона получают на последней ступени расхода озоно-воздушной смеси при максимальной концентрации в ней озона равной 1,2copt, а минимальную на первой ступени при минимальной концентрации, равной 0,7copt, при этом наибольшую реализуемую величину отношения максимальной дозы к минимальной определяют по формуле:

Заданные расходы озоно-воздушной смеси на выбранных ступенях обеспечивают путем установки в заданное положение заслонок дросселей, установленных на питающих трубопроводах контактного резервуара перед отдельными группами диспергаторов.

Признаки, характеризующие способ лишь в частных случаях:

1) давление озоно-воздушной смеси перед дросселями на всех ступенях расхода поддерживают на одном уровне, путем изменения гидросопротивления дополнительного дросселя, установленного на магистрали подачи озоно-воздушной смеси, компенсирующего изменение потерь давления озоно-воздушной смеси в сети при регулировании величины расхода;

2) однотипные диспергаторы озоно-воздушной смеси в контактном резервуаре объединяют в три отдельные линии с автономно управляемыми входными дросселями, в которых предусматривают необходимый сверхнормативный запас хода раскрытия заслонок, и используют его при неисправности одной из линий диспергаторов или при снижении пропускной способности отверстий диспергаторов из-за минерального или биологического обрастания при озонировании воды увеличивая перепад давления на отверстиях до максимально допустимого, и добиваются требуемого расхода озоно-воздушной смеси и дозы озона;

3) для предварительного сжатия атмосферного воздуха используют несколько осевых компрессоров низкого давления (1,8-2,1 кгс/см2) с одинаковым постоянным уровнем производительности, последовательно включают в работу по одному компрессору обеспечивают ступенчатое изменение расхода воздуха в генератор озона в соответствии с законом арифметической прогрессии:

где n - порядковый номер ступени расхода;

Gn - расход на n-ой ступени, нм3/ч;

d - разность прогрессии, равная производительности одного компрессора;

G1=m1·d - расход на 1-ой ступени, нм3/ч;

m1 - количество компрессоров, задействованных на первой ступени расхода,

при этом отношение расхода воздуха на последней ступени к расходу на первой принимают равным 2, а максимальное необходимое количество компрессоров - mmax и ступеней расхода воздуха - nmax определяют по формулам:

mmax=2·m1,

nmax=m1+1.

Пример ступенчатой зависимости расхода озоно-воздушной смеси от дозы озона применительно к закону арифметической прогрессии, приведен на Фигуре 8;

4) для предварительного сжатия атмосферного воздуха используют, по крайней мере, один рабочий компрессора высокого давления, например, 7-10 кгс/см2 периодического действия с выходом в воздухосборник (ресивер), снабженный на выходе редуктором автоматически поддерживающим давление воздуха на выходе из него в сеть, например, в пределах от 1,8 до 2,1 кгс/см2 при изменении потребления в сети до 2-х раз, отбор воздуха из ресивера и озоно-воздушной смеси из генератора озона на диспергаторы производят ступенями с расходом в соответствии с законом геометрической прогрессии:

Gn=G1·qn-1, нм3/ч,

где Gn - расход на n-ой ступени;

G1 - расход на 1-ой ступени;

n - порядковый номер ступени расхода;

q - знаменатель прогрессии;

отношение максимального расхода озоно-воздушной смеси на конечной ступени - Gnk к минимальному расходу на первой G1 принимают равным 2, а знаменатель прогрессии - q определяют в зависимости от выбранного количества ступеней расхода по формуле:

возможное рекомендуемое количество ступеней 3 или 4, при этом пределы по располагаемой дозе озона на каждой ступени расхода ОВС определяют по формулам:

5.2. Описание 2-го способа дозирования

Для поверхностных источников обрабатываемой воды с большими сезонными колебаниями дозы озона, необходимой для ее качественной очистки, например, в 4-6 раз поставленная изобретением задача решается тем, что во втором варианте комбинированного способа дозирования озона, включающем подготовку сжатого, охлажденного и осушенного атмосферного воздуха, пропускание воздуха с заданным расходом через генератор озона с источником электропитания, синтез озона с обеспечением заданной концентрации озона в озоно-воздушной смеси, пропускание озоно-воздушной смеси сквозь отверстия диспергаторов с выходом из них восходящего потока мелких пузырьков в объем обрабатываемой воды, протекающей через реакционную емкость контактных резервуаров с обеспечением заданной дозы озона в каждом из них путем распределения общего расхода озоно-воздушной смеси между контактными резервуарами пропорционально расходу воды в каждом из них, отведение отработанной озоно-воздушной смеси из газовых подушек контактных резервуаров на деструктор остаточного озона с последующим выбросом озоно-воздушной смеси с безопасной концентрацией в ней озона в атмосферу, для диспергирования озоно-воздушной смеси в контактном резервуаре используют три отдельные автономно управляемые по расходу озоно-воздушной смеси линии диспергаторов, допускающие периодическое пропускание озоно-воздушной смеси без потери пропускной способности из-за минерального и биологического их обрастания отверстий в нерабочие периоды, в которых используют перфорированные пластины, изготовленные из озоностойкого высокоэластичного этилен пропиленового каучука марки ЭПДМ, отлитого под давлением с нанесенным на внешнюю поверхность пластины антиадгезионным покрытием из тефлона с множеством сквозных прорезей, раскрывающихся и самоочищающихся при натяжении пластин от давления озоно-воздушной смеси, подаваемой внутрь полости диспергатора, а при сбросе давления закрывающихся под давлением воды, с обеспечением герметичности, причем диспергаторы имеют линейную зависимость удельного расхода озоно-воздушной смеси через одно раскрывающееся отверстие от перепада давления в виде: