Базовая радиостанция, мобильный терминал и способ радиосвязи

Иллюстрации

Показать все

Изобретение относится к системе мобильной связи и предназначено для адекватного сообщения информации о времени передачи зондирующего опорного сигнала (SRS) и параметров SRS в мобильный терминал при использовании апериодического SRS и эффективной эксплуатации радиоресурсов, используемых для передачи сигнала SRS. Базовая радиостанция, которая сообщает информацию управления передачей сигнала SRS в мобильный терминал и управляет передачей сигнала SRS в мобильном терминале, включает модуль задания сигнала SRS, который выбирает битовую информацию, подлежащую сообщению в мобильный терминал, из таблицы, которая содержит битовую информацию, указывающую не активировать передачу сигнала SRS, и битовую информацию, указывающую активировать передачу сигнала SRS с использованием параметра сигнала SRS по умолчанию, и модуль сообщения, который сообщает указанную битовую информацию для мобильного терминала, используя нисходящий канал управления. 4 н. и 5 з.п. ф-лы, 25 ил.

Реферат

Область техники

Настоящее изобретение относится к базовой радиостанции, мобильному терминалу и способу радиосвязи. В частности, оно относится к базовой радиостанции, мобильному терминалу и способу радиосвязи для системы радиосвязи следующего поколения.

Уровень техники

В сети UMTS (Universal Mobile Telecommunications System, универсальная мобильная телекоммуникационная система) с целью повышения спектральной эффективности и увеличения скорости передачи данных применяют протоколы HSDPA (High Speed Downlink Packet Access, высокоскоростная пакетная передача данных в нисходящей линии связи) и HSUPA (High Speed Uplink Packet Access, высокоскоростная пакетная передача данных в восходящей линии связи) для максимального повышения системных характеристик на основе технологии W-CDMA (Wideband Code Division Multiple Access, широкополосный множественный доступ с кодовым разделением). В отношении такой сети UMTS с целью дальнейшего повышения скорости передачи данных, обеспечения малой задержки и т.д., обсуждался стандарт LTE (Long Term Evolution, долговременное развитие) (см, например, непатентный документ 1).

В системе мобильной связи третьего поколения возможно достигнуть максимальной скорости передачи данных, равной приблизительно 2 Мбит/с, в нисходящей линии связи путем использования фиксированной полосы частот, шириной порядка 5 МГц. При этом в системе, работающей в соответствии со стандартом LTE, возможно достигнуть максимальной скорости передачи, равной порядка 300 Мбит/с, в нисходящей линии связи и порядка 75 Мбит/с в восходящей линии связи путем использования переменной полосы частот, ширина которой изменяется от 1,4 до 20 МГц. Кроме того, в сети UMTS с целью дальнейшего расширения полосы частот и увеличения скорости передачи обсуждаются преемники систем LTE (например, LTE-Advanced или LTE-A). Так, согласно LTE-A, для систем, работающих в соответствии со спецификациями LTE в полосе в 20 МГц, запланировано увеличение максимальной полосы частот до порядка 100 МГц в нисходящей линии связи и до порядка 40-60 МГц в восходящей линии связи.

В настоящее время в отношении систем LTE изучают способ измерения качества канала восходящей линии связи в базовой радиостанции (BS) на основе сигнала SRS (Sounding Reference Signal, зондирующий опорный сигнал), наличие которого обеспечивают для измерения качества канала и который передают из мобильного терминала (UE, User Equipment, пользовательское устройство) (см., например, непатентный документ 2). В данном случае, базовая радиостанция осуществляет планирование с целью обеспечения возможности для мобильного терминала передать сигнал восходящего общего канала (PUSCH, Physical Uplink Shared Channel, физический восходящий общий канал) на основе результата измерения качества канала и подает команду с использованием нисходящего канала управления (PDCCH, Physical Downlink Control CHannel, физический нисходящий канал управления). Согласно восьмой редакции спецификаций стандарта LTE (release-8 LTE) сигнал SRS мультиплексируют в последних символах подкадров, составляющих кадр радиосвязи в восходящей линии связи, и передают периодическим образом из мобильного терминала в базовую радиостанцию.

Список цитируемых документов

1. Непатентный документ 3GPP, TR 25.912 (V7.1.0), "Feasibility Study for Evolved UTRA and UTRAN," сентябрь, 2006.

2. Непатентный документ 3GPP, TS 36.213 (V8.7.0), "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer Procedures (Release 8)," Май, 2009.

Однако в системе LTE сигнал SRS периодически передается в базовую радиостанцию, даже когда отсутствует сигнал PUSCH для передачи в восходящей линии связи из мобильного терминала. Соответственно, радиоресурсы, используемые для передачи сигнала SRS, все время заняты независимо от наличия сигнала PUSCH, что является проблемой с точки зрения эффективного использования радиоресурсов.

На фиг.12 показана схема, объясняющая способ передачи сигнала SRS в системе LTE. Как показано на фиг.12, в системе LTE сигнал SRS для измерения качества канала мультиплексируют в последних символах подкадров (подкадры с #n по #n+9), составляющих кадр радиосвязи в восходящей линии связи (UL, Uplink), и периодически передают из мобильного терминала в базовую радиостанцию. На фиг.12 показан случай, когда сигнал SRS мультиплексирован в последних символах подкадров #n+1 и #n+6 основываясь на периоде передачи сигнала SRS длительностью 5 мс.

При этом, когда сообщен грант планирования восходящей линии связи (uplink scheduling grant, грант UL), включенный в канал PDCCH, через четыре интервала TTI (Transmission Time Interval, временной интервал передачи) передают сигнал PUSCH в восходящей линии связи. Необходимо отметить, что грант планирования восходящей линии связи относится к восходящему общему каналу и включает информацию о выделении блоков ресурсов восходящей линии связи, идентификатор пользовательского устройства (UE ID), размер данных, схему модуляции, информацию о мощности передачи в восходящей линии связи, информацию о восходящем опорном сигнале демодуляции MIMO (Multi-Input/Multi-Output, множество входов/выходов) и т.д.

Подкадр представляет собой элемент времени передачи одного пакета данных, в отношении которого производится кодирование с коррекцией ошибок (канальное кодирование), равный одному интервалу TTI. Следовательно, через четыре подкадра после сообщения гранта планирования восходящей линии связи передается канал PUSCH. На фиг.12 показан пример, в котором среди подкадров (от #m до #m+9), составляющих кадр радиосвязи нисходящей линии связи (DL, Downlink), гранты планирования восходящей линии связи сообщаются в подкадрах от #m до #m+2 и в #m+4, и в котором в ответ на указанные гранты планирования восходящей линии связи сигналы PUSCH передаются в подкадрах восходящей линии связи (восходящих подкадрах) от #n+4 до #n+6 и в #n+8.

Как показано на фиг.12, по причине того, что сигнал SRS передают независимого от наличия в каждом подкадре сигнала PUSCH для передачи, в случае, когда грант планирования восходящей линии связи не сообщен и, соответственно, сигнал PUSCH не передан, сигнал SRS все равно периодически передается в восходящей линии связи (UL) в базовую радиостанцию. С точки зрения эффективности использования радиоресурсов желательно осуществлять измерение сигнала SRS, наличие которого обеспечивают с целью измерения в базовой радиостанции качества канала, когда передается сигнал PUSCH. Однако, в такой системе LTE радиоресурсы, используемые для передачи сигнала SRS, заняты постоянным образом независимо от того, есть или нет сигнал PUSCH, в силу чего эффективное использование радиоресурсов затруднено. Кроме этого, в отношении стандарта LTE-A обсуждается мультиантенная передача в восходящей линии связи из мобильного терминала, содержащего множество антенн, и, так как будут необходимы ресурсы SRS для множества антенн, ожидается потребность в еще более эффективном использовании радиоресурсов.

Для решения этой задачи, например, в случае LTE-A, возможно применение апериодического сигнала SRS, при котором передача сигнала SRS происходит в произвольный момент времени.

Однако, в случае применения апериодического SRS необходимо адекватным образом передавать информацию о том, присутствует или нет активация SRS (информация о времени передачи), и информацию для управления передачей SRS, такую, как параметры SRS (гребенка, положение частоты, величину циклического сдвига, ширина полосы частот и т.д.) для управления конкретными условиями передачи, когда в мобильный терминал передается сигнал SRS, и т.п.

Раскрытие изобретения

Таким образом, в виду вышеперечисленных проблем, предлагается изобретение, целью которого является предоставление базовой радиостанции, мобильного терминала и способа радиосвязи, благодаря которым, в случае применения апериодического SRS, возможно адекватно сообщать информацию о времени передачи SRS и параметры SRS в мобильный терминал и эффективно использовать радиоресурсы, предназначенные для передачи SRS.

