Светодиодное отверждение радиационно-отверждаемых покрывных композиций оптических волокон

Изобретение относится к радиационно-отверждаемой композиции для оптического волокна. Технический результат изобретения заключается в создании покрытия, способного отверждаться под действием светодиодных ламп. Отвержденное покрытие имеет процентное прореагировавшее акрилатное ненасыщение (% ПАН) на верхней поверхности 60% или более. Радиационно-отверждаемая покрывная композиция включает, по меньшей мере, один уретан(мет)акрилатный олигомер; по меньшей мере, один реакционно-способный растворяющий мономер; по меньшей мере, один свободно-радикальный фотоинициатор. 2 н. и 12 з.п. ф-лы, 33 табл.

Реферат

Перекрестная ссылка на родственную патентную заявку

Настоящая патентная заявка испрашивает приоритет предварительной патентной заявки США № 61/287,567, поданной 17 декабря 2009 г., которая во всей своей полноте включена в настоящий документ посредством ссылки.

Область техники, к которой относится изобретение

Настоящее изобретение относится к радиационно-отверждаемым покрытиям для оптического волокна и к способам изготовления указанных композиций.

Уровень техники изобретения

Хорошо известно использование ультрафиолетовых ртутных дуговых ламп для излучения ультрафиолетового света, подходящего для отверждения радиационно-отверждаемых покрытий, нанесенных на оптическое волокно. Ультрафиолетовые дуговые лампы излучают свет, используя электрическую дугу для возбуждения ртути, которая находится в атмосфере инертного газа (например, аргона), чтобы генерировать ультрафиолетовое излучение, которое обеспечивает отверждение. В качестве альтернативы, можно также использовать микроволновую энергию для возбуждения ламп, содержащих ртуть в среде инертного газа, чтобы генерировать ультрафиолетовое излучение. В тексте настоящей патентной заявки имеющие дуговое возбуждение и микроволновое возбуждение ртутные лампы, а также содержащие различные добавки (черные металлы, галлий и т.д.) модифицированные формы этих ртутных ламп называются термином «ртутные лампы».

Однако использование ультрафиолетовых ртутных ламп в качестве источника излучения имеет несколько недостатков, включая возможное загрязнение окружающей среды ртутью и образование озона в качестве побочного продукта. Кроме того, ртутные лампы обычно имеют меньший коэффициент преобразования энергии, требуют время прогрева, выделяют тепло во время работы и потребляют большое количество энергии по сравнению со светоизлучающими диодами. При производстве оптического волокна с покрытием тепло, вырабатываемое ультрафиолетовыми ртутными лампами, может отрицательно повлиять на жидкое покрытие таким образом, что если в составе покрытия не исключено присутствие летучих веществ, эти летучие вещества могут возбуждаться и осаждаться на поверхность кварцевой трубки, блокируя ультрафиолетовые лучи, облучающие жидкое покрытие на стеклянном волокне, что ингибирует отверждение жидкого покрытия до твердого состояния. Соответственно, исследуются альтернативные источники излучения.

Светоизлучающие диоды (светодиоды, или СИД) представляют собой полупроводниковые устройства, которые используют явление электролюминесценции для излучения света. Светодиоды состоят из полупроводникового материала, легированного примесями для создания p-n перехода, и способны излучать свет, когда положительно заряженные дырки соединяются с отрицательно заряженными электронами при приложении напряжения. Длину волны излученного света определяют материалы, используемые в активной области полупроводника. Типичные материалы, используемые в полупроводниках светодиодов, включают, например, элементы групп 13 (III) и 15 (V) периодической системы. Эти полупроводники называются термином «полупроводники III-V» и включают, например, полупроводники GaAs, GaP, GaAsP, AlGaAs, InGaAsP, AlGaInP и InGaN. Другие примеры полупроводников, используемых в светодиодах, включают соединения элементов группы 14 (полупроводник IV-IV) и групп 12 и 16 (II-VI). Выбор материалов основан на множестве факторов, включая желательную длину волны излучения, эксплуатационные параметры и стоимость.

В ранних светодиодах использовали арсенид галлия (GaAs) для излучения инфракрасного (ИК) света и красного света низкой интенсивности. Успехи материаловедения привели к разработке светодиодов, способных излучать свет более высокой интенсивности и меньшей длины волны, включая другие цвета видимого света и ультрафиолетовое излучение. Возможно создание светодиодов, которые излучают свет в любом диапазоне от коротковолнового (приблизительно 100 нм) до длинноволнового (приблизительно 900 нм). В настоящее время известные светодиодные источники ультрафиолетового излучения излучают свет при длинах волн от приблизительно 300 до приблизительно 475 нм, причем максимумы спектра излучения обычно наблюдаются при 365 нм, 390 нм и 395 нм. См. учебное пособие «Светоизлучающие диоды», автор Fred Schubert, второе издание, авторское право E. Fred Schubert 2006 г., опубликованное издательством Кембриджского университета (Cambridge University Press).

Светодиодные лампы обладают преимуществами по сравнению с ртутными лампами в применении для отверждения. Например, в светодиодных лампах не используют ртуть для выработки ультрафиолетового излучения, и они обычно имеют меньший объем, чем ртутные ультрафиолетовые дуговые лампы. Кроме того, светодиодные лампы представляют собой моментально включаемые/выключаемые источники света, для которых не требуется время прогрева, что способствует низкому энергопотреблению светодиодных ламп. Светодиодные лампы также производят значительно меньше тепла, обладая более высоким коэффициентом преобразования и более продолжительным сроком службы, и также излучают практически монохроматический свет желательной длины волны, которую определяет выбор полупроводниковых материалов, используемых в светодиоде.

Светодиодные лампы для промышленного применения в целях отверждения выпускают несколько производителей. Например, Phoseon Technology, Summit UV Honle UV America, Inc., IST Metz GmbH, Jenton International Ltd., Lumios Solutions Ltd., Solid UV Inc., Seoul Optodevice Co., Ltd, Spectronics Corporation, Luminus Devices Inc. и Clearstone Technologies представляют собой ряд производителей, которые в настоящее время предлагают светодиодные лампы в целях отверждения композиций красок для струйной печати, поливинилхлоридных композиций напольных покрытий, композиций металлических покрытий, композиций пластмассовых покрытий и связующих композиций.

В известных применениях ультрафиолетового отверждения для стоматологических работ используют существующие светодиодные устройства для отверждения. Пример известного стоматологического устройства для отверждения представляет собой светодиодное устройство для отверждения Elipar™ FreeLight 2 от фирмы 3M ESPE. Данное устройство излучает свет в видимой области с максимумом излучения при 460 нм.

Светодиодное оборудование также испытывают на рынке краскоструйной печати: фирма IST Metz провела публичную демонстрацию своего подхода к ультрафиолетовому отверждению с помощью светодиодов. По сообщениям этой фирмы, в течение нескольких последних лет она разрабатывает на основе светодиодов технологию ультрафиолетового отверждения, главным образом, для рынка краскоструйной печати, где данную технологию используют в настоящее время.

Существующие радиационно-отверждаемые покрывные композиции для оптического волокна не подходят для отверждения светодиодными лампами, потому что до настоящего времени составы этих композиций были предназначены для отверждения ртутными лампами, которые создают другой спектр излучения, а именно спектр излучения с несколькими длинами волн. Хотя существующие в настоящее время «традиционные» отверждаемые ультрафиолетовым излучением покрытия для оптического волокна могут фактически начинать отверждение при облучении светом из светодиодного источника света, скорость отверждения является настолько низкой, что покрытие невозможно было бы отверждать согласно действующему в настоящее время промышленному стандарту «быстрых» технологических линий, производительность которых составляет до 1500 метров в минуту. Таким образом, непрактично использовать существующие в настоящее время светодиодные лампы для отверждения имеющихся в настоящее время радиационно-отверждаемых покрытий для оптического волокна.

Патент США № 7399982 («патент '982») заявляет о предложении способа ультрафиолетового отверждения покрытий или печатных изображений на разнообразных предметах, в частности, таких предметах, как провода, кабели, трубы, соединения, шланги, трубки, компакт-диски, универсальные цифровые диски, мячи для гольфа, колышки под мячи для гольфа, очки, контактные линзы, струнные инструменты, декоративные этикетки, отслаиваемые этикетки, отслаиваемые штампы, двери и столешницы. Хотя патент '982 упоминает оптические волокна в связи или в контексте механической конфигурации покрывного устройства, в нем не описаны покрывные композиции или их ингредиенты, которые наносят на оптическое волокно и затем отверждают, используя ультрафиолетовый светодиод. Таким образом, в патенте '982 отсутствует описание, позволяющее использовать отверждаемые светодиодами покрытия для оптического волокна.

Публикация патентной заявки США № 2007/0112090 («публикация '090») заявляет о предложении отверждаемой излучением светодиодов каучуковой композиции, включающей органополисилоксан, содержащий множество (мет)акрилоиловых групп, радиосенсибилизатор и необязательное титансодержащее органическое соединение. Публикация '090 заявляет, что композиция является полезной в качестве защитного покрывного материала или герметизирующего материала для электродов жидкокристаллических дисплеев, органических электронных дисплеев, плоскопанельных дисплеев и для других электрических и электронных компонентов. Публикация '090 заявляет в описании предшествующего уровня техники, что согласно предшествующему патенту (патент США № 4733942) отверждаемая ультрафиолетовым излучением композиция, включающая органополисилоксан, содержащий множество виниловых функциональных групп, таких как акрилоилоксигруппы или (мет)акрилоилоксигруппы, неспособна удовлетворить условие или требование о том, что композиция должна отверждаться ультрафиолетовым светодиодом, вследствие низких скоростей отверждения. Кроме того, публикация '090 заявляет, что в другом предшествующем патенте (патент США № 6069186) предложена радиационно-отверждаемая кремнийорганическая каучуковая композиция, включающая органополисилоксан, которая содержит одну чувствительную к облучению органическую группу, содержащую множество (мет)акрилоилоксигрупп на каждом из концов молекулярных цепей, фотосенсибилизатор и кремнийорганическое соединение, в котором не содержатся алкоксигруппа.

Согласно публикации '090, композиция, описанная в патенте '186, не удовлетворяла вышеприведенному требованию. Таким образом, в публикации '090 и в любом другом из цитированных здесь документов (патент '942 патент '186) отсутствует описание, позволяющее использовать отверждаемые светодиодами покрытия для оптического волокна.

Публикация патентной заявки США № 2003/0026919 («публикация '919») заявляет, что в ней описано устройство для нанесения на оптическое волокно каучукового покрытия, содержащее ультрафиолетовую импульсную лампу, используемую для покрытия оптического волокна отверждаемым ультрафиолетовым излучением каучуком, контур осветительной лампы, который позволяет ультрафиолетовой импульсной лампе излучать свет, и контур управления для регулирования данного контура осветительной лампы. Публикация '919 заявляет, что в качестве источника ультрафиолетового излучения можно использовать, по меньшей мере, один ультрафиолетовый лазерный диод или излучающий ультрафиолетовый свет диод вместо ультрафиолетовой импульсной лампы. Хотя в публикации '919 упомянут акрилатный полимер на эпоксидной основе в качестве примера отверждаемого ультрафиолетовым излучением полимер, отсутствует подробное описание данного полимера и содержащей его композиции. Публикация '919 не описывает покрывную композицию для оптического волокна, включающую, по меньшей мере, один акрилатный олигомер, по меньшей мере, один фотоинициатор, и, по меньшей мере, один реакционно-способный мономер в качестве растворителя, которую наносят на оптическое волокно и затем отверждают, используя излучение светодиода. Таким образом, в публикации '919 отсутствует описание, позволяющее использовать композицию отверждаемого излучением светодиодов покрытия для оптического волокна.

Опубликованная патентная заявка PCT WO 2005/103121 под заголовком «Способ фотоотверждения полимерной композиции», правопреемник DSM IP Assets B.V., описывает и заявляет способы отверждения светоизлучающим диодом (СИД) отверждаемой полимерной композиции, содержащей фотоинициирующую систему, отличающейся тем, что максимальная длина волны, при которой наблюдается максимум поглощения фотоинициирующей системы (λmax PIS), меньше, по меньшей мере, на 20 нм и, как максимум, на 100 нм, чем длина волны, при которой наблюдается максимум излучения светодиода (λLED). Изобретение по данной патентной заявке PCT относится к использованию светодиодного отверждения в строительных материалах, в частности, в материалах для облицовки или отделки предметов, и к предметам, содержащим отвержденную полимерную композицию, полученную путем светодиодного отверждения. Данное изобретение предлагает простой, безопасный для окружающей среды и легко регулируемый способ (повторной) облицовки труб, резервуаров и сосудов, особенно в случае таких труб и предметов оборудования, которые имеют большой диаметр, в частности, более чем 15 см. Таким образом, в публикации WO 2005/103121 отсутствует описание, позволяющее использовать композицию отверждаемого излучением светодиодов покрытия для оптического волокна.

Опубликованная патентная заявка США № 20100242299 (дата публикации 30 сентября 2010 г.) описывает и заявляет свободно вращающееся и устанавливаемое в заданное положение устройство и способ для ультрафиолетового отверждения удлиненного предмета или нанесения на него, по меньшей мере, одного отверждаемого ультрафиолетовым излучением красителя, покрытия или связующего материала; кроме того, описано устройство, включающее, по меньшей мере, один ультрафиолетовый светодиод, установленный на одной стороне удлиненного предмета, и отражатель эллиптической формы, расположенный на другой стороне удлиненного предмета напротив, по меньшей мере, одного ультрафиолетового светодиода.

В том же семействе патентов, к которому принадлежит опубликованная патентная заявка США № 20100242299, выданный патент США № 7175712 (дата выдачи 13 февраля 2007 г.) описывает и заявляет устройство и способ для ультрафиолетового отверждения, предназначенный для улучшения распределения и воздействия ультрафиолетового излучения на ультрафиолетовые фотоинициаторы в отверждаемом ультрафиолетовым излучением красителе, покрытии или связующем материале. В данном устройстве и способе для ультрафиолетового отверждения использованы комплекты УФ СИД в первом ряду, причем комплекты УФ СИД находятся на расстоянии от соседних комплектов УФ СИД. Предложен, по меньшей мере, один второй ряд, содержащий множество комплектов УФ СИД, вблизи первого ряда, но комплекты УФ СИД второго ряда расположены вблизи промежутков между соседними комплектами УФ СИД в первом ряду, в результате чего образуется шахматный порядок расположения комплектов УФ СИД второго ряда относительно комплектов УФ СИД первого ряда. Желательно устанавливать на панель ряды расположенных в шахматном порядке комплектов УФ СИД. Отверждаемые ультрафиолетовым излучением изделия, детали или другие предметы, содержащие ультрафиолетовые фотоинициаторы, которые находятся в ткани или на ней, могут направляться или иным образом перемещаться вдоль рядов комплектов УФ СИД для эффективного ультрафиолетового отверждения. Такая конфигурация способствует более равномерному воздействию ультрафиолетового излучения на отверждаемые ультрафиолетовым излучением красители, покрытия и/или связующие материалы в отверждаемых ультрафиолетовым излучением изделиях, деталях или других предметах. Данное устройство может включать одно или более из следующих приспособлений: валки для перемещения ткани, механизмы для обеспечения движения панели по круговому или обратному пути и вводные трубки для подачи газа, не содержащего кислорода, в область отверждения ультрафиолетовым излучением.

Вышеизложенное показывает, что существует неудовлетворенная потребность в предложении радиационно-отверждаемых покрывных композиций для оптического волокна, которые являются подходящими для отверждения излучением светодиода, в предложении способов нанесения на оптическое волокно указанных покрывных композиций и в предложении покрытого оптического волокна, включающего покрытия, полученные из указанных покрывных композиций.

Сущность изобретения

Первый аспект настоящего изобретения представляет собой радиационно-отверждаемая покрывная композиция для оптического волокна, где композиция способна претерпевать фотополимеризацию при нанесении на оптическое волокно и при облучении светом светоизлучающего диода (СИД), у которого длина волны составляет от 100 нм до 900 нм, и образовывать отвержденное покрытие на оптическом волокне, причем указанное отвержденное покрытие имеет верхнюю поверхность, указанное отвержденное покрытие, имеющее процентное прореагировавшее акрилатное ненасыщение (%ПАН) на верхней поверхности, составляющее 60% или более.

Второй аспект настоящего изобретения представляет собой радиационно-отверждаемая покрывная композиция согласно первому аспекту настоящего изобретения, где излучение светоизлучающего диода (СИД) имеет длину волны, составляющую

- от 100 нм до 300 нм;

- от 300 нм до 475 нм; или

- от 475 нм до 900 нм.

Третий аспект настоящего изобретения представляет собой радиационно-отверждаемая покрывная композиция согласно первому аспекту настоящего изобретения, причем указанная композиция включает:

(a) по меньшей мере, один уретан(мет)акрилатный олигомер;

(b) по меньшей мере, один реакционно-способный растворяющий мономер; и

(c) по меньшей мере, один фотоинициатор.

Четвертый аспект настоящего изобретения представляет собой радиационно-отверждаемая покрывная композиция согласно третьему аспекту настоящего изобретения, в которой фотоинициатор представляет собой фотоинициатор типа I.

Пятый аспект настоящего изобретения представляет собой радиационно-отверждаемая покрывная композиция согласно третьему аспекту настоящего изобретения, в которой фотоинициатор представляет собой фотоинициатор типа II, и композиция включает донор водорода.

Шестой аспект настоящего изобретения представляет собой радиационно-отверждаемая покрывная композиция согласно любому с первого по пятый аспекту настоящего изобретения, в которой покрывная композиция выбрана из группы, которую составляют первичная покрывная композиция, вторичная покрывная композиция, красящая покрывная композиция, буферная покрывная композиция, матричная покрывная композиция и оболочечная покрывная композиция.

Седьмой аспект настоящего изобретения представляет собой радиационно-отверждаемая покрывная композиция согласно любому с первого по шестой аспекту настоящего изобретения, в которой, по меньшей мере, 15% ингредиентов, предпочтительно, по меньшей мере, 20% ингредиентов, предпочтительнее, по меньшей мере, 25% ингредиентов в покрытии имеют биологическую, а не нефтяную основу.

Восьмой аспект настоящего изобретения представляет собой способ покрытия оптического волокна, включающий:

(a) приготовление стеклянного оптического волокна,

(b) нанесение на указанное стеклянное оптическое волокно, по меньшей мере, одной радиационно-отверждаемой покрывной композиции для оптического волокна, предпочтительно радиационно-отверждаемой покрывной композиции согласно любому с первого по седьмой аспекту настоящего изобретения, где указанная, по меньшей мере, одна радиационно-отверждаемая покрывная композиция включает:

(i) по меньшей мере, один уретан(мет)акрилатный олигомер;

(ii) по меньшей мере, один реакционно-способный растворяющий мономер; и

(iii) по меньшей мере, один фотоинициатор;

чтобы получить покрытое стеклянное оптическое волокно с неотвержденным покрытием, и

(c) отверждение указанного неотвержденного покрытия на указанном покрытом стеклянном оптическом волокне путем облучения указанного неотвержденного покрытия светом светоизлучающего диода (СИД), у которого длина волны составляет от 100 нм до 900 нм, чтобы получить отвержденное покрытие, имеющее верхнюю поверхность, где указанное отвержденное покрытие имеет процентное прореагировавшее акрилатное ненасыщение (%ПАН) на верхней поверхности, составляющее приблизительно 60% или более.

Девятый аспект настоящего изобретения представляет собой способ согласно восьмому аспекту настоящего изобретения, в котором указанное стеклянное оптическое волокно получают с помощью колонны для вытяжения стекла, которая производит стеклянное оптическое волокно.

Десятый аспект настоящего изобретения представляет собой способ согласно девятому аспекту настоящего изобретения, где колонна для вытяжения стекла работает при производительности технологической линии оптического волокна от 100 м/мин до 2500 м/мин, в том числе от 1000 м/мин до 2400 м/мин или от 1200 м/мин до 2300 м/мин.

Одиннадцатый аспект настоящего изобретения представляет собой способ согласно любому с восьмого по десятый аспекту настоящего изобретения, где излучение светоизлучающего диода (СИД) имеет длину волны, составляющую от 100 нм до 300 нм; от 300 нм до 475 нм; или от 475 нм до 900 нм.

Двенадцатый аспект настоящего изобретения представляет собой способ согласно любому с восьмого по одиннадцатый аспекту настоящего изобретения, где фотоинициатор представляет собой фотоинициатор типа I.

Тринадцатый аспект настоящего изобретения представляет собой способ согласно любому с восьмого по одиннадцатый аспекту настоящего изобретения, где фотоинициатор представляет собой фотоинициатор типа II, и композиция включает донор водорода.

Четырнадцатый аспект настоящего изобретения представляет собой покрытое оптическое волокно, которое получают способом согласно любому с восьмого по тринадцатый аспекту настоящего изобретения.

Пятнадцатый аспект настоящего изобретения представляет собой покрытое оптическое волокно согласно четырнадцатому аспекту настоящего изобретения, где покрывная композиция выбрана из группы, которую составляют первичная покрывная композиция, вторичная покрывная композиция, красящая покрывная композиция, буферная покрывная композиция, матричная покрывная композиция и оболочечная покрывная композиция.

Шестнадцатый аспект настоящего изобретения представляет собой радиационно-отверждаемая покрывная композиция для оптического волокна, включающую:

(a) по меньшей мере, один уретан(мет)акрилатный олигомер;

(b) по меньшей мере, один реакционно-способный растворяющий мономер; и

(c) по меньшей мере, один фотоинициатор;

где композиция способна претерпевать фотополимеризацию при нанесении на оптическое волокно и при облучении светом светоизлучающего диода (СИД), у которого длина волны составляет от приблизительно 100 нм до приблизительно до 900 нм, и образовывать отвержденное покрытие на оптическом волокне, причем указанное отвержденное покрытие имеет верхнюю поверхность, где указанное отвержденное покрытие имеет процентное прореагировавшее акрилатное ненасыщение (%ПАН) на верхней поверхности, составляющее приблизительно 60% или более.

Семнадцатый аспект настоящего изобретения представляет собой покрытое оптическое волокно, включающее оптическое волокно и, по меньшей мере, одно покрытие, в которой указанное, по меньшей мере, одно покрытие получают нанесением на оптическое волокно, по меньшей мере, одной радиационно-отверждаемой покрывной композиции для оптического волокна, включающей:

(a) по меньшей мере, один уретан(мет)акрилатный олигомер;

(b) по меньшей мере, один реакционно-способный растворяющий мономер; и

(c) по меньшей мере, один фотоинициатор;

чтобы получить неотвержденное покрытое оптическое волокно, и отверждение указанного неотвержденного покрытого оптического волокна путем облучения светом светоизлучающего диода (СИД) у которого длина волны составляет от приблизительно 100 нм до приблизительно 900 нм, чтобы получить отвержденное покрытие, имеющее верхнюю поверхность, где указанное отвержденное покрытие имеет процентное прореагировавшее акрилатное ненасыщение (%ПАН) на верхней поверхности, составляющее приблизительно 60% или более.

Восемнадцатый аспект настоящего изобретения представляет собой способ покрытия оптического волокна, включающий:

(a) использование колонны для вытяжения стекла, которая производит стеклянное оптическое волокно;

(b) нанесение на указанное стеклянное оптическое волокно, по меньшей мере, одной радиационно-отверждаемой покрывной композиции для оптического волокна, в которой указанная, по меньшей мере, одна радиационно-отверждаемая покрывная композиция включает:

(i) по меньшей мере, один уретан(мет)акрилатный олигомер;

(ii) по меньшей мере, один реакционно-способный растворяющий мономер; и

(iii) по меньшей мере, один фотоинициатор;

чтобы получить покрытое стеклянное оптическое волокно с неотвержденным покрытием, и

(c) отверждение указанного неотвержденного покрытия на указанном покрытом стеклянном оптическом волокне путем облучения указанного неотвержденного покрытия светом светоизлучающего диода (СИД), у которого длина волны составляет от приблизительно 100 нм до приблизительно 900 нм, чтобы получить отвержденное покрытие, имеющее верхнюю поверхность, где указанное отвержденное покрытие имеет процентное прореагировавшее акрилатное ненасыщение (%ПАН) на верхней поверхности, составляющее приблизительно 60% или более.

Девятнадцатый аспект настоящего изобретения представляет собой радиационно-отверждаемая покрывная композиция для оптического волокна согласно шестнадцатому аспекту настоящего изобретения, где излучение светоизлучающего диода (СИД) имеет длину волны, составляющую от приблизительно 100 нм до приблизительно 300 нм.

Двадцатый аспект настоящего изобретения представляет собой радиационно-отверждаемая покрывная композиция для оптического волокна согласно шестнадцатому аспекту настоящего изобретения, где излучение светоизлучающего диода (СИД) имеет длину волны, составляющую от приблизительно 300 нм до приблизительно 475 нм.

Двадцать первый аспект настоящего изобретения представляет собой радиационно-отверждаемая покрывная композиция для оптического волокна согласно шестнадцатому аспекту настоящего изобретения, где излучение светоизлучающего диода (СИД) имеет длину волны, составляющую от приблизительно 475 нм до приблизительно 900 нм.

Двадцать второй аспект настоящего изобретения представляет собой радиационно-отверждаемая покрывная композиция для оптического волокна согласно шестнадцатому аспекту настоящего изобретения, в которой фотоинициатор представляет собой фотоинициатор типа I.

Двадцать третий аспект настоящего изобретения представляет собой радиационно-отверждаемая покрывная композиция для оптического волокна согласно шестнадцатому аспекту настоящего изобретения, в которой фотоинициатор представляет собой фотоинициатор типа II, и композиция включает донор водорода.

Двадцать четвертый аспект настоящего изобретения представляет собой радиационно-отверждаемая покрывная композиция для оптического волокна согласно шестнадцатому аспекту настоящего изобретения, где покрывная композиция выбрана из группы, которую составляют первичная покрывная композиция, вторичная покрывная композиция, красящая покрывная композиция, буферная покрывная композиция, матричная покрывная композиция и оболочечная покрывная композиция.

Двадцать пятый аспект настоящего изобретения, представляет собой радиационно-отверждаемая покрывная композиция для оптического волокна согласно шестнадцатому аспекту настоящего изобретения, где, по меньшей мере, приблизительно 15% ингредиентов в покрытии имеют биологическую, а не нефтяную основу.

Двадцать шестой аспект настоящего изобретения представляет собой радиационно-отверждаемая покрывная композиция для оптического волокна согласно двадцать пятому аспекту настоящего изобретения, где, по меньшей мере, приблизительно 20% ингредиентов в композиции имеют биологическую, а не нефтяную основу.

Двадцать седьмой аспект настоящего изобретения представляет собой радиационно-отверждаемая покрывная композиция для оптического волокна согласно пункту 11 формулы изобретения, где, по меньшей мере, приблизительно 25% ингредиентов в композиции имеют биологическую, а не нефтяную основу.

Двадцать восьмой аспект настоящего изобретения представляет собой покрытое оптическое волокно согласно семнадцатому аспекту настоящего изобретения, где излучение светоизлучающего диода (СИД) имеет длину волны, составляющую от приблизительно 100 нм до приблизительно 300 нм.

Двадцать девятый аспект настоящего изобретения представляет собой покрытое оптическое волокно согласно семнадцатому аспекту настоящего изобретения, где излучение светоизлучающего диода (СИД) имеет длину волны, составляющую от приблизительно 300 нм до приблизительно 475 нм.

Тридцатый аспект настоящего изобретения представляет собой покрытое оптическое волокно согласно семнадцатому аспекту настоящего изобретения, где излучение светоизлучающего диода (СИД) имеет длину волны, составляющую от приблизительно 475 нм до приблизительно 900 нм.

Тридцать первый аспект настоящего изобретения представляет собой покрытое оптическое волокно согласно семнадцатому аспекту настоящего изобретения, где фотоинициатор представляет собой фотоинициатор типа I.

Тридцать второй аспект настоящего изобретения представляет собой покрытое оптическое волокно согласно семнадцатому аспекту настоящего изобретения, где фотоинициатор представляет собой фотоинициатор типа II, и композиция включает донор водорода.

Тридцать третий аспект настоящего изобретения представляет собой покрытое оптическое волокно согласно семнадцатому аспекту настоящего изобретения, где покрывная композиция выбрана из группы, которую составляют первичная покрывная композиция, вторичная покрывная композиция, красящая покрывная композиция, буферная покрывная композиция, матричная покрывная композиция, и оболочечная покрывная композиция.

Тридцать четвертый аспект настоящего изобретения представляет собой способ согласно восемнадцатому аспекту настоящего изобретения, в котором производительность технологической линии оптического волокна составляет от приблизительно 100 м/мин до приблизительно 2500 м/мин.

Тридцать пятый аспект настоящего изобретения представляет собой способ согласно восемнадцатому аспекту настоящего изобретения, в котором производительность технологической линии оптического волокна составляет от приблизительно 1000 м/мин до приблизительно 2400 м/мин.

Тридцать шестой аспект настоящего изобретения представляет собой способ согласно восемнадцатому аспекту настоящего изобретения, в котором производительность технологической линии оптического волокна составляет от приблизительно 1200 м/мин до приблизительно 2300 м/мин.

Подробное описание изобретения

Во всем тексте настоящей патентной заявки перечисленные ниже термины имеют следующие значения.

Оптическое волокно представляет собой стеклянное волокно, которое проводит свет по своему внутреннему сердечнику. Свет сохраняется в сердечнике оптического волокна за счет полного внутреннего отражения. Это заставляет волокно действовать как волновод. Волокно состоит из сердечника, окруженного оболочкой, причем они оба изготовлены из диэлектрических материалов. Чтобы заключить оптический сигнал в сердечник, показатель преломления сердечника должен быть выше, чем показатель преломления оболочки.

В типичном одномодовом (см. определение ниже) оптическом волокне внешний диаметр стеклянного сердечника составляет от приблизительно 8 до приблизительно 10 мкм. В типичном многомодовом (см. определение ниже) оптическом волокне внешний диаметр стеклянного сердечника составляет от приблизительно 50 до приблизительно 62,5 мкм. В типичном оптическом волокне внешний диаметр оболочки составляет приблизительно 125 мкм (см. диаграмму на с. 98 в статье под заголовком «Покрытия оптических волокон», авторы Steven R. Schmid и Anthony F. Toussaint, фирма DSM Desotech (Элгин, штат Иллинойс), глава 4 профессионального справочника по оптическим волокнам, редакторы Alexis Mendez и T. F. Morse, авторское право 2007 г. издательство Elsevier Inc.).

Оптические волокна, которые поддерживают многочисленные трассы распространения или поперечные моды, называют термином «многомодовые волокна» (ММВ), в то время как те, которые способны поддерживать только одну моду, называют термином «одномодовые волокна» (ОМВ).

Первичное покрытие определяется как покрытие, находящееся в контакте с оболочкой оптического волокна. Первичное покрытие наносится непосредственно на стеклянное волокно и после отверждения образует мягкий, упругий, связанный и совместимый материал, который заключает в себе стеклянное волокно. Первичное покрытие служит в качестве буфера и амортизатора, который защищает сердечник стеклянного волокна, когда волокно сгибают, протягивают, наматывают или подвергают другим операциям. Во время раннего периода разработки стеклянных оптических волокон первичное покрытие иногда называли термином «внутреннее первичное покрытие». Внешний диаметр первичного покрытия составляет от приблизительно 155 до приблизительно 205 мкм (см. диаграмму на с. 98 в статье под заголовком «Покрытия оптических волокон», авторы Steven R. Schmid и Anthony F. Toussaint, фирма DSM Desotech (Элгин, штат Иллинойс), глава 4 профессионального справочника по оптическим волокнам, редакторы Alexis Mendez и T. F. Morse, авторское право 2007 г. издательство Elsevier Inc.).

Вторичное покрытие представляет собой второе покрытие, которое наносится поверх первичного покрытия и функционирует в качестве прочного защитного внешнего слоя, которое препятствует повреждению стеклянного волокна во время обработки и использования. Для вторичного покрытия желательны определенные характеристики. Перед отверждением вторичная покрывная композиция должна иметь подходящую вязкость и способность к быстрому отверждению, чтобы обеспечить обработку оптического волокна. После отверждения у вторичного покрытия должны быть следующие характеристики: достаточная жесткость, чтобы предохранять содержащееся в нем стеклянное волокно, и одновременно достаточная гибкость (т.е. модуль упругости) для эксплуатации, низкое водопоглощение, низкая липкость для возможности эксплуатации оптического волокна, химическая стойкость и достаточная адгезия к первичному покрытию.

Для достижения желательных характеристик традиционные вторичные покрывные композиции обычно содержат олигомеры на уретановой основе в большой концентрации с мономерами, которые вводят во вторичную покрывную композицию в качестве реакционно-способных растворителей для снижения вязкости.

Во время раннего периода разработки стеклянных оптических волокон вторичное покрытие иногда называли термином «внешнее первичное покрытие». На типичном стеклянном оптическом волокне внешний диаметр вторичного покрытия составляет от приблизительно 240 до приблизительно 250 мкм.

Краситель или окрашенное покрытие представляет собой радиационно-отверждаемое покрытие, включающее пигменты или красители, за счет которых видимый цвет покрытия становится соответствующим одному из нескольких стандартных цветов, используемых для идентификации оптического волокна при установке. В качестве альтернативы, вместо использования окрашенного покрытия можно использовать вторичное покрытие, которое включает пигменты или красители. Вторичное покрытие, которое включает пигменты и/или красители, также известно под названием «цветное вторичное покрытие». На типичном стеклянном оптическом волокне типичная толщина красителя или окрашенного покрытия составляет от приблизительно 3 мкм до приблизительно 10 мкм.

Матрица или матричное покрытие используется для изготовления волоконнооптической ленты. Волоконнооптическая лента включает множество практически плоских и в существенной степени ориентированных оптических волокон и радиационно-отве