Нанокомпозитный провод

Изобретение относится к электроэнергетике и может быть использовано в многожильных проводах для воздушных линий электропередачи. На сердечник (1) из стальной проволоки намотаны повивы из двух типов токопроводящих проволок - алюминиевой проволоки (2) и нанокомпозитной проволоки (3). Повивы проволоки (3) послойно чередуются с повивами проволоки (2). На сердечник (1) намотан повив из проволоки (3). Проволока (3) сформирована из проволочной заготовки (катанки), полученной из нанокомпозитного материала на основе алюминия с наполнителем из наночастиц в виде многослойных углеродных нанотрубок и упрочнена в процессе многократного холодного волочения проволочной заготовки до заданного диаметра. Изобретение обеспечивает повышение пропускной способности, механической прочности и устойчивости к провисанию провода без увеличения его массы. 1 з.п. ф-лы, 1 ил.

Реферат

Область техники

Изобретение относится к электроэнергетике и может быть использовано в многожильных проводах для воздушных линий электропередачи. Уровень техники

Известна проволока, содержащая несущий сердечник, покрытый слоем металлического проводникового материала высокой проводимости. Сердечник выполнен из композиционного материала с матрицей из синтетической смолы, модифицированной углеродными нанокластерами фуллероидного типа (фуллерены, и/или нанотрубки, и/или астралены) [патент RU №23 87035]. Покрытие сердечника выполнено из металлического материала высокой проводимости (медь, и/или алюминий, или сталь, или их сплавы с другими металлами).

Это не позволяет одновременно оптимизировать механические и электрические характеристики провода, поскольку механические характеристики провода определяются свойствами несущего сердечника, а покрытие участвует только в обеспечении пропускной способности провода.

Известна электротехническая проволока из алюминиевого сплава (патент RU №2422223, МПК B21C 1/00, 2010 г.), которая содержит сердечник и расположенный вокруг него поверхностный слой повышенной микросплошности, полученный волочением проволочной заготовки, прочность и электропроводность которого больше, чем у сердечника. Алюминиевый сплав, из которого изготовлена проволока, содержит (в вес.%): железо 0,5-0,7; кремний 0,2-0,4; церий, лантан, празеодим в сумме 6,0-10,0; примеси 0,1-0,3; остальное - алюминий.

Недостатком этого решения является необходимость использования в алюминиевом сплаве, из которого изготовлена проволока, специальных материалов (дорогостоящие редкоземельные элементы), а также пониженная прочность внутренних областей (сердечника) провода.

Известен выбранный в качестве прототипа «Провод для линии электропередачи» по патенту RU №2063080. Провод содержит стальной сердечник и нескольких токопроводящих повивов из алюминиевых проволок. Сердечник выполнен из немагнитной азотсодержащей аустенитной стали, обладающей низкой магнитной проницаемостью и повышенной прочностью. Алюминиевые повивы выполнены из проволок различного диаметра (наибольшим является диаметр проволок наружного повива) и обеспечивают высокую пропускную способность провода по току.

Недостаток прототипа состоит в том, что механическая нагрузка на провод воспринимается практически только стальным сердечником, вследствие чего снижаются механическая прочность провода и его стойкость к провисанию при долговременном воздействии механической нагрузки.

Раскрытие существа изобретения

Предметом изобретения является провод для линии электропередачи, содержащий стальной сердечник и повивы из алюминиевой проволоки, чередующиеся с повивами из нанокомпозитной проволоки на основе алюминия с наполнителем из многослойных углеродных нанотрубок, упрочненной многократным холодным волочением до заданного диаметра.

Это позволяет повысить механическую прочность и устойчивость к провисанию провода без увеличения его массы и снижения пропускной способности по току.

Изобретение имеет уточняющее развитие, состоящее в том, что на стальной сердечник намотан повив из нанокомпозитной проволоки. Осуществление изобретения с учетом его развития

Фигура иллюстрирует заявляемую конструкцию провода с сердечником 1 из стальной проволоки, на который намотаны повивы из двух типов токопроводящих проволок - алюминиевой проволоки 2 и нанокомпозитной проволоки 3. Повивы проволоки 2 послойно чередуются с повивами проволоки 3. На сердечник 1 намотан повив из проволоки 3.

Проволоку 3 формируют из проволочной заготовки (проволоки катанки), полученной из нанокомпозитного материала, состоящего из основы (алюминия) и наполнителя в виде многослойных углеродных нанотрубок (наночастиц). Использование алюминиевой основы обеспечивает материалу высокую токопроводность, а наполнителя из наночастиц (многослойных углеродных нанотрубок) - повышенную механическую прочность.

В процессе многократного холодного волочения проволочной заготовки (т.е. последовательного холодного волочения проволоки катанки через ряд фильер с уменьшающимся диаметром отверстия) нанокомпозитная проволока упрочняется, благодаря интенсивной пластической деформации, которая повышает степень взаимодействия между основой и наполнителем.

При изготовлении провода на стальной сердечник чередующимися слоями наматывают повивы из токопроводящих проволок 3 и 2.

Повышенная механическая прочность провода заявляемой конструкции достигается благодаря тому, что механическая нагрузка на провод воспринимается не только его стальным сердечником 1, но и повивами токопроводящей нанокомпозитной проволоки 3.

Экспериментально установлено, что послойное чередование повивов нанокомпозитной проволоки 3 с повивами из алюминиевой проволоки 2 обеспечивает оптимальное сочетание механической прочности и устойчивости к провисанию провода с высокой пропускной способностью по току.

Пример конкретной реализации заявляемого провода. Провод, конструкция которого показана на фигуре, имеет сердечник 1 из стальной проволоки с показателем временной прочности на разрыв 1400 МПа и повивы из токопроводящих проволок 3 и 2, расположенных чередующимися слоями вокруг сердечника 1. В данном примере первый слой (ближайший к сердечнику 1) образуют 6 нанокомпозитных проволок 3, второй слой - 12 алюминиевых проволок 2, третий слой - 18 нанокомпозитных проволок 3. Для проволок 3 показатель временной прочности на разрыв составляет 150 МПа.

Электрическое сопротивление провода постоянному току при 20°C-0,1179 Ом/км. Масса провода - 756 кг/км. Усилие разрыва для такого провода составляет 73513 Н, что на 53% превышает аналогичный показатель для сталеалюминиевого провода соответствующей массы.

1. Провод для линии электропередачи, содержащий стальной сердечник и повивы из алюминиевой проволоки, чередующиеся с повивами из нанокомпозитной проволоки на основе алюминия с наполнителем из многослойных углеродных нанотрубок, упрочненной многократным холодным волочением до заданного диаметра.

2. Провод по п.1, в котором на стальной сердечник намотан повив из нанокомпозитной проволоки.