Одним из вариантов осуществления базовой радиостанции согласно настоящему изобретению является базовая радиостанция, сообщающая информацию управления передачей зондирующего опорного сигнала (SRS) в мобильный терминал и управляющая передачей сигнала SRS в мобильном терминале, которая содержит модуль задания сигнала SRS, выполненный с возможностью выбора битовой информации, подлежащей сообщению в мобильный терминал, из таблицы, которая содержит битовую информацию, указывающую не активировать передачу сигнала SRS, и битовую информацию, указывающую активировать передачу сигнала SRS с использованием параметра сигнала SRS по умолчанию; и модуль сообщения, выполненный с возможностью сообщения указанной битовой информации для мобильного терминала, используя нисходящий канал управления.

В соответствии с этой конфигурацией возможно задавать информацию управления передачей сигнала SRS гибким образом и сообщать данную информацию в мобильный терминал, а также возможно эффективно эксплуатировать радиоресурсы, используемые для передачи SRS.

Одним из вариантов осуществления мобильного терминала согласно настоящему изобретению является мобильный терминал, передающий сигнал SRS на основании информации управления передачей сигнала SRS, сообщаемой базовой радиостанцией, который включает модуль приема, выполненный с возможностью приема битовой информации, указывающей не активировать передачу сигнала SRS, и битовой информации, указывающей активировать передачу сигнала SRS с использованием параметра сигнала SRS по умолчанию; модуль приема нисходящего канала управления, выполненный с возможностью определения содержания передачи сигнала SRS на основании указанной битовой информации; и модуль задания передачи сигнала SRS, выполненный с возможностью управления передачей сигнала SRS на основании определенного таким образом содержания передачи сигнала SRS.

Одним из вариантов осуществления способа радиосвязи согласно настоящему изобретению является способ радиосвязи для сообщения базовой радиостанцией в мобильный терминал информации управления передачей сигнала SRS I управления передачей сигнала SRS в мобильном терминале, включающий следующие шаги, которые выполняются в базовой радиостанции: выбирают битовую информацию, подлежащую сообщению в мобильный терминал, из таблицы, которая содержит битовую информацию, указывающую не активировать передачу сигнала SRS, и битовую информацию, указывающую активировать передачу сигнала SRS с использованием параметра сигнала SRS по умолчанию; и сообщают предопределенную битовую информацию для мобильного терминала с использованием нисходящего канала управления.

Технический результат изобретения

Согласно настоящему изобретению, в случае применения апериодического SRS возможно адекватно сообщать информацию о времени передачи SRS и параметры сигнала SRS в мобильный терминал и эффективно использовать радиоресурсы, предназначенные для передачи SRS.

Краткое описание чертежей

На фиг.1 показана диаграмма, объясняющая способ апериодической передачи сигнала SRS.

На фиг.2 показана диаграмма с таблицей соответствия для использования в случае, когда грант планирования восходящей линии связи включает только однобитовую информация о том, присутствует ли активация SRS или нет.

На фиг.3 показана диаграмма, объясняющая способ апериодической передачи сигнала SRS для случая, когда в грант планирования восходящей линии связи включается только однобитовая информация о том, присутствует ли активация SRS.

На фиг.4 показаны примеры таблиц соответствия с совместным кодированием информации о наличии активации SRS и некоторой информации, относящейся к параметрам SRS, для управления передачей сигнала SRS в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.5 показаны примеры таблиц соответствия с совместным кодированием информации о наличии активации SRS и некоторой информации, относящейся к параметрам SRS, для управления передачей сигнала SRS в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.6 показана диаграмма, объясняющая шаги управления передачей сигнала SRS в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.7 показана диаграмма, объясняющая конфигурацию системы радиосвязи в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.8 показана структурная диаграмма, отображающая общую конфигурацию базовой радиостанции в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.9 показана функциональная блок-схема модуля обработки сигналов базовой полосы частот, содержащегося в базовой радиостанции в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.10 показана структурная диаграмма, отображающая общую конфигурацию мобильного терминала в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.11 показана функциональная блок-схема модуля обработки сигналов базовой полосы частот, содержащегося в мобильном терминале в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.12 показана диаграмма, объясняющая традиционный способ передачи сигнала SRS в системе LTE.

