Электрохимическая ячейка для анализа серосодержащих газов
Иллюстрации
Показать всеЭлектрохимическая ячейка относится к устройствам для определения концентраций серосодержащих газов в газовых смесях с применением твердотельных датчиков газа. Устройство предназначено для качественного и количественного определения серосодержащих газов (сероводорода и диоксида серы) в отходящих газах химических производств, теплоэлектростанций, для анализа светлых и темных нефтепродуктов и может быть использовано для определения предельно допустимых концентраций (ПДК) серосодержащих газов в химической, нефтехимической, медицинской и пищевой отраслей промышленности. Электрохимическая ячейка для анализа серосодержащих газов включает трубку из кварцевого стекла с расположенными внутри нее штуцерами для подачи и отвода газа, токоподводящими графитовым и нихромовыми проводниками, графитовым электродом, сульфидпроводящей мембраной, электродом сравнения, расположенным в графитовом проводнике и выполненным из сульфида висмута с добавкой порошкообразного металлического висмута, и рабочим электродом. При этом согласно изобретению в качестве сульфидпроводящей мембраны электрохимической ячейки используют твердый электролит (CaY2S4-х мол.% Yb2S3) при следующем соотношении, мол.%: тиоиттрат кальция (CaY2S4) - 84-100%, полуторный сульфид иттербия (Yb2S3) - остальное. Изобретение обеспечивает уменьшение нижнего порога определяемых концентраций сероводорода и диоксида серы, повышение чувствительности и понижение рабочей температуры чувствительного элемента. 3 ил., 1 табл.
Реферат
Изобретение относится к устройствам для определения концентраций серосодержащих газов в газовых смесях с применением твердотельных датчиков газа. Заявляемое устройство предназначено для качественного и количественного определения серосодержащих газов (сероводорода и диоксида серы) в отходящих газах химических производств и теплоэлектростанций, для анализа нефтепродуктов и может быть использовано для определения предельно допустимых концентраций (ПДК) серосодержащих газов в химической, нефтехимической, медицинской и пищевой отраслях промышленности.
Наиболее близкой по технической сущности и достигаемым результатам к данному изобретению является электрохимическая ячейка для анализа серосодержащих сред, содержащая сульфидпроводящий твердый электролит, измерительный электрод и электрод сравнения, выполненный из сульфида висмута с добавкой порошкообразного металлического висмута [1]. В качестве сульфидпроводящего твердого электролита используется смесь тионеодиомата бария (80-95 мол.%) и полуторного сульфида неодима (5-20 мол.%). Такая электрохимическая ячейка с достаточно высокой точностью позволяет анализировать серосодержащие газы (H2S и SO2). Недостатком данной ячейки является невозможность исследования концентрации серосодержащих газов менее 2 об.%, а также высокая рабочая температура датчика (500-550°C).
Технический результат изобретения заключается в расширении диапазона определяемых концентраций сероводорода и диоксида серы, повышении чувствительности и понижении рабочей температуры устройства. Упомянутый технический результат достигается за счет применения в качестве сульфидпроводящей мембраны электрохимической ячейки твердого электролита CaY2S4-Yb2S3 при следующем соотношении компонентов его составляющих, мол.%:
- тиоиттрат кальция (CaY2S4) - 84-100%;
- полуторный сульфид иттербия (Yb2S3) - остальное.
Электрод сравнения, по аналогии с прототипом, выполнен из сульфида висмута с добавкой порошкообразного металлического висмута.
Сущность изобретения поясняется фиг.1. Позиции на чертеже обозначают: 1 - трубка из кварцевого стекла; 2 - штуцер для подачи газа; 3 - штуцер для отвода газа; 4 - графитовый электрод; 5 - графитовый проводник; 6 - нихромовые проводники; 7 - кварцевый стаканчик; 8 - сульфидпроводящая мембрана; 9 - электрод сравнения; 10 - герметизирующая композиция; 11 - пробка из вакуумной резины.
Ячейка представляет собой трубку (1) из кварцевого стекла с двумя штуцерами для подачи (2) и отвода (3) газа. Внутри ячейки закреплен чувствительный элемент, запрессованный в кварцевый стаканчик (7). Чувствительный элемент представляет собой единую конструкцию, состоящую из элементов (4), (5), (7-10). Внутри токоподводящего графитового проводника (5) сделано углубление, в которое помещается электрод сравнения (9). Свободная поверхность графитового проводника (5) покрыта герметизирующей композицией (10) для исключения контакта электрода сравнения (9) с анализируемой средой. Вся верхняя поверхность электрода сравнения (9) контактирует с нижней поверхностью сульфидпроводящей мембраны (8). Верхняя поверхность сульфидпроводящей мембраны (8) находится в контакте с поверхностью перпендикулярно расположенного к ней графитового электрода (4). В качестве второго токоподвода используются нихромовые проводники (6).
Принцип работы электрохимической ячейки основан на измерении ЭДС цепи
где С|Bi, Bi2S3 - электрод сравнения (9) в контакте с графитовым проводником (5);
CaY2S4-х мол.% Yb2S3 - сульфидпроводящая мембрана (8), представляющая собой твердый электролит;
H2S (SO2), Ar|С - рабочий электрод: смесь детектируемого серосодержащего газа с аргоном на границе графит (4) - твердоэлектролитная мембрана (8).
Собранный чувствительный элемент в течение 24 часов высушивают в силикагеле, а затем в течение 3 часов при температуре 100°C - в горизонтальной печи для удаления паров воды. Далее элемент помещают в измерительную ячейку. Ячейку десятикратно вакуумируют, промывают очищенным аргоном с последующим наполнением сероводородом для насыщения графитовых электродов, помещают в печь, нагревают до рабочей температуры, обусловленной свойствами сульфидпроводящей мембраны (415-515°C), и подают серосодержащий газ, который является рабочим электродом на границе графит - твердый электролит, после чего проводят газовый анализ.
Измерения проводят в динамическом нестационарном режиме при импульсном введении серосодержащего газа в ламинарный поток аргона, пропускаемого через измерительную ячейку.
Электрохимическая ячейка работает в потенциометрическом режиме. Сигнал электрохимической ячейки (ΔЕ) получают в виде разности экстремального и начального значения ЭДС цепи (I). Аналитический сигнал зависимости ЭДС от концентрации серосодержащего газа использован для построения соответствующих калибровочных кривых для анализа H2S и SO3 (фиг.2, 3). Область измеряемых концентраций составляет: 0,1-10 об.% H2S и 0,01-10 об.% SO2.
Пример 1. При выполнении анализа газовой смеси, содержащей H2S неизвестной концентрации, измеряемая величина ЭДС составила 133,6 мВ. Пользуясь калибровочной зависимостью для H2S (фиг.2), определяем, что значению А Е=133,6 мВ соответствует IgC (H2S)=0,115. Концентрация сероводорода в газовой смеси составляет 1,30 об.%.
Пример 2. Аналогично проводится определение концентрации SO2, соответствующей сигналу датчика (ΔЕ)=30,8 мВ. По калибровочной зависимости (фиг.3) для данного отклика значение IgC (SO2)=-0,056. Концентрация диоксида серы в газовой смеси составляет 0,88 об.%.
Данные о величинах сигнала, чувствительности заявляемой электрохимической ячейки, в состав которой входит CaY2S4-Yb2S3, и ячейки-прототипа (сульфидпроводящая мембрана - BaNd2S4-Nd2S3) от содержания анализируемого газа приведены в таблице.
Чувствительность (SS) зависит от наклона прямых в координатах ΔЕ=f (lgC, об.%) и определяется как
где рСсеросодержащего газа=-lgC серосодержащего газа составляет 254 мВ/pCH2S и 54,4 мВ/pCSO2.
Преимущества заявленной электрохимической ячейки заключаются в использовании тиоиттрата кальция, допированного сульфидом иттербия (CaY2S4-хмол.%Yb2S3), что позволяет:
- уменьшить нижний порог определяемых концентраций до значений, меньших значения ПДК рабочей зоны: 0,1 об.% для определения сероводорода и 0,02 об.% для диоксида серы (для прототипа: 1,8 об.% для обоих газов);
- понизить рабочую температуру чувствительного элемента до 415°C;
- увеличить чувствительность до 254 мВ/рС(H2S) (для прототипа: 80 мВ/рС (H2S)).
Источники информации
1 Патент RU №2089894 С1, МПК G01N 27/46. Заявка №94037123/25; приоритет: 28.09.1994; опубликовано: 10.09.1997. Электрохимическая ячейка для анализа серосодержащих сред. Авторы изобретения: Л.А. Калинина, Г.И. Широкова, И.В. Мурин, М.Ю. Лялина.
Зависимость величин сигнала, чувствительности заявляемой электрохимической ячейки, в состав которой входит CaY2S4-Yb2S3, и ячейки-прототипа (сульфидпроводящая мембрана - BaNd2S4-Nd2S3) от содержания анализируемого газа | ||||||||
№ п/п | Состав сульфидпроводящей мембраны | Рабочая температура, °C | Содержание H2S, об.% | Е, мВ | Чувствительность, мВ/pCH2S | Содержание SO2, об.% | Е, мВ | Чувствительность, MB/pCSO2 |
1 | BaNd2S4-Nd2S3 | 500-550 | 8,77 | 593 | 80 | 8,77 | 305 | 78 |
2 | 7,14 | 586 | 7,14 | 290 | ||||
3 | 5,45 | 576 | 5,45 | 293 | ||||
4 | 3,77 | 563 | 3,77 | 280 | ||||
5 | 1,89 | 540 | 1,89 | 257 | ||||
6 | 0,96 | - | 0,96 | - | ||||
7 8 | 0,38 | - | 0,38 | - | ||||
0,1 | - | 0,1 | - | |||||
9 | CaY2S4-Yb2S3 (заявл.) | 415-475 | 8,77 | 338 | 254 | 8,77 | 83 | 54 |
10 | 7,14 | 317 | 7,14 | 79 | ||||
12 | 5,45 | 288 | 5,45 | 73 | ||||
13 | 3,77 | 243 | 3,77 | 65 | ||||
14 | 1,89 | 173 | 1,89 | 46 | ||||
15 | 1,44 | 143 | 1,44 | 42 | ||||
16 | 0,96 | 96 | 0,96 | 33 | ||||
17 | 0,57 | 41 | 0,57 | 22 | ||||
18 | 0,38 | 27 | 0,38 | 11 | ||||
19 | 0,19 | 21 | 0,19 | 8,6 | ||||
20 | 0,1 | 13 | 0,1 | 8,25 | ||||
21 | - | - | 0,01 | 7 |
Электрохимическая ячейка для анализа серосодержащих газов, включающая трубку из кварцевого стекла с расположенными внутри нее штуцерами для подачи и отвода газа, токоподводящими графитовым и нихромовыми проводниками, графитовым электродом, сульфидпроводящей мембраной, электродом сравнения, расположенным в графитовом проводнике и выполненным из сульфида висмута с добавкой порошкообразного металлического висмута, и рабочим электродом, представляющим собой анализируемую среду на границе «графит - сульфидпроводящая мембрана», отличающаяся тем, что в качестве сульфидпроводящей мембраны используется твердый электролит с униполярной проводимостью по иону серы CaY2S4-Yb2S3 при следующем соотношении его компонентов, мол.%:- тиоиттрат кальция (CaY2S4) - 84-100%;- полуторный сульфид иттербия (Yb2S3) - остальное.