Криогенное отделение со2 с использованием охлаждающей системы

Иллюстрации

Показать все

Группа изобретений относится к способу и системе для отделения CO2 из потока топочного газа. Описана охлаждающая система, предназначенная для конденсации двуокиси углерода (CO2), содержащая контур охлаждения, содержащий хладагент. Упомянутый контур охлаждения содержит многоступенчатый компрессор хладагента, конденсатор хладагента, охладитель хладагента, охладитель топочного газа, первый конденсатор CO2, второй конденсатор CO2. Также описана система очистки топочного газа для извлечения CO2. Система содержит компрессор топочного газа, адсорбционный осушитель, а также охлаждающую систему для конденсации двуокиси углерода (CO2). Охладитель топочного газа расположен между компрессором топочного газа и адсорбционным осушителем топочного газа и первый и второй конденсаторы CO2 расположены последовательно после адсорбционного осушителя топочного газа. Описан также и способ для конденсации CO2 в потоке топочного газа, используя циркуляционный поток внешнего хладагента. Группа изобретений позволяет обеспечить эффективное по затратам разделение CO2, используя простые, надежные конструкции теплообменников и материалы. 3 н. и 13 з.п. ф-лы, 4 ил.

Реферат

Область техники, к которой относится изобретение

[0001] Настоящая группа изобретений относится к способу и системе для отделения CO2 из потока топочного газа, обогащенного CO2, путем охлаждения потока топочного газа для конденсации CO2, присутствующего в нем.

Уровень техники

[0002] При сгорании топлива, такого как уголь, нефть, торф, отходы и т.д., в сжигательной установке, такой как электростанция, генерируется горячий технологический газ, такой технологический газ, содержащий, помимо прочих компонентов, двуокись углерода CO2. При повышении требований к защите окружающей среды были разработаны различные процессы для удаления двуокиси углерода из технологического газа.

[0003] Захват CO2 часто содержит охлаждение или сжатие и охлаждение топочного газа для конденсации CO2 в жидкой или твердой форме и отделения его от неконденсирующихся компонентов топочного газа, таких как N2 и O2. Перед захватом CO2 обычно необходимо очистить богатый двуокисью углерода топочный газ. Операция по очистке газа обычно может включать в себя удаление пыли, соединений серы, металлов, оксидов азота и т.д.

[0004] Охлаждение топочного газа до температуры его конденсации может быть достигнуто различными средствами, например, используя соответствующий внешний хладагент. Системы захвата CO2, с использованием внешнего хладагента, могут быть дорогостоящими, как в том, что касается инвестиционных затрат, так и операционных затрат. В качестве альтернативы, часто используют системы авторефрижерации, в которых топочный газ, богатый CO2, сжимают, охлаждают и расширяют для конденсации CO2. В этих системах жидкий CO2 продукт используется как охлаждающая среда для топочного газа, обогащенного CO2. Из-за строгих требований к температуре между средами конденсации и испарения в этих системах, конденсация CO2, в общем, должна быть выполнена с использованием паяных твердым припоем алюминиевых теплообменников. Помимо того, что они являются дорогостоящими, алюминий чувствителен к засорению многими из остаточных компонентов, содержащихся в топочных газах, получаемых в результате сгорания ископаемого топлива, таких как ртуть и вещества в виде частиц. Авторефрижирационные системы, поэтому, обычно требуют дорогостоящих усилий для удаления опасных компонентов из топочного газа перед этапом конденсации CO2, таких как фильтры частиц, поглотители ртути и газопромыватели SOx/NOx.

Сущность изобретения

[0005] Цель настоящей группы изобретений состоит в том, чтобы обеспечить систему и способ для удаления двуокиси углерода из потока топочного газа, например, генерируемого в бойлере, в котором сжигают топливо в присутствии газа, содержащего кислород, причем эти система и способ уменьшают, по меньшей мере, одну из упомянутых выше проблем.

[0006] Системы и способы для удаления двуокиси углерода из потока топочного газа, в соответствии с различными аспектами, описанными здесь, позволяют обеспечить эффективное по затратам разделение CO2, используя простые, надежные конструкции теплообменников и материалы.

[0007] В соответствии с аспектами, представленными здесь, предусмотрена охлаждающая система для конденсации двуокиси углерода (CO2) в потоке топочного газа, упомянутая система, содержащая

контур охлаждения, содержащий хладагент, упомянутый контур охлаждения, содержащий

многоступенчатый компрессор хладагента,

конденсатор хладагента,

охладитель хладагента,

охладитель топочного газа,

первый конденсатор CO2,

второй конденсатор CO2,

в котором многоступенчатый компрессор хладагента выполнен так, что он сжимает хладагент из охладителя топочного газа первого конденсатора CO2 и второго конденсатора CO2 до давления P0, конденсатор хладагента выполнен с возможностью конденсации сжатого хладагента, охладитель хладагента выполнен с возможностью охлаждения, по меньшей мере, части конденсировавшегося хладагента, используя жидкий CO2, отделенный в первом и/или втором конденсаторах CO2, охладитель топочного газа выполнен с возможностью охлаждения потока топочного газа, используя первую часть охлажденного конденсировавшегося хладагента при первом давлении P1 расширения, которое ниже, чем P0, первый конденсатор CO2 выполнен с возможностью конденсации и отделения первой части CO2 от охлажденного потока топочного газа, используя вторую часть охлажденного конденсировавшегося хладагента при втором давлении P2 расширения, которое ниже, чем P1, второй конденсатор CO2 выполнен с возможностью конденсации и отделения второй части CO2 от охлажденного потока топочного газа, используя третью часть охлажденного конденсировавшегося хладагента при третьем давлении расширения P3, которое ниже, чем P2.

[0008] Охлаждающая система содержит охладитель хладагента, выполненный с возможностью охлаждения, по меньшей мере, части конденсировавшегося хладагента, используя жидкий CO2, отделенный в первом и/или втором конденсаторах CO2. Обычные циклы охлаждения предусматривают конденсацию хладагента в условиях, определяемых внешним хладагентом (например, охлаждающей водой). Это может привести к образованию большой фракции пара при расширении хладагента до уровня давления, соответствующего определенной температуре, поскольку изменение латентного тепла во время адиабатического расширения равно теплу испарения для получаемой в результате фракции пара. Такая фракция пара вносит только небольшой вклад в цикл охлаждения, но должна быть сжата в компрессоре хладагента и конденсирована в конденсаторе хладагента. Охлаждающие системы, описанные здесь, позволяют свести к минимуму остаточную фракцию пара, используя высокую степень интеграции тепла источников холода в системах. Имея достаточно высокую концентрацию CO2 в подаваемом топочном газе, обеспечивается выход CO2 более чем 90%.

[0009] В соответствии с некоторыми вариантами осуществления, контур охлаждения дополнительно содержит

первый вспомогательный охладитель хладагента, выполненный с возможностью дополнительного охлаждения второй части охлажденного конденсировавшегося хладагента, используя жидкий CO2, отделенный в первом конденсаторе CO2, перед тем, как хладагент будет использован в первом конденсаторе CO2,

и/или

второй вспомогательный охладитель хладагента, выполненный с возможностью дополнительного охлаждения третьей части охлажденного конденсировавшегося хладагента, используя жидкий CO2, отделенный во втором конденсаторе CO2, перед использованием хладагента, во втором конденсаторе CO2.

[0010] Первый и/или второй вспомогательные охладители хладагента обеспечивают максимальное восстановление холода из жидкого CO2, отделенного в первом и/или втором конденсаторах CO2.

[0011] В соответствии с некоторыми вариантами осуществления, каждую часть хладагента из охладителя топочного газа, первого конденсатора CO2 и второго конденсатора CO2, соответственно, последовательно подают в соответствующую ступень сжатия многоступенчатого компрессора хладагента и выполняют повторное сжатие до давления P0.

[0012] В соответствии с некоторыми вариантами осуществления, контур охлаждения дополнительно содержит

теплообменник, выполненный с возможностью охлаждения, по меньшей мере, части конденсировавшегося хладагента, используя топочный газ, обедненный CO2, из второго конденсатора CO2.

[0013] Определили, что холодный топочный газ, обедненный CO2, из второго конденсатора CO2 может предпочтительно использоваться для предварительного охлаждения конденсировавшегося хладагента, поступающего из конденсатора хладагента, прежде чем он будет охлажден в охладителе хладагента и/или вспомогательных охладителях хладагента.

[0014] Охлаждающая система может быть встроена в систему очистки топочного газа для удаления CO2 из потока топочного газа, например потока топочного газа, генерируемого в бойлере, в котором сжигается топливо в присутствии газа, содержащего кислород. Внедрение охлаждающей системы в систему очистки топочного газа для удаления CO2 из потока топочного газа обеспечивает высокую степень интеграции тепла источников холода в системе, которая может обеспечивать существенную общую экономию энергии в системе.

[0015] Два важных фактора для достижения эффективной конденсации CO2 в системе очистки топочного газа, используя охлаждающую систему, как описано здесь, представляют собой

(a) давление потока топочного газа, обогащенного CO2, и

(b) содержание водяного пара в потоке топочного газа, обогащенного CO2.

[0016] Поток топочного газа, обогащенного CO2, который следует подвергнуть конденсации CO2, всегда должен, предпочтительно, быть под давлением, при котором газообразный CO2 в топочном газе преобразуется в жидкую форму, когда температура топочного газа понижается в конденсаторах CO2.

[0017] Компрессор топочного газа во время работы сжимает топочный газ до давления (например, приблизительно, 30 бар или выше), при котором газообразный CO2 преобразуется в жидкую форму, когда температура топочного газа понижена в конденсаторах CO2.

[0018] Остаточная вода в топочном газе, обогащенном CO2, может привести к формированию льда в теплообменниках конденсаторов CO2, что, в конечном итоге, приводит к проблемам пониженной способности охлаждения и засорения теплообменников. Благодаря предоставлению адсорбционного осушителя перед конденсаторами CO2, такие проблемы исключаются, или, по меньшей мере, минимизируются. Адсорбционный осушитель может быть, например, выполнен с возможностью уменьшения точки росы по воде топочного газа до приблизительно -60°C.

[0019] В соответствии с другими аспектами, иллюстрируемыми здесь, предусмотрена система очистки топочного газа для удаления CO2 из потока топочного газа, содержащая

компрессор топочного газа,

адсорбционный осушитель топочного газа, и

охлаждающую систему для конденсации двуокиси углерода (CO2), как определено выше,

в которой охладитель топочного газа расположен между компрессором топочного газа и адсорбционным осушителем топочного газа, и первый и второй конденсаторы CO2 расположены последовательно после адсорбционного осушителя топочного газа.

[0020] В соответствии с некоторыми вариантами осуществления, система очистки топочного газа дополнительно содержит

первый вспомогательный охладитель хладагента, выполненный с возможностью дополнительного охлаждения второй части охлажденного конденсировавшегося хладагента, используя жидкий CO2, отделенный в первом конденсаторе CO2, перед тем, как хладагент будет использоваться в первом конденсаторе CO2,

и/или

второй вспомогательный охладитель хладагента, выполненный с возможностью дополнительного охлаждения третьей части охлажденного сконденсировавшегося хладагента, используя жидкий CO2, отделенный во втором конденсаторе CO2, перед тем, как хладагент будет использован во втором конденсаторе CO2.

[0021] Первый и/или второй вспомогательные охладители хладагента позволяют максимально восстанавливать холод из жидкого CO2, отделенного в первом и/или втором конденсаторах CO2.

[0022] В соответствии с некоторыми вариантами осуществления, система очистки топочного газа дополнительно содержит насос продукта CO2, предпочтительно расположенный между конденсатором CO2 и охладителем хладагента или вспомогательным охладителем хладагента, выполненный с возможностью накачки жидкого CO2, отделенного в первом и/или втором конденсаторах CO2, до давления, например, приблизительно 60 бар, достаточного для предотвращения испарения CO2, сконденсировавшегося в охладителе хладагента и/или в первом вспомогательном охладителе хладагента, и/или во втором вспомогательном охладителе хладагента.

[0023] В соответствии с некоторыми вариантами осуществления, система очистки топочного газа дополнительно содержит теплообменник, выполненный с возможностью охлаждения, по меньшей мере, части конденсировавшегося хладагента, используя топочный газ, обедненный CO2, из второго конденсатора CO2.

[0024] Определили, что холодный топочный газ, обедненный CO2, из второго конденсатора CO2, предпочтительно, можно использовать для предварительного охлаждения конденсировавшегося хладагента, поступающего из конденсатора хладагента, прежде чем он будет охлажден в охладителе хладагента и/или во вспомогательных охладителях хладагента.

[0025] В соответствии с некоторыми вариантами осуществления, система очистки топочного газа содержит

первый теплообменник, выполненный с возможностью охлаждения, по меньшей мере, части сконденсировавшегося хладагента, используя топочный газ, обедненный CO2, из второго конденсатора CO2,

второй теплообменник, выполненный с возможностью повторного нагрева топочного газа, обедненного CO2, из первого теплообменника, используя теплый топочный газ из компрессора топочного газа,

расширитель топочного газа, выполненный с возможностью расширения повторно нагретого, сжатого, обедненного CO2, топочного газа из второго теплообменника, и

третий теплообменник, выполненный с возможностью дополнительного охлаждения конденсировавшегося хладагента из первого теплообменника, используя обедненный CO2, топочный газ из расширителя топочного газа.

[0026] Охлаждение сконденсировавшегося хладагента поэтапно обеспечивает максимальное восстановление холода из обедненного CO2 топочного газа из второго конденсатора CO2.

[0027] В соответствии с некоторыми вариантами осуществления системы очистки топочного газа, охладитель хладагента выполнен с возможностью охлаждения первой части конденсировавшегося хладагента, используя жидкий CO2, отделенный в первом и/или втором конденсаторах CO2, и

теплообменник выполнен с возможностью охлаждения второй части конденсировавшегося хладагента, используя топочный газ, обедненный CO2, из второго конденсатора CO2.

[0028] В соответствии с некоторыми вариантами осуществления, система очистки топочного газа содержит

охладитель хладагента, выполненный с возможностью охлаждения первой части сконденсировавшегося хладагента, используя жидкий CO2, отделенный в первом и/или втором конденсаторе CO2, первый теплообменник, выполненный с возможностью охлаждения второй части сконденсировавшегося хладагента, используя топочный газ, обедненный CO2, из второго конденсатора CO2,

второй теплообменник, выполненный с возможностью повторного нагрева топочного газа, обедненного CO2, из первого теплообменника, используя теплый топочный газ из компрессора топочного газа,

расширитель топочного газа, выполненный с возможностью расширения повторно нагретого сжатого топочного газа, обедненного CO2, из второго теплообменника, и

третий теплообменник, выполненный с возможностью охлаждения третьей части сконденсировавшегося хладагента, используя топочный газ, обедненный CO2, из расширителя топочного газа.

[0029] В соответствии с некоторыми вариантами осуществления, система обработки топочного газа дополнительно содержит конденсатор топочного газа для удаления водяных паров из потока топочного газа, расположенный перед компрессором топочного газа, в отношении общего направления потока топочного газа.

[0030] В соответствии с некоторыми вариантами осуществления, система очистки топочного газа дополнительно содержит блок избирательного каталитического восстановления (SCR, ИКВ), предназначенный для удаления окислов азота (NOx) из потока топочного газа, расположенный после второго конденсатора CO2 в отношении общего направления потока топочного газа.

[0031] В соответствии с аспектами, представленными здесь, предусмотрены способ для конденсации двуокиси углерода (CO2) в потоке топочного газа, используя циркуляционный поток внешнего хладагента, упомянутый способ, содержащий этапы, на которых

сжимают и, по меньшей мере, частично конденсируют внешний хладагент для получения конденсировавшегося внешнего хладагента,

конденсируют CO2 в потоке топочного газа путем охлаждения потока топочного газа, используя, по меньшей мере, частичное испарение конденсировавшегося внешнего хладагента, полученного на этапе a),

отделяют конденсировавшийся CO2 от потока топочного газа и охлаждают конденсировавшийся внешний хладагент для использования при охлаждении на этапе b), используя конденсировавшийся CO2, отделенный на этапе c).

[0032] В соответствии с некоторыми вариантами осуществления, давление конденсировавшегося CO2, используемого для охлаждения конденсировавшегося внешнего хладагента, поддерживают достаточным для предотвращения испарения конденсировавшегося CO2 во время охлаждения, например, приблизительно 60 бар.

[0033] В соответствии с некоторыми вариантами осуществления, способ дополнительно содержит: предварительно охлаждают конденсировавшийся внешний хладагент для использования при охлаждении на этапе b), используя поток топочного газа, от которого был отделен конденсировавшийся CO2, перед охлаждением конденсировавшегося внешнего хладагента, используя конденсировавшийся CO2, отделенный на этапе c).

[0034] В соответствии с некоторыми вариантами осуществления, способ дополнительно содержит: охлаждают первую часть конденсировавшегося внешнего хладагента для использования при охлаждении на этапе b), используя конденсировавшийся CO2, отделенный на этапе c), и охлаждают вторую часть конденсировавшегося внешнего хладагента для использования при охлаждении на этапе b), используя поток топочного газа, от которого был отделен конденсировавшийся CO2.

[0035] Внешний хладагент в вариантах осуществления упомянутых выше способов и систем может, например, представлять собой пропан или пропилен.

[0036] Описанные выше и другие особенности представлены, как примеры на следующих фигурах и в подробном описании изобретения. Другие объекты и свойства настоящего изобретения будут понятны из описания и формулы изобретения.

Краткое описание чертежей

[0037] Рассмотрим теперь фигуры, на которых показаны примеры вариантов осуществления:

На фиг. 1 схематично представлена система бойлера.

На фиг. 2 схематично представлен вариант осуществления системы отделения CO2.

На фиг. 3 схематично представлен вариант осуществления системы отделения CO2.

На фиг. 4 схематично представлен вариант осуществления системы отделения CO2.

Подробное описание изобретения

[0038] Давление здесь представлено в единицах "бар" и обозначает абсолютное давление, если только не указано другое.

[0039] Термины "опосредованные" или "опосредованно", используемые здесь в связи с теплообменом между двумя текучими средами, таким как нагрев, охлаждение или замораживание, обозначает, что теплообмен происходит, без смешивания этих двух текучих сред вместе. Такой опосредованный теплообмен может, например, выполняться в теплообменнике с опосредованным контактом, в котором потоки текучей среды остаются разделенными, и происходит постоянная передача тепла через непроницаемую разделительную стенку.

[0040] Система охлаждения или система очистки топочного газа в различных аспектах, раскрытых здесь, может, например, быть воплощена в виде сжигательной установки, такой как бойлерная система. На фиг. 1 показано схематическое представление бойлерной системы 1 в ее виде сбоку. Бойлерная система 1 содержит, как основные компоненты, бойлер 2, который представляет собой в данном варианте осуществления бойлер с кислородно-топливной горелкой, систему генерирования электроэнергии с паровой турбиной, схематично обозначенную ссылочной позицией 4, и систему 3 обработки топочного газа. Система обработки топочного газа может, например, содержать устройство удаления пыли, которое может, например, представлять собой фильтр из ткани или электростатический осадитель 8, систему удаления двуокиси серы, которая может представлять собой скруббер 10 с водяным орошением и систему 40, 140, 240 отделения CO2.

[0041] Топливо, такое как уголь, нефть или торф, содержится в накопителе 12 для топлива, и может быть подано в бойлер 2 через трубу 14 подачи. Источник 16 газообразного кислорода во время работы подает газообразный кислород известным образом. Источник 16 газообразного кислорода может представлять собой установку по разделению воздуха, которая во время работы отделяет газообразный кислород от воздуха, мембрану, отделяющую кислород, накопительный бак или любой другой источник для подачи газообразного кислорода в бойлерную систему 1. По каналу 18 подачи во время работы подают формируемый газообразный кислород, содержащий обычно 90-99,9% об. кислорода, O2, в бойлер 2. По каналу 20 во время работы передают рециркулирующий топочный газ, который содержит двуокись углерода, в бойлер 2. Как обозначено на фиг. 1, канал 18 подачи соединяется с каналом 20 перед бойлером 2, таким образом, что газообразный кислород и рециркулирующий топочный газ, который содержит двуокись углерода, могут смешиваться друг с другом для формирования смеси газа, содержащей обычно от приблизительно 20-50% об. газообразного кислорода, при этом баланс, в основном, составляет двуокись углерода и пары воды, перед бойлером 2. Поскольку воздух практически не поступает в бойлер 2, в бойлер 2 практически не поступает газообразный азот. Во время практической работы, менее чем 3% об. объема всего газа, подаваемого в бойлер 2, составляет воздух, который в основном поступает в бойлерную систему 1, как утечка воздуха через, например, бойлер 2 и систему 3 обработки топочного газа. Бойлер 2 во время работы предназначен для сжигания топлива, которое должно быть поступать через трубу 14 подачи, в присутствии газообразного кислорода, смешанного с рециркулирующим топочным газом, который содержит двуокись углерода, которая поступает через канал 20. Труба 22 для пара во время работы предназначена для подачи пара, который формируется в бойлере 2, в результате сгорания, в систему 4 генерирования электроэнергии на паровой турбине, которая во время работы генерирует энергию в форме электроэнергии.

[0042] По каналу 24 во время работы подают топочный газ, обогащенный двуокисью углерода, генерируемый в бойлере 2, в устройство 8 удаления пыли. Под “топочным газом, обогащенным двуокисью углерода” подразумевается, что топочный газ, поступающий из бойлера 2 через канал 24, содержит, по меньшей мере, 40% об. двуокиси углерода, CO2. Часто более чем 50% об. топочного газа, поступающего из бойлера 2, составляет двуокись углерода. Как правило, топочный газ, поступающий из бойлера 2, содержит 50-80% об. двуокиси углерода. Баланс для "топочного газа, обогащенного двуокисью углерода”, составляет приблизительно 15-40% об. паров воды (H2O), 2-7% об. кислорода (O2), поскольку небольшой избыток кислорода часто является предпочтительным в бойлере 2, и всего приблизительно 0-10% об. других газов, включая в себя, в основном, азот (N2) и аргон (Ar), поскольку некоторую утечку воздуха редко можно полностью исключить.

[0043] Топочный газ, обогащенный двуокисью углерода, образующийся в бойлере 2, обычно может содержать загрязнители в форме, например, частиц пыли, соляной кислоты, HCl, окислов азота, NOx, окислов серы, SOX, и тяжелых металлов, включая в себя ртуть, Hg.

[0044] Устройство 8 удаления пыли удаляет большую часть частиц пыли из топочного газа, обогащенного двуокисью углерода. Канал 26 во время работы подает топочный газ, обогащенный двуокисью углерода, из тканевого фильтра 8 в скруббер 10 с водяным орошением. Скруббер 10 с водяным орошением содержит циркуляционный насос 28, который во время работы предназначен для циркуляции в трубе 30 циркуляции шлама, адсорбирующей жидкости, содержащей, например, известняк, с нижней части скруббера 10 с водяным орошением к набору сопел 32, расположенных в верхней части скруббера 10 с водяным орошением. Сопла 32 для шлама во время работы мелко распределяют адсорбирующую жидкость в скруббере 10 с водяным орошением для обеспечения хорошего контакта между адсорбирующей жидкостью и топочным газом, который подают в скруббер 10 с водяным орошением через канал 26, и который протекает, по существу, вертикально вверх внутри скруббера 10 с водяным орошением для обеспечения эффективного удаления двуокиси серы, SO2, и других кислотных газов из топочного газа, обогащенного двуокисью углерода.

[0045] Система 3 очистки топочного газа дополнительно содержит конденсатор 37 топочного газа, где топочный газ охлаждается ниже его точки росы по воде, и тепло, высвобождаемое в результате конденсации, восстанавливается, как низкотемпературное тепло. Содержание воды в топочном газе может, например, быть уменьшено приблизительно от 40% об. в топочном газе, подаваемом в конденсатор топочного газа до приблизительно 5% об. в топочном газе, который выходит из конденсатора топочного газа. В зависимости от показателя pH и температуры в конденсаторе топочного газа, конденсация топочного газа также может привести к восстановлению окислов серы, SOX, в топочном газе. Окислы серы захватываются в формирующемся конденсате и отделяются от топочного газа. Кроме того, промывочная жидкость или шлам, например, известковый шлам, захваченный в топочном газе из предыдущего этапа удаления двуокиси серы, удаляется во время конденсации.

[0046] По меньшей мере, частично очищенный топочный газ, обогащенный двуокисью углерода, выходит из скруббера 10 с водяным орошением через трубопровод 34, по которому топочный газ подают в точку 36 разделения газа, где, по меньшей мере, частично очищенный топочный газ, обогащенный двуокисью углерода, разделяют на два потока, а именно первый поток, который через канал 20 рециркулирует обратно в бойлер 2, и второй поток, который через конденсатор 37 топочного газа и канал 38 подают в систему отделения CO2. В системе отделения CO2, по меньшей мере, частично отделяют от легких газов (например, N2, Ar, O2) топочного газа в результате сжатия и конденсации. Сжатую двуокись углерода, следовательно, выводят из системы отделения CO2 через трубопровод 43 и транспортируют далее к месту дальнейшей передачи, что иногда называют “изоляцией CO2”. Первый поток, который рециркулирует обратно в бойлер 2 через трубопровод 20, обычно содержит 50-75% об. общего потока топочного газа, обогащенного двуокисью углерода, который поступает из скруббера 10 с водяным орошением. Второй поток, обычно содержащий 25-50% об. от общего потока топочного газа, обогащенного двуокисью углерода, который выходит из скруббера 10 с водяным орошением, следовательно, подают через конденсатор 37 топочного газа и трубопровод 38 в систему 40, 140, 240 отделения CO2, которая будет более подробно описана ниже.

[0047] Отделение CO2 в описанных здесь вариантах осуществления достигается путем сжатия топочного газа и конденсации при охлаждении. На фиг. 2 схематично иллюстрируется система отделения CO2, предназначенная для конденсации двуокиси углерода (CO2) в потоке топочного газа. Система отделения CO2 на фиг. 2 может быть воплощена в бойлерной системе по фиг. 1. Система 40 отделения CO2 содержит трубопровод 55 топочного газа, который во время работы подает топочный газ из бойлера в штабель, в случае необходимости, через один или больше блоков обработки топочного газа, таких как устройство удаления пыли, система удаления двуокиси серы и конденсатор топочного газа.

[0048] Система 40 отделения CO2 может, в случае необходимости, содержать, по меньшей мере, один компрессор 44, имеющий, по меньшей мере, одну и обычно от двух до десяти ступеней сжатия для сжатия топочного газа, обогащенного двуокисью углерода. Компрессор топочного газа во время работы сжимает топочный газ до давления, при котором газообразный CO2 преобразуется в жидкую форму, когда температура топочного газа понижается в конденсаторах 64, 70 CO2. Топочный газ, обогащенный двуокисью углерода, обычно сжимают до давления приблизительно 20 бар или выше, например, до приблизительно 33 бара, в многоступенчатом компрессоре. Каждая ступень сжатия может быть установлена, как отдельный блок. В качестве альтернативы, несколько ступеней сжатия могут работать на общем ведущем валу. Компрессор 44 также может содержать блок промежуточного охлаждения (не показан), который установлен после одной или больше ступеней сжатия. Блок промежуточного охлаждения может дополнительно быть выполнен с возможностью сбора и выдачи любого жидкого конденсата, формируемого во время сжатия и/или охлаждения топочного газа, обогащенного двуокисью углерода.

[0049] Система 40 отделения CO2 содержит охлаждающую систему 50, имеющую контур 51 охлаждения, содержащий хладагент в жидкой и/или парообразной форме. Множество различных хладагентов можно использовать для выполнения операции охлаждения и конденсации, требуемых для конденсации CO2 в охлаждающей системе. Примеры хладагентов, которые можно использовать, включают в себя пропан (R290) и пропилен (R1270), и их смеси. Другие хладагенты, имеющие требуемые термодинамические и химические свойства, также можно использовать, если требуется.

[0050] Контур 51 охлаждения содержит многоступенчатый компрессор 52, выполненный с возможностью сжатия хладагента до заданного давления. Многоступенчатый компрессор 52 может, например, иметь три или больше ступеней сжатия, и каждая из ступеней сжатия выполнена с возможностью сжатия хладагента до определенного уровня давления. В многоступенчатом компрессоре 52 может быть предусмотрено промежуточное охлаждение между двумя или больше ступенями сжатия.

[0051] Холодный, газообразный хладагент сжимают от низкого давления в многоступенчатом компрессоре 52 до давления P0, например, в диапазоне от приблизительно 8 до 25 бар (в зависимости от температуры хладагента и конденсирующейся среды), и направляют в конденсатор 53 хладагента. Хладагент под высоким давлением затем, по существу, конденсируется в конденсаторе 53 хладагента, который может охлаждаться водой, принудительной подачей воздуха и т.п.

[0052] Сконденсировавшийся хладагент распределяют в охладитель 60 топочного газа, первый конденсатор 64 CO2 и второй конденсатор 70 CO2, где его используют для охлаждения топочного газа, содержащего CO2.

[0053] Охладитель 60 топочного газа содержит дозирующее устройство, например, расширительный клапан (не показан), предназначенный для уменьшения давления и индуцирования испарения конденсировавшегося хладагента. Охладитель топочного газа дополнительно содержит теплообменник, в котором хладагент расширяется до давления P1, например, приблизительно 5 бар, и кипящий хладагент используется для опосредованного охлаждения потока топочного газа до температуры в диапазоне приблизительно 10-20°C. Вода, которая оседает из топочного газа во время охлаждения в охладителе топочного газа, отделяется от потока топочного газа и удаляется через линию 61. Охлажденный топочный газ, обедненный парами воды, из охладителя топочного газа, затем направляют в первый конденсатор 64 CO2, в случае необходимости, через адсорбционный осушитель (не показан).

[0054] Первый конденсатор 64 CO2 содержит дозирующее устройство, например, расширительный клапан (не показан), для уменьшения давления и индуцирования испарения сконденсировавшегося хладагента. Первый конденсатор 64 CO2, кроме того, содержит теплообменник, в котором сжиженный хладагент расширяют до давления P2, которое ниже, чем P1, например, приблизительно 2,7 бара, и кипящий хладагент используется для опосредованного охлаждения потока топочного газа до температуры приблизительно -20°C, в результате чего, по меньшей мере, часть CO2 из топочного газа конденсируется. Первый конденсатор 64 CO2 дополнительно содержит первый сепаратор 65 газа/жидкости. Сепаратор 65 газа/жидкости отделяет сконденсировавшийся CO2 в жидкой форме от остаточного топочного газа, частично обедненного CO2 (отходящий газ). Сжиженный CO2 подают из сепаратора 65 газа/жидкости через линию 66 и перекачивают в бак продукта CO2, используя насос 67 продукта CO2. Отходящий газ выводят из сепаратора 65 газа/жидкости через линию 68.

[0055] Отходящий газ, частично обедненный CO2, направляют через линию 68 во второй конденсатор 70 CO2. Второй конденсатор 70 CO2 содержит дозирующее устройство, например, расширительный клапан (не показан), для уменьшения давления и индуцирования испарения конденсировавшегося хладагента. Второй конденсатор 70 CO2 дополнительно содержит теплообменник, в котором сжиженный хладагент расширяется до давления P3, которое ниже, чем P2, например, до атмосферного давления (приблизительно 1 бар), и кипящий хладагент используется для опосредованного охлаждения потока топочного газа до температуры приблизительно -42°C, вызывая конденсацию, по меньшей мере, части CO2 из топочного газа. Температура охлаждения ограничена минимальной допустимой температурой хладагента. Для пропилена или пропана, такой предел температуры может составлять приблизительно -45°C при окружающем давлении. Второй конденсатор 70 CO2 дополнительно содержит сепаратор 71 газа/жидкости. Сепаратор 71 газа/жидкости отделяет сконденсировавшийся CO2 в жидкой форме от остаточного, частично обедненного CO2 топочного газа (отходящего газа). Сжиженный CO2 выходит из сепаратора 71 газа/жидкости через линию 72, и его перекачивают в бак для продукта CO2 с помощью насоса 73 продукта CO2. Отходящий газ выходит из сепаратора 71 газа/жидкости через линию 74.

[0056] Охлаждающая система 50 дополнительно содержит охладитель 80 хладагента.

Охладитель 80 хладагента содержит теплообменник, выполненный с возможностью охлаждения хладагента путем опосредованного контакта с холодным, сконденсировавшимся CO2 из первого и/или второго конденсаторов 64, 70 CO2. Температура сконденсировавшегося CO2 из первого и второго конденсаторов 64, 70 CO2, в общем, может составлять приблизительно -20°C и -42°C, соответственно. Температура хладагента может быть уменьшена от значения в диапазоне приблизительно 15-30°C до приблизительно -17°C в охладителе 80 хладагента.

[0057] Охлажденный хладагент из охладителя 80 хладагента распределяется через линии 81, 82, 83 в охладитель 60 топочного газа, первый конденсатор 64 CO2 и второй конденсатор 70 CO2. Количество хладагента, распределяемого в каждый из охладителя топочного газа, первого конденсатора CO2 и второго конденсатора CO2, может быть выбрано так, чтобы обеспечить требуемое охлаждение в каждом теплообменнике.

[0058] Используемый хладагент из охладителя 60 топочного газа, первого конденсатора 64 CO2 и второго конденсатора 70 CO2 возвращается в многоступенчатый компрессор 52 для повторного сжатия и использования для дальнейшего охлаждения потока топочного газа. Используемый хладагент из охладителя 60 топочного газа под давлением P1, например, приблизительно 5 бар, направляют в первую ступень 52' сжатия многоступенчатого компрессора 52, пригодного для приема хладагента под давлением P1. Используемый хладагент из первого конденсатора 64 CO2 под давлением P2, например, приблизительно, 2,7 бара, направляют, в случае необходимости, через резервуар 56 всасывания компрессора хладагента, во вторую ступень 52" сжатия многоступенчатого компрессора 52, который пригоден для приема хладагента под давлением P2. Используемый хладагент из второго конденсатора 70 CO2 под давлением P3, например, приблизительно 1 бар, направляют, в случае необходимости, через бак 57 всасывания компрессора хладагента, в третью ступень 52''' сжатия многоступенчатого компрессора 52, который пригоден для приема хладагента под давлением P3. Используемые потоки хладагента затем повторно сжимают до давления P0 и повторно используют в контуре охлаждения.