Способ каталитического крекинга с максимизацией базовых компонентов дизельного топлива
Иллюстрации
Показать всеИзобретение относится к каталитическому крекингу углеводородов. Способ включает стадию реакции крекинга в реакторе с восходящим потоком с псевдоожиженным слоем, стадию разделения крекированных углеводородов и закоксованного катализатора, стадию фракционирования крекированных углеводородов и стадию регенерирования указанного закоксованного катализатора, где исходные материалы углеводородов вводят в реактор с восходящим потоком на катализатор, частично дезактивированный посредством предварительного закоксовывания по меньшей мере его части в том же самом реакторе с восходящим потоком, так что температура реакции у эффлюентов, покидающих указанный реактор, изменяется от 470 до 600°С, причем данное предварительное закоксовывание может осуществляться посредством введения по меньшей мере одного углеводородного соединения, имеющего температуру кипения равную или более высокую чем 350°С, на по меньшей мере часть регенерированного катализатора, ограниченную по меