Способ получения таблетки, распадающейся в ротовой полости
Иллюстрации
Показать всеИзобретение относится к области фармацевтики, а именно представляет собой способ получения таблетки, распадающейся в ротовой полости. Таблетка получена способом, включающим стадии предоставления жидкого состава, содержащего лекарственное вещество, предоставления твердого элемента, имеющего образованную в нем, по меньшей мере, одну полость, охлаждения твердого элемента до температуры ниже температуры замерзания состава, заполнения полости жидким составом, отверждения состава, присутствующего в полости, отведением тепла из состава через стенку полости за счет кондуктивного теплообмена для образования твердой гранулы, содержащей лекарственное вещество, без активного профилирования всей поверхности гранулы, извлечения гранулы из полости и сушки гранулы в вакууме. 2 н. и 13 з.п. ф-лы, 4 прим., 6 табл., 9 ил.
Реферат
ОБЛАСТЬ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к способу получения таблетки, распадающейся в ротовой полости, для введения человеку, причем таблетка содержит лекарственное вещество для лечения расстройства у человека.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Таблетки, распадающиеся в ротовой полости (ODT), также называемые таящими во рту, быстро таящими, растворяющимися во рту, быстро расплавляющимися, диспергируемыми во рту или быстрорастворимыми таблетками, представляют собой твердые лекарственные формы, которые быстро распадаются в ротовой полости человека без запивания водой. Таким образом, они, например, позволяют преодолевать проблемы, связанные с проглатыванием (особенно, у пациентов пожилого и детского возраста) и могут улучшить соблюдение пациентами предписанного лечения. Когда ODT помещается в ротовую полость, слюна вызывает ее быстрое разрушение (обычно, в течение 60 секунд, предпочтительно, в пределах 30 секунд, а предпочтительнее, в пределах 10 секунд) и диспергирование лекарственной формы так, что слюна содержит лекарственное вещество. Пациент или проглатывает смесь слюны и лекарственного вещества с тем, чтобы оно достигло желудка, или бỏльшая часть (если не все лекарственное вещество) абсорбируется через ротовую полость, глотку и/или пищевод, перед тем как оно достигнет желудка, таким образом, предотвращая метаболизм первого прохождения лекарственного вещества, и этим усиливая его биодоступность.
Разнообразные лекарственные вещества и/или комбинации могут использоваться в качестве активного ингредиента ODT, такие как, например, анальгетики и противовоспалительные средства, антацидные средства, противоглистные средства, антиаритмические средства, антибактериальные средства, антикоагулянты, антидепрессанты, противодиабетические средства, средства против диареи, противоэпилептические средства, противогрибковые средства, средства против подагры, антигистаминные средства, гипотензивные средства, средства против малярии, средства против мигрени, антимускариновые средства, антинеопластические средства и иммунодепрессанты, антипсихотические средства, антипротозойные средства, противоревматические средства, антитиреоидные средства, антивирусные средства, анксиолитики, седативные средства, снотворные средства и нейролептики, бета-блокаторы, сердечные инотропные средства, кортикостероиды, суппрессанты кашля, цитотоксические средства, деконгестанты, диуретики, ферменты, средства против паркинсонизма, желудочно-кишечные средства, антагонисты гистаминовых рецепторов, средства, регулирующие липидный метаболизм, местные анестетики, нервномышечные средства, нитраты и средства против стенокардии, опиоидные анальгетики, белки, пептиды, рекомбинантные лекарственные средства, половые гормоны, контрацептивы, спермицидные средства, стимуляторы и т.д.
Способ получения ODT (в данном описании также обозначенных как «таблетки, распадающиеся в ротовой полости») известен, наряду с другими источниками, из патента США № 5384124, права на который принадлежат компании Farmalyoc. В известном способе, образуется паста, содержащая одно или более лекарственных веществ, причем паста механически делится на стандартные дозы, имеющие хорошо определенную форму и объем, путем распределения пасты в полости заданной формы и размера, причем полости присутствуют в элементе в виде носителя из поливинилхлорида. После распределения пасты, элемент в виде носителя помещают в лиофилизатор, и паста сублимируется. Таким образом, каждая стандартная доза формируется в таблетку. Преимущество способа лиофилизации состоит не только в том, что лекарственному веществу придается очень устойчивая форма, но также что получается твердая лекарственная форма, которая распадается после контакта с жидкостью. В частности, если паста первоначально была основана на воде в качестве несущего растворителя (термин «растворитель» включает любую жидкую среду, которая может служить в качестве носителя для других веществ), такая таблетка обычно распадается после контакта с водой или жидкостью на водной основе, такой как слюна.
Известный способ широко используется в медико-биологической промышленности (см., например, обзор Deepak Kaushik, Harish Dureja и T. R. Saini «Orally disintegrating tablets: an overview of melt-mouth tablet technologies and techniques», Maharishi Dayanand University и Shri G. S. Institute of Technology and Science, опубликованный в руководстве «Tablets and Capsules», 30 июля 2004 г.). В определенных технологиях, таких как Zydis (Catalent Pharma Solutions, Somerset, NJ, USA) и Lyoc (Laboratoires Farmalyoc, Maisons-Alfort, France), используются данные конкретные технологии. Обычно, получают исходный состав в виде пасты или жидкости и помещают в предварительно сформированную блистерную упаковку. Затем данную упаковку, т.е., материал, присутствующий в упаковке, замораживают и подвергают лиофилизации для удаления воды. Полученным структурам присуща высокая пористость и быстрое разложение при контакте со слюной. Действительно, данный способ имеет много преимуществ в том, что могут быть получены таблетки, которые очень быстро распадаются, проявляют приемлемые фармакокинетические характеристики, обеспечивают лучшее соблюдение пациентами назначенного лечения и более высокую биодоступность относительно твердых составов и уменьшение побочных эффектов (см. статью Luca Dobetti «Fast-Melting Tablets: Developments and Technologies» в журнале Pharmaceutical Technology Drug Delivery, 2001, pp 44-50). Известные недостатки состоят в том, что таблетки имеют относительно низкую механическую устойчивость и высокую стоимость производства. Однако считается, что указанные недостатки присущи используемому способу лиофилизации: Лиофилизация требует использования дорогостоящего оборудования и приводит к получению таблеток, которым присуща меньшая механическая устойчивость, по сравнению, например, с традиционными технологиями прессования. Ввиду этого известный способ осуществляется путем использования конечной упаковки таблеток (т.е. блистерной упаковки) в качестве носителя в ходе всего процесса изготовления. Это по существу значит, что должна регулироваться каждая стадия получения с тем, чтобы ее можно было применять в сочетании с данной конкретной упаковкой. Это ограничивает свободу оперирования на различных стадиях изготовления и, таким образом, еще более увеличивает затраты. Однако, с учетом преимуществ лиофилизированных продуктов в виде распадающихся таблеток, производитель принимает присущую данному способу производства высокую стоимость.
Следует отметить, что из предшествующего уровня техники известны другие способы получения ODT. Например, в патентных заявках WO 93/12770 и US 2006/0057207 (права на которые принадлежат компании Pfizer Inc.) описан способ, где таблетки активно профилируются по существу по всей их поверхности прессованием замороженных гранул в закрытой прессовочной форме. Таким образом, указанный известный способ отличается от пассивного получения формы таблетки, например, использованием пассивно получаемой формы, которое происходит просто под действием силы тяжести и поверхностного натяжения. Таким путем легко регулируемым образом можно получить заданную форму. Однако данный способ имеет недостаток в том, что он требует достаточно сложной экструзионной и штамповочной установки, которая склонна к утечкам жидкого состава из полости (т.е., закрытой пресс-формы). Замороженные гранулы также имеют тенденцию прилипания к головке экструдера или к штампу вследствие использования сил сжатия. Действительным преимуществом является то, что за счет сжатия замороженных гранул обеспечиваются хорошие механические свойства, которые позволят извлекать замороженные гранулы в целостном виде.
Из патента США № 5382437 и Европейского патента EP 0450141 известен еще один способ, где жидкий состав вводят в открытые полости твердого элемента, который находится при комнатной температуре, после чего данный элемент помещают в морозильную камеру на 30-60 мин. Представляется, что это имеет преимущество, поскольку жидкий состав эффективно заполняет полость, приводя, таким образом, к получению замороженной гранулы, имеющей размер и форму, которая точно соответствует размеру и форме полости, и, таким образом, приводя к получению прогнозируемой формы гранулы. Однако недостатки заключаются в том, что при данном способе должен присутствовать цикл охлаждения-нагревания, а также в том, что весь процесс протекает относительно медленно. Также, существует риск потери жидкости из полости после ее заполнения жидким (имеющим низкую вязкость) составом.
СУЩНОСТИ ИЗОБРЕТЕНИЯ
Целью настоящего изобретения является разработка способа получения распадающейся в ротовой полости таблетки для введения человеку, в котором используется лиофилизация в качестве основной технологии, причем способ характеризуется значительно сниженными затратами в расчете на таблетку, в то же самое время обеспечивая превосходные свойства дезинтеграции и адекватную механическую устойчивость. Для этого был разработан способ в соответствии с преамбулой, включающий стадии предоставления жидкого состава, содержащего лекарственное вещество; предоставления твердого элемента, имеющего образованную в нем, по меньшей мере, одну полость; охлаждения твердого элемента до температуры ниже температуры замерзания состава; заполнения полости жидкого состава; отверждения состава, содержащегося в полости, путем отведения тепла из состава через стенку полости за счет кондуктивного теплообмена с образованием твердой гранулы, содержащей лекарственное вещество, без активного профилирования всей поверхности гранулы; извлечения гранулы из полости; и сушки гранулы в вакууме для получения таблетки.
Заявитель неожиданно обнаружил, что могут быть получены адекватные дезинтеграционные и механические свойства ODT, при одновременном значительном увеличении выбора способов изготовления, и, таким образом, открываются возможности значительного снижения затрат в расчете на таблетку, путем, во-первых, заполнения открытой полости жидким составом, содержащим лекарственное вещество (которое также включает заполнение полости двумя или более отдельными субкомпозициями, которые вместе образуют жидкий состав, содержащий лекарственное вещество), и затем замораживания жидкого состава в указанной полости с образованием твердой гранулы просто путем оставления жидкого состава в предварительно охлажденной полости, не применяя никаких активных профилирующих инструментов, с тем, чтобы была получена не подвергнутая сжатию замороженная гранула, имеющая форму (на открытом конце полости), которая образуется просто гравитационными силами и поверхностным натяжением (мениск), извлечением замороженной гранулы из полости, и, после этого, сушкой гранулы (например, в лиофилизирующем аппарате). Было также обнаружено, что имеет особенное преимущество поддержание температуры твердого элемента при температуре ниже температуры замерзания состава после заполнения полости. На первый взгляд, это представляется нежелательным. Жидкий состав должен начинать отверждаться сразу после контакта со стенкой полости, теоретически приводя к получению замороженной гранулы, имеющей размер и форму, которая не соответствует размеру и форме полости, таким образом, приводя к неконтролируемому процессу замораживания, и, таким образом, непрогнозируемой форме гранулы. Однако заявитель обнаружил, что для температуры ниже точки замерзания жидкого состава может быть найдена скорость заполнения, которая достаточно высока для противодействия немедленному замораживанию жидкости, просто потому, что количество теплоты, присутствующее в потоке жидкого состава, может просто противодействовать экстракции тепла холодным твердым элементом, или, по меньшей мере, адекватной части экстракции тепла. В целом, новый способ легче контролировать: температура твердого элемента может удерживаться на одном и том же уровне, тогда как при способах предшествующего уровня техники должен происходить цикл охлаждения-нагревания. Кроме того, способ осуществляется быстрее. Тепло отводится уже после заполнения полости. Также, имеется меньший риск потери жидкости из полости, поскольку жидкость будет охлаждаться очень быстро после поступления в полость и, таким образом, сразу проявит повышенную вязкость.
Новый способ имеет несколько важных преимуществ относительно большинства релевантных способов предшествующего уровня техники, известных от компании Farmalyoc. Во-первых, в данном новом способе конечная упаковка таблеток не должна участвовать ни в одной из стадий способа. Поэтому, не только может использоваться стандартная дешевая упаковка, но также каждая из стадий получения может проводится с использованием оборудования, оптимизированного для соответствующей задачи. Например, при использовании способа предшествующего уровня техники, где блистерная упаковка используется в качестве носителя для таблеток в лиофилизаторе, условия сушки должны приспосабливаться к относительно низкому количеству тепла, которое может передаваться через (пластиковую) упаковку. Это может значительно увеличить термическую нагрузку (например, высокую локальную температуру) на каждую таблетку во время стадии сушки, а также может значительно увеличить необходимое время выполнения способа. Заявитель также обнаружил, что отведение тепла из состава через стенку полости за счет кондуктивного теплообмена (что означает, что, по меньшей мере, основная часть т.е., более чем 50%, предпочтительно, более чем 80% до 100% тепла, подлежащего отведению для замораживания состава, отводится за счет кондуктивного теплообмена через стенку полости) оказывает значимое положительное воздействие. Это не только преодолевает или, по меньшей мере, уменьшает проблему предшествующего уровня техники термической нагрузки на гранулу, но также может улучшить механическую прочность конечной ODT. В известных способах почти все тепло отводится за счет конвекционного теплообмена, в частности, с использованием газообразного азота, который проходит вокруг жидкого состава, для отведения тепла до тех пор, пока не произойдет отверждение состава, и он не трансформируется в замороженную гранулу. Хотя конвекция может адекватно использоваться для замораживания жидкого состава, заявитель обнаружил, что при использовании кондуктивного теплообмена за счет наличия проводящего тепло материала вокруг, по меньшей мере, части жидкого состава, процесс охлаждения может обеспечить получение гранулы с повышенной механической устойчивостью, например, адекватной механической прочностью и/или низкой хрупкостью, в то же время поддерживая на высоком уровне ее свойства быстрой дезинтеграции. Причина этого неясна, но может быть связана с тем, что отведение тепла за счет кондуктивного теплообмена обеспечивает более эффективный и, таким образом, значительно более быстрый процесс охлаждения, который приводит к другому расположению молекул в грануле. Следует отметить, что в способах предшествующего уровня техники, небольшое количество тепла может быть отведено из жидкого состава через стенку блистера. Однако это не квалифицируется как отведение тепла кондуктивным теплообменом в смысле настоящего изобретения, поскольку материал блистерной упаковки представляет собой пластик, который обычно имеет коэффициент теплопроводности от 0,1 до 0,2 Вт/мК, и это неизбежно означает, что основная часть тепла отводится иными средствами, чем кондуктивным теплообменом (например, конвекцией через поток холодного газообразного азота).
Другое важное преимущество настоящего способа состоит в том, что таблетки в готовом упакованном продукте не остаются в пресс-форме, в которой они были сформированы. При способах предшествующего уровня техники, гранулы образуются в блистерной упаковке, которая служит в качестве пресс-формы. Однако гранулы остаются в своих пресс-формах в течение всего процесса до тех пор, пока они не преобразуются в таблетки, содержащиеся в их конечной упаковке. Поэтому, имеется высокий риск того, что таблетки более или менее прилипнут к стенке блистера, и могут быть только извлечены приложением значительных механических сил. Это, в комбинации с тем, что лиофилизированным таблеткам присуща не очень большая устойчивость (по сравнению с классическими прессованными таблетками), часто даже приводит к разрушению таблеток перед их приемом. Это может привести к тому, что такие разрушенные таблетки не будут использованы или пациенту будет введено слишком малое количество активного ингредиента.
Другое важное преимущество настоящего способа состоит в том, что стадия замораживания не должна происходить в самом лиофилизаторе. В способе, известном из патента США № 5384124, стадия замораживания происходит в лиофилизаторе, поскольку паста так или иначе находится в блистерной упаковке. Однако в известном способе отведение тепла из пасты для замораживания занимает относительно длительное время. В настоящем способе, путем отверждения жидкого состава на отдельной стадии в предназначенной для этого полости, а затем извлечения замороженной гранулы из полости и воздействие на нее лиофилизации на дополнительной стадии, первоначальное замораживание может осуществляться значительно более эффективно.
Еще одно существенное преимущество настоящего изобретения состоит в том, что стадия получения твердых замороженных гранул не зависит от имеющегося оборудования для сушки. Поскольку обеспечение замороженных гранул полностью независимо от стадии сушки, то гранулы могут быть получены отдельно и, например, храниться до тех пор, пока не станет доступным оборудование для сушки. В частности, когда лекарственное вещество имеет биологическое происхождение, важно, чтобы партия жидкого состава, содержащего данное вещество, могла быть полностью переработана в замороженные гранулы, независимо от доступного в настоящее время оборудования для сушки. Также, при использовании настоящего изобретения можно получать таблетки (почти) сферической, продолговатой, «яйцеподобной» или овальной форм в трех измерениях без какой-либо плоской поверхности. Как известно, формам, которые приближаются к сферической форме, присуща механическая порочность, хотя форма не оказывает существенного воздействия на свойства быстрой дезинтеграции стандартных лекарственных форм.
В отношении способов экструзии и штамповки, известных из предшествующего уровня техники, настоящий способ имеет важное преимущество в том, что он не связан с утечкой жидкого состава из полости. Поскольку жидкий состав просто оставляется для замораживания в открытой полости без активного профилирования всей поверхности гранулы приложением, например, сил сжатия или других технологий активной формовки, которые профилируют поверхность гранулы, нет риска выдавливания жидкого состава из полости. Также значительно снижен риск прилипания гранулы к любой из частей, используемых для активного профилирования гранулы. Неожиданно оказалось, что при простом замораживании жидкого состава без приложения каких-либо сил сжатия, гранула все же может иметь достаточную механическую прочность для извлечения из полости для дальнейшей обработки, такой как лиофилизация.
Следует отметить, что настоящее изобретение может применяться в сочетании с любым лекарственным веществом и/их комбинациями. Типичные примеры таких веществ можно найти в Европейском патенте EP 1 165 053 B1, начиная со строки 37 на стр. 5 (начиная с «Анальгетические и противовоспалительные средства:»), и заканчивая строкой 25 на стр. 7 (кончая «...фенфурамин, мазиндол, памолин». Другими примерами являются соединения типа прогестогенов (такие как дезогестрел, этоногестрел, левоноргестрел, норгестимат, норелгестромин, гестоден, номегестрол ацетат, диеногест, дросперинон или любое другое стероидное или нестероидное соединение с прогестогенной активностью), соединения эстрогенного типа (такие как эстрадиол, эстриол, местранол, этинил-эстрадиол или любое другое стероидное или не стероидное соединение с эстрогенной активностью) и соединения, действующие на центральную нервную систему (такие как асенапин, миртазапин, эсмиртазапин или другие соединения с активностью в отношении ЦНС).
Настоящее изобретение основано на нескольких постулатах, причем первый из них состоит в том, что готовый лиофилизированный продукт может быть механически не очень устойчивым, но промежуточный замороженный продукт неожиданно не имеет этого недостатка, несмотря на то, что данный замороженный продукт не прессуется. Это открывает возможности для дополнительного механического манипулирования промежуточной гранулы. Однако такое манипулирование в известном способе Farmalyoc не имеет смысла, поскольку замороженная гранула уже присутствует в лиофилизаторе в его конечной блистерной упаковке. Однако заявитель пришел ко второму выводу, а именно, что стадия сушки в данном известном способе очень неэффективна, главным образом вследствие того, что при использовании конечной упаковки таблеток в качестве носителя в лиофилизаторе, сушильное пространство используется не адекватно (каждая таблетка занимает относительно большое количество пространства, поскольку таблетки не могут соприкасаться с упаковкой). Это неэффективное использование лиофилизатора в известном способе присуще ему, но может быть преодолено разделением стадий замораживания и сушки путем использования носителя для стадии замораживания, который отличается от носителя, используемого на стадии сушки. Третий вывод состоял в том, что в известном способе вследствие относительно медленной стадии замораживания, первоначальный жидкий состав замораживается почти в равновесных условиях. Это обычно ведет к получению общеизвестных очень хрупких конечных продуктов при сушке. Заявитель обнаружил, что значительно более быстрый процесс охлаждения может привести к процессу отверждения, который обеспечивает получение конечного продукта, более подобного аморфному, что ведет к получению менее уязвимого конечного продукта. Это может проявляться в виде более высокого предела прочности на сжатие таблеток или к более низкой хрупкости (как определено в Фармакопее США 24/NF19, 1999, p. 2148-2149).
Следует отметить, что настоящее изобретение также относится к распадающейся в ротовой полости таблетке для введения человеку, где таблетка имеет изогнутую поверхность, предпочтительно, имеет кривизну K от 1 до 1,2. Важное преимущество способа в соответствии с изобретением состоит в том, что он может привести к получению таблеток с высокой механической прочностью, по сравнению с таблетками, изготовленными в соответствии с существующими технологиями. Это смягчает недостатки технологий предшествующего уровня техники, такие как необходимость индивидуальной упаковки каждой таблетки в отслаиваемую блистерную упаковку. При настоящем изобретении, могут быть изготовлены таблетки, которые упаковываются насыпью или упаковываются в обычные проталкиваемые блистерные упаковки.
Настоящее изобретение также относится к упаковке, содержащей распадающуюся в ротовой полости таблетку, для введения человеку, причем таблетка содержит лекарственное вещество для лечения расстройства у человека, где таблетка предпочтительно, но необязательно, отдельно упакована в контейнер и сформирована в полости с использованием способа в соответствии с настоящим изобретением, причем полость отличается от контейнера, в который упакована таблетка (например, блистер блистерной упаковки). Как описано выше в настоящей заявке, основное преимущество настоящего изобретения состоит в том, что таблетки в готовом упакованном продукте не содержатся в пресс-форме, в которой они были сформованы, что почти исключает вероятность прилипания таблетки к ее контейнеру, например, блистеру блистерной упаковки, в готовой упаковке. Данное почти полное исключение повышает удобство врача, ветеринарного врача, пациента и тому подобных лиц при манипулировании таблетками.
ОПРЕДЕЛЕНИЯ
Таблетка представляет собой твердую лекарственную форму, например, для непосредственного перорального, ректального или парентерального введения или для непрямого введения, например, после смешивания с материалом носителя, в частности, жидкостью, для введения в растворенной или диспергированной форме. Таблетка может отличаться от порошка или мелких гранул тем, что таблеткой можно отдельно манипулировать вручную. Минимальная длина таблетки составляет 1 мм, предпочтительно, 2 мм, предпочтительнее, 4 мм, а обычно (но необязательно) от 4 до 20 мм.
Распадающаяся в ротовой полости таблетка, которая дезинтегрируется после контакта со слюной, например, в ротовой полости, в пределах 60 секунд, предпочтительно, в пределах 30 секунд, предпочтительнее, в пределах 10 секунд.
Сублимирование или лиофилизация представляет собой способ, используемый при создании устойчивого препарата вещества замораживанием жидкого состава, содержащего вещество, и, по существу, удалением замороженной жидкости в вакууме.
Вакуум представляет собой воздух или другой газ при пониженном (ниже атмосферного) давлении.
Дезинтеграция представляет собой утрату целостности и распад на фрагменты. Термин «дезинтеграция» включает растворение (наличие фрагментов на молекулярном уровне).
Быстро распадающаяся означает дезинтеграцию, которая начинается после контакта с жидкостью, в частности, водой при 37°C, и завершается в пределах 60 секунд, предпочтительно, в пределах 30 секунд, предпочтительнее, в пределах 10 секунд.
Лекарственное вещество представляет собой любое вещество, которое можно использовать для лечения расстройства (включая заболевание), т.е., для содействия предотвращению, облегчению или излечению расстройства. Такое вещество может, например, представлять собой химическое или биологическое соединение, такое как естественный или синтетический пептид или белок, (поли)сахарид или любая другая органическая или неорганическая молекула, мертвый или живой микроорганизм, мертвый или живой паразит и т.д.
Температура замораживания жидкого состава представляет собой температуру, при которой консистенция состава трансформируется из жидкой в твердую, т.е., консистенцию, которая может выдерживать воздействие внешней силы без изменения формы.
Теплопроводный материал представляет собой материал, имеющий коэффициент теплопередачи, по меньшей мере, 1 Вт/мК (Ватт на метр Кельвин).
Адгезивное означает способность противодействовать адгезии.
Кристаллический материал представляет собой материал, который может образовывать кристаллы после отверждения в условиях равновесия.
Желатинирующее вещество представляет собой агента, который способен образовывать сеть молекул внутри жидкости для обеспечения жидкости консистенцией геля, т.е., имеющего, по меньшей мере, некоторую способность самостоятельного поддерживания (во всех условиях не представляющего собой свободно текущую жидкость). Термин желатинирующее вещество также охватывает агента, содержащего два или более различных соединения или материала, каждый из которых способен образовывать сеть молекул внутри жидкости.
Образующий гель материал представляет собой материал, который в концентрации 4% (масс./масс.) в жидком составе, в частности, воде, при температуре, при которой жидкий состав используется в целях введения (в настоящем случае, для заполнения полостей при комнатной температуре, 20°C), образует гель в указанном жидком составе при оставлении в стационарной ситуации в течение 24 часов.
Не образующий гель материал представляет собой материал, который в концентрации 4% (масс./масс.) в жидком составе, в частности, воде, при температуре, при которой жидкий состав используется в целях введения (в настоящем случае, для заполнения полостей при комнатной температуре, 20°C), не образует гель в указанном жидком составе при оставлении в стационарной ситуации в течение 24 часов.
ВАРИАНТЫ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
ODT в идеале соответствует множеству требований, например, имеет достаточную механическую прочность для ручного манипулирования (для обеспечения возможности легкого извлечения таблетки из упаковки и помещения таблетки в ротовую полость пациента), возможно, обладает мукоадгезивными свойствами (например, с тем, чтобы таблетка распадалась в ротовой полости и не достигала желудка), в то же самое время не является липкой, чтобы не препятствовать манипулированию таблеткой, имеет приемлемый вкус и обеспечивает очень быструю дезинтеграцию (с тем, чтобы, например, можно было получить высокие уровни лекарственного вещества в крови). Жидкий состав, используемый для изготовления таблеток, возможно, содержит добавки, такие как, например, поверхностно-активные вещества (ПАВ) или другие вещества, которые могут использоваться для придания конечной таблетке свойств, полезных для конкретного применения таблетки. Такие вещества могут представлять собой, например, красящие агенты, подсластители или другие модифицирующие вкус или маскирующие агенты, консерванты, хелаты, антиоксиданты, ПАВ, красящие агенты, модификаторы pH или любые другие вещества, которые совместимы с остальными ингредиентами таблетки, и, при необходимости, фармацевтически приемлемы для пациента, которому предназначена таблетка.
В одном варианте осуществления настоящего изобретения объем полости меньше, чем объем гранулы. В способах предшествующего уровня техники выбрана полость (или пресс-форма), которая точно соответствует размеру и форме таблетки, подлежащей формированию. Однако неожиданно, заявитель обнаружил, что может использоваться полость, которая имеет объем, меньший, чем объем подлежащей формированию таблетки. В данном варианте осуществления, гранула выступает из поверхности элемента из полости. Возможность этого обеспечена, наряду с другими моментами, поскольку жидкий состав быстро охлаждается кондуктивным контактом с холодным элементом. Это помогает обеспечению того, что может быть образована гранула, которая даже выступает из полости. Преимущество данного конкретного варианта осуществления состоит в том, что гранула может быть относительно легко удалена из полости, поскольку поверхность контакта между гранулой и полостью мала, по сравнению с гранулой, которая полностью помещена или погружена в полость. Другое преимущество данного варианта осуществления состоит в том, что может быть обеспечено прерывание физического внешнего вида таблетки, соответствующее участку перехода между полостью и открытым пространством над полостью. Поскольку подлежащая формированию гранула выступает из полости, то может быть обеспечено такое прерывание формы гранулы на выходе из полости. Такое прерывание может использоваться для различения данной таблетки от других таблеток (таким образом, являясь, например, альтернативой для логотипа, знака или цвета компании), или может использоваться для обеспечения преимущественных механических свойств.
В предпочтительном варианте осуществления объем полости меньше, чем 50% объема гранулы. В данном варианте осуществления более чем половина гранулы выступает из элемента, в котором образована полость. Это очень облегчает удаление гранулы. Минимальный объем для обеспечения практически адекватного извлечения тепла из жидкого состава составляет примерно 15%, предпочтительно, примерно 20%.
В конкретном варианте осуществления способа по изобретению, состав содержит материал кристаллического носителя, который является твердым при комнатной температуре, и желатинирующее вещество. Кристаллический носитель имеет преимущество в том, что он может легко включаться в жидкий состав, и в том, что он обеспечивает хорошие механические свойства таблетки. Желатинирующее вещество включается для еще большего улучшения механических свойств таблетки. Примеры подходящих материалов носителя представляют собой сахара, такие как маннит, декстроза, лактоза, галактоза, трегалоза и циклические сахара, такие как циклодекстрин, неорганические соли, такие как фосфат натрия, хлорид натрия и силикат алюминия, аминокислоты, обычно имеющие от 2 до 12 атомов углерода, такие как глицин, L-аланин, L-аспарагиновая кислота, L-глутаминовая кислота, L-гидроксипролин, L-изолейцин, L-лейцин и L-фенилаланин. Желатинирующее вещество может представлять собой любой агент, который способен образовывать сеть молекул внутри жидкости, для обеспечения жидкости консистенции геля. Такой агент может содержать высокомолекулярные белки или другие полимеры, но может также быть основан на низкомолекулярных соединениях, которые могут образовывать сети посредством рекомбинации низкомолекулярных соединений в длинные цепи (как известно, наряду с другими источниками, из патента США № 6471758). Желатинирующее вещество имеет преимущество в том, что высокомолекулярные соединения обеспечивают дополнительную механическую устойчивость готовой таблетке. Типичные примеры желатинирующего вещества представляют собой желатины, декстрины и белки семян сои, пшеницы и блошной травы, смолы, такие как камедь, агар, акация, ксантан и каррагенан, полисахариды, альгинаты, карбоксиметилцеллюлозы, пектины, поливинилпирролидон и т.д.
В еще одном варианте осуществления, состав содержит 3 или более % масс. кристаллического материала и примерно 4% масс. желатинирующего вещества. Обычно, количество кристаллического материала носителя в препартивной форме для получения ODT удерживается ниже 3% масс. Для желатинирующего вещества предпочтительно используется количество примерно 4% масс. Заявитель обнаружил, что при использовании 3 или более % масс. кристаллического носителя и в то же самое время использовании примерно 4% масс. желатинирующего вещества, это неожиданно может привести к высокой механической прочности конечной таблетки и очень хорошим свойствам дезинтеграции.
В одном варианте осуществления, желатинирующее вещество содержит не образующий гель материал, предпочтительно, материал, происходящий из коллагена, такой как желатин. Хотя желатинирующее вещество в принципе способно образовывать гель в жидкости, заявители обнаружили, что предпочтительнее выбрать желатинирующее вещество, которое не образует или, по меньшей мере, не полностью образует гель в жидком составе при заполнении полости (это может быть просто осуществлено выбором желатинирующего соединения или материала, который растворяется в жидком составе при указанной температуре вместо образования сети молекул желатинирующего вещества в жидкости). Это упрощает введение жидкого состава с учетом высокой вязкости и/или меньшего не-Ньютоновского поведения жидкого состава. После введения, при снижении температуры желатинирующее вещество образует гель. В предпочтительном варианте осуществления, происходящий из коллагена материал представляет собой желатин, имеющий средневесовую молекулярную массу 2×104 г/моль (таким образом, имея действительную массу от 15000 до 25000 г/моль). Заявитель обнаружил, что использование такого желатинирующего вещества может привести к получению менее липких таблеток, а также, таблеток, имеющих очень хорошие свойства дезинтеграции при поддержании адекватной механической прочности, несмотря на относительно низкую молекулярную массу желатинирующего вещества. Gelati Sol P (выпускаемый Gelita, Eberbach Germany) является хорошим примером такого желатинирующего вещества. Следует отметить, что прочность желатинирующего вещества традиционно именуется «Bloom». Это сила, выраженная в граммах, необходимая для вдавления на 4 мм поверхности геля стандартным поршнем, имеющим диаметр 0,5 дюйма (1,27 см). Для желатинов, желатинирующее вещество используется в концентрации 6,67%, и гель должен удерживаться при 10°C в течение 17 часов перед тестированием. Bloom связан с механической эластичностью геля и, наряду с другими аспектами, используется для классификации типов желатина. Он в целом находится в диапазоне от 10 до 300 Bloom. Gelati Sol P имеет прочность Bloom примерно 15-25.
В еще одном варианте осуществления, объем гранулы больше, чем максимальный объем свободной капельки жидкого состава при температуре и давлении, используемых при заполнении полости. В данном варианте осуществления гранула больше, чем одна свободная капель