На фиг.13 показаны примеры таблиц соответствия для применения к различным форматам DCI (Downlink Control Information, нисходящая управляющая информация) для управления передачей сигнала SRS в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.14 показаны примеры таблиц соответствия с различным количеством битов для применения к одному и тому же формату DCI для управления передачей сигнала SRS в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.15 показана диаграмма, объясняющая способ передачи, объединяющий апериодические сигналы SRS и периодические сигналы SRS.

Осуществление изобретения

Первый вариант осуществления

Передача апериодических сигналов SRS будет описана со ссылками на фиг.1. На фиг.1 показан случай, когда в базовой радиостанции гранты планирования восходящей линии связи в подкадрах #m и #m+4 выбраны в качестве грантов планирования восходящей линии связи, которые содержат команду передачи сигнала SRS (другими словами, идентификационный бит для указания на то, что передача сигнала SRS включена). Когда мобильный терминал принимает гранты планирования восходящей линии связи, содержащие команду передачи SRS, в ответ на это мобильный терминал может передать в базовую радиостанцию сигналы SRS, например, вместе с сигналами PUSCH, передаваемыми в подкадрах #n+4 и #n+8, идущими четыре подкадра позже.

Таким образом, сигналы SRS передаются в тех же подкадрах, что и сигналы PUSCH, для которых дана команда на передачу посредством грантов планирования восходящей линии связи, содержащих команду передачи, и, таким образом, мультиплексируются в последних символах подкадров #n+4 и #n+8. Другими словами, сигналы SRS мультиплексируются таким образом, чтобы они следовали за каналом PUSCH, размещенным в подкадрах #n+4 и #n+8. Базовая радиостанция измеряет качество канала на основе сигналов SRS, мультиплексированных таким образом за каналом PUSCH, и осуществляет планирование для передачи сигналов PUSCH, осуществляемой в мобильном терминале. В результате обеспечивается возможность измерения качества канала непосредственно во время передачи сигнала PUSCH, в силу чего возможно осуществление планирования с учетом текущего состояния канала.

Соответственно, с помощью управления передачей сигналов SRS в произвольный момент времени обеспечивается возможность задания радиоресурсов, используемых для передачи сигналов SRS, гибким образом. Однако, с другой стороны, в случае осуществления апериодической передачи сигналов SRS, описанной выше, необходимо адекватным образом передавать информацию для управления временем передачи сигналов SRS (присутствует или нет активация SRS) и информацию управления передачей сигнала SRS, такую, как параметры SRS (гребенка, положение частоты, величину циклического сдвига, ширина полосы частот и т.д.) для управления конкретными условиями передачи, когда осуществляется передача сигнала SRS в мобильный терминал, и т.д.

Например, как описано выше, когда наличие или отсутствие активации SRS определяется путем включения информации команды передачи сигнала SRS в грант планирования восходящей линии связи, т.е. с помощью нисходящего канала управления, способ сигнализации в отношении, например, того, как управлять и осуществлять сообщение иной информации, такой, как параметры SRS, определяющие условия передачи сигналов SRS, является неопределенным и будет обсуждаться далее. Так, настоящее изобретение предложено после изучения соответствующего способа сообщения информации управления передачей сигнала SRS в мобильный терминал.

В первую очередь, в качестве способа сообщения информации управления передачей сигнала SRS был изучен вариант включения информации (однобитовой информации) о наличии/отсутствии активации SRS в грант планирования восходящей линии связи и сообщения этой информации в гранте планирования восходящей линии связи в мобильный терминал, также как и сообщения другой информации, такой, как параметры SRS для определения конкретных условий передачи (далее параметры SRS) с помощью сигнализации RRC (Radio Resource Control, управление радиоресурсами).

В процессе изучения вышеупомянутой проблемы было установлено, что существует угроза недостаточно эффективного использования радиоресурсов, когда в грант планирования восходящей линии связи включается только однобитовая информация о наличии или отсутствии активации SRS (наличие или отсутствие активации апериодического SRS) и сообщается в гранте планирования восходящей линии связи в мобильный терминал (см. фиг.2).

В случае, показанном на фиг.2, ресурсы для апериодических сигналов SRS, передаваемых каждым мобильным терминалом, определяются заранее на верхнем уровне, так что, когда ресурсы заданы так, чтобы не было конфликтов между разными мобильными терминалами, ресурсы закреплены даже для мобильных терминалов, которые не осуществляют передачу сигнала SRS (см. фиг.3A). В результате, невозможно использовать радиоресурсы в процессе передачи сигналов SRS.

С другой стороны, когда с целью эффективного использования радиоресурсов в процессе передачи сигналов SRS назначаемые ресурсы, которые определяются на верхнем уровне, задаются так, чтобы они были общими для множества мобильных терминалов, может произойти конфликт моментов времени передачи сигналов SRS между разными мобильными терминалами. В таком случае, могут появиться проблемы, заключающиеся в том, что сигнал SRS не может быть передан в произвольный момент времени, и передача сигнала SRS существенно задерживается (см. фиг.3B).

Кроме того, в качестве способа сообщения информации управления передачей сигнала SRS возможно рассматривать способ включения информации о наличии/отсутствии активации и всей информации управления передачей сигнала SRS, такой, как параметры SRS и т.д., в нисходящий канал управления и сообщения этой информации в мобильный терминал. Однако, в этом случае может появиться проблема, заключающаяся в том, что существенно возрастает количество передаваемой по нисходящему каналу управления служебной информации сигнализации.

В виду этого, был предложен вариант осуществления изобретения, согласно которому обеспечивают наличие битового поля из двух или более битов в нисходящем канале управления (например, в гранте планирования восходящей или нисходящей линии связи), комбинируют информацию о наличии или отсутствии активации SRS с частью информации, относящейся к параметрам SRS, и задают такую информацию как битовую информацию (совместное кодирование), сообщают указанную битовую информацию в мобильный терминал и сообщают остальную информацию о параметрах SRS через верхний уровень. Такой вариант обеспечивает гибкое задание информации о наличии или отсутствии активации SRS и информации управления передачей сигнала SRS, такой, как параметры SRS, и возможность сообщения указанных данных в мобильный терминал адекватным образом. Также, с помощью сообщения части информации, относящейся к параметрам SRS, используя нисходящий канал управления, обеспечивается возможность управления частью ресурсов для апериодических сигналов SRS, которые передает каждый мобильный терминал на нижнем уровне, что, соответственно, обеспечивает эффективное использование радиоресурсов.

Также, был предложен вариант осуществления, согласно которому выбирают информацию, относящуюся к параметрам SRS, подлежащим заданию в виде битовой информации, путем комбинирования с информацией о наличии или отсутствии активации SRS при этом количество битов основано на условиях связи мобильного терминала (включая, например, количество антенн в мобильном терминале, местоположение мобильного терминала в соте (т.е. расстояние относительно базовой радиостанции), количество мобильных терминалов в соте и т.д.). Такой вариант обеспечивает возможность гибким образом задавать информацию управления передачей сигнала SRS и сообщать указанную информацию в мобильный терминал адекватным образом в зависимости от условий связи в мобильном терминале.

Далее описывается управление передачей апериодических сигналов SRS, при котором передача сигналов SRS мобильным терминалом управляется путем сообщения информации управления передачей сигнала SRS из базовой радиостанции в мобильный терминал, осуществляющий радиосвязь. Необходимо отметить, что, несмотря на то, что в отношении данного варианта осуществления описывается его реализация в системе, работающей в соответствии со стандартом LTE-A, настоящее изобретение не ограничивается применением в таких системах.

При управлении передачей апериодических сигналов SRS в соответствии с данным вариантом осуществления базовая радиостанция сообщает битовую информацию, заданную путем комбинирования информации о наличии или отсутствии активации SRS (есть/нет активация апериодического SRS) и части информации, относящейся к параметрам SRS, в мобильный терминал, используя нисходящий канал управления, и управляет передачей апериодических сигналов SRS, осуществляемой в мобильном терминале. Необходимо отметить, что часть информации, относящейся к параметрам SRS, включает условия, необходимые для передачи сигналов SRS, такие, как гребенка, положение частоты, величина циклического сдвига, ширина полосы частот и т.д. (часть самих параметров SRS); информацию, характеризующую отличие от заданных заранее параметров SRS по умолчанию; информацию о том, какие из множества заданных заранее параметров SRS по умолчанию, выбраны (информация о выборе); и подобную информацию, которая относится к параметрам SRS.

Так, базовая радиостанция задает формат активации SRS, заданный в виде битовой информации путем комбинирования информации о наличии или отсутствии активации SRS и части информации, относящейся к параметрам SRS, и выбирает из формата активации SRS предопределенную битовую информацию, которая будет использована мобильным терминалом при управлении передачей сигнала SRS. Далее, выбранную предопределенную битовую информацию сообщают в мобильный терминал, используя нисходящий канал управления. Следует отметить, что заданный формат активации SRS сообщается в мобильный терминал заранее, используя сигнализацию RRC и т.п.

Соответственно, мобильный терминал принимает формат активации SRS, сообщенный базовой радиостанцией с помощью сигнализации RRC и т.п. Также принимается предопределенная битовая информация, содержащаяся в нисходящем канале управления.

Далее, мобильный терминал определяет содержание передачи сигнала SRS (наличие или отсутствие активации SRS, условия передачи сигнала SRS и т.п.) на основе формата активации SRS и предопределенной битовой информации, которые были приняты, и осуществляет управление передачей сигнала SRS. Необходимо отметить, что информация, которую не содержится в нисходящем канале управления в составе информации управления передачей сигнала SRS (информация, относящаяся к параметрам SRS, которые не определены в формате активации SRS и т.п.), может быть отдельно сообщена мобильному терминалу с помощью сигнализации RRC и т.п.

Базовая радиостанция может выбирать конкретную таблицу соответствия (mapping table) из множества форматов активации SRS (или "таблиц соответствия"), в которых заданы различные типы параметров SRS. Задаются множество таблиц соответствия в зависимости от типов параметров SRS, а базовая радиостанция выбирает конкретную таблицу соответствия, которая будет применена в мобильном терминале посредством сигнализации RRC.

Альтернативно, в качестве способа задания формата активации SRS базовая радиостанция может использовать способ, в котором в мобильный терминал сообщаются параметры SRS по умолчанию с помощью сигнализации RRC, определяются отличия от параметров SRS по умолчанию с помощью комбинирования с информацией о наличии или отсутствии активации SRS, и осуществляется сообщение с использованием нисходящего канала управления. В таком случае обеспечивается возможность предоставления конфигурации, в которой таблицы соответствия описаны в виде отличий от параметров SRS по умолчанию, а детали отличий можно изменять гибким образом с помощью сигнализации RRC.

В качестве еще одной альтернативы в качестве способа задания формата активации SRS может быть использован способ, в котором базовая радиостанция сообщает в мобильный терминал множество параметров SRS по умолчанию с помощью сигнализации RRC, определяет какие из параметров SRS по умолчанию использованы (информация о выборе параметров SRS по умолчанию) с помощью комбинирования с информацией о наличии или отсутствии активации SRS (есть/нет активация апериодического SRS) и осуществляет сообщение посредством нисходящего канала управления. Конкретные примеры таблиц соответствия описаны ниже со ссылкой на фиг.4 и 5.

На фиг.4 показан случай, когда формат активации SRS (таблица соответствия) задан двумя битами битовой информации. На фиг.4A-4C показаны три таблицы соответствия, в которых заданы различные типы параметров SRS в качестве множества таблиц соответствия. На фиг.4A показан случай, когда используют "гребенку" в качестве параметра SRS, подлежащего передаче по каналу PDCCH; на фиг.4B показан случай, когда используют "положение частоты" в качестве параметра SRS, подлежащего передаче по каналу PDCCH; а на фиг.4C показан случай, когда используют "величину циклического сдвига (CS)" в качестве параметра SRS, подлежащего передаче по каналу PDCCH.

На фиг.4D и фиг.4E показаны случаи, когда используются отличия от параметров SRS по умолчанию в качестве содержания, подлежащего сообщению по каналу PDCCH. На фиг.4F показан случай, когда используют "выбор из множества параметров SRS по умолчанию" в качестве содержания, подлежащего передаче по каналу PDCCH. Далее каждая таблица соответствия будет описана подробней.

Таблица соответствия, показанная на фиг.4A, включает по меньшей мере битовую информацию, указывающую не передавать сигнал SRS, и битовую информацию для задания гребенки для передачи сигнала SRS. Более конкретно, битовая информация "00" указывает на то, что сигнал SRS не передают (передача сигнала SRS не активирована); битовая информация "01" указывает на то, что сигнал SRS передают с гребенкой 0 (передача SRS активирована); битовая информация "10" указывает на то, что сигнал SRS передают с гребенкой 1 (передача SRS активирована); а битовая информация "11" указывает на отсутствие задания каких-либо SRS-параметров или на то, что произведено резервирование для будущих улучшений. Необходимо отметить, что гребенка является параметром, определяющим положение поднесущей для передачи сигнала SRS, и имеет два типа состояния.

Также необходимо отметить, что согласно данному варианту осуществления информацию о наличии или отсутствии активации SRS и информацию, относящуюся к параметрам SRS (в данном случае гребенка), задают не по отдельности, а комбинируют и задают как битовую информацию (совместное кодирование). Таким образом, информация о наличии или отсутствии активации SRS и информация, относящаяся к параметрам SRS, подлежит совместному кодированию, что позволяет избежать повышения увеличения количества битов канала PDCCH и эффективно использовать радиоресурсы.

Таблица соответствия на фиг.4B включает по меньшей мере битовую информацию, указывающую не передавать сигнал SRS, и битовую информацию для задания положения частоты для передачи сигнала SRS. Так, битовая информация "00" указывает на то, что сигнал SRS не передается; битовая информация "01" указывает на передачу сигнала SRS с положением частоты 0; битовая информация "10" указывает на передачу сигнала SRS с положением частоты 1; а битовая информация "11" указывает на передачу сигнала SRS с положением частоты 2. Необходимо отметить, что положение частоты представляет собой параметр, который задает положение частоты для передачи сигнала SRS, причем количество положений частоты устанавливается на основе системной полосы частот и полосы частот сигнала SRS для каждого пользователя.

В случае, показанном на фиг.4B, так же, как на фиг.4A, информация о наличии или отсутствии передачи сигнала SRS и информация, относящаяся к параметрам SRS (в данном случае, положение частоты), подлежат совместному кодированию, благодаря чему предотвращается увеличение количества битов канала PDCCH.

Таблица соответствия на фиг.4C включает по меньшей мере битовую информацию, указывающую не передавать сигнал SRS, и битовую информацию для задания величины циклического сдвига (Cycle Shift, CS) для использования при передаче SRS. Так, битовая информация "00" указывает на отсутствие передачи сигнала SRS; битовая информация "01" указывает на то, что сигнал SRS передают с величиной CS равной 0; битовая информация "10" указывает на то, что сигнал SRS передают с величиной CS равной 1; а битовая информация "11" указывает на то, что сигнал SRS передают с величиной CS равной 2. Необходимо отметить, что величина циклического сдвига является параметром, задающим величину циклического сдвига при выполнении ортогонального мультиплексирования с использованием циклического сдвига, и имеет восемь схем состояний. Величины циклического сдвига могут быть заданы в таблице соответствия, например, последовательно (CS 0, CS 1, CS 2), как показано на фиг.4C, или дискретно (например, CS 0, CS 3 и CS 6).

В случае, показанном на фиг.4C, так же как на фиг.4A и 4B, информация о наличии или отсутствии передачи сигнала SRS и информация, относящаяся к параметрам SRS (в данном случае, величина циклического сдвига), подлежат совместному кодированию, благодаря чему предотвращается увеличение количества битов канала PDCCH.

Таблица соответствия на фиг.4D включает по меньшей мере битовую информацию, указывающую не передавать сигнал SRS; битовую информацию для подачи команды на передачу SRS с параметрами SRS по умолчанию, которые сообщены отдельно с помощью сигнализации RRC; битовую информацию, задающую величину циклического сдвига, которая сообщает отличие величины циклического сдвига от значения по умолчанию. Так, битовая информация "00" указывает на отсутствие передачи сигнала SRS; битовая информация "01" указывает на передачу сигнала SRS с параметрами SRS по умолчанию; битовая информация "10" указывает на передачу сигнала SRS с изменением величины циклического сдвига от параметра SRS по умолчанию на величину X; а битовая информация "11" указывает на передачу сигнала SRS с изменением величины циклического сдвига от параметра SRS по умолчанию на величину y. В данном случае, величины x и y для величины циклического сдвига могут быть определены заранее или изменены гибким образом с помощью сигнализации RRC.

Таблица соответствия на фиг.4E включает по меньшей мере битовую информацию, указывающую не передавать сигнал SRS; битовую информацию для подачи команды на передачу SRS с параметрами SRS по умолчанию, которые сообщены отдельно с помощью сигнализации RRC; и битовую информацию, задающую величину циклического сдвига, которая сообщает отличие гребенки от значения этого параметра по умолчанию или соответствующее отличие величины циклического сдвига. Так, битовая информация "00" указывает на отсутствие передачи сигнала SRS; битовая информация "01" указывает на передачу сигнала SRS с параметрами SRS по умолчанию; битовая информация "10" указывает на передачу сигнала SRS с гребенкой, отличной от параметра SRS по умолчанию; а битовая информация "11" указывает на передачу сигнала SRS с изменением величины циклического сдвига от параметра SRS по умолчанию на величину x. В данном случае, величина x величины циклического сдвига может быть определена заранее или изменена гибким образом с помощью сигнализации RRC.

Таблица совместимости на фиг.4F включает по меньшей мере битовую информацию, указывающую не передавать сигнал SRS и битовую информацию для подачи команды на передачу SRS с одним из множества параметров SRS по умолчанию, сообщенных отдельно с помощью сигнализации RRC. Так, битовая информация "00" указывает на отсутствие передачи сигнала SRS; битовая информация "01" указывает на передачу сигнала SRS с параметром "a" SRS по умолчанию; битовая информация "10" указывает на передачу сигнала SRS с параметром "b" SRS по умолчанию; битовая информация "11" указывает на передачу сигнала SRS с параметром "c" SRS по умолчанию.

Данный вариант осуществления также обеспечивает в качестве способа выбора параметров SRS, подлежащих заданию в формате активации SRS, и количества битов, возможность выбора на основе условий связи в мобильном терминале (включая, например, количество антенн в мобильном терминале, положение мобильного терминала в соте (т.е. расстояние до базовой радиостанции), количество мобильных терминалов в соте и т.д.).

Например, когда базовая радиостанция выбирает произвольную таблицу соответствия из множества таблиц соответствия, в которых заданы различные типы параметров SRS, как описано выше в отношении фиг.4A-4C, указанная базовая радиостанция может выбрать таблицу соответствия, основываясь на взаимосвязи заданных в каждой таблице соответствия параметров SRS с условиями связи в мобильном терминале.

Так, предпочтительно выбирать такую таблицу соответствия, в которой выбранный диапазон установок параметров SRS характеризуется меньшей вероятностью быть подверженным влиянию условий связи в мобильном терминале.

Например, когда мобильный терминал использует множество антенн, предпочтительно выбирать таблицы соответствия (фиг.4A и 4B), в которых заданы параметры SRS, отличные от параметра (например, величины циклического сдвига), используемого для мультиплексирования антенн. Это обусловлено тем, что, когда величина циклического сдвига используется как для формата активации SRS, так и для мультиплексирования антенн, существует угроза того, что из-за перекрытия при использовании как для мультиплексирования антенн, так и для пользовательского мультиплексирования, свобода информации управления передачей SRS может быть снижена.

Также, для мобильного терминала (например, мобильного терминала около соты), который передает сигнал SRS по широкополосному каналу, предпочтительно выбирать таблицы соответствия (фиг.4A и 4C), которые задают параметры SRS, отличные от параметров, связанных с частотой (положение частоты, ширина полосы частот и т.д.). Это обусловлено тем, что преимущество мультиплексирования между пользователями с помощью положений частоты не обеспечивается в отношении мобильного терминала, который передает сигнал SRS по широкополосному каналу.

Также, когда в соте присутствует большое количество мобильных терминалов, предпочтительно определять информацию, такую как параметры SRS, в таблице соответствия подробным образом. Соответственно, в таком случае предпочтительно выбирать таблицу соответствия с большим количество битов.

На фиг.5 показан случай, в котором формат активации SRS (таблица соответствия) задан с помощью трех битов битовой информации. В данном случае среди множества таблиц соответствия заданы два разных типа параметров SRS (по меньшей мере два из числа гребенки, положения частоты или величины циклического сдвига). Так, на фиг.5A показан случай использования гребенки и положения частоты; на фиг.5B показан случай использования гребенки и величины циклического сдвига; а на фиг.5C показан случай использования положения частоты и величины циклического сдвига. Далее каждая из таблиц соответствия будет описана подробней.

Таблица соответствия на фиг.5A включает по меньшей мере битовую информацию, указывающую не передавать сигнал SRS, и битовую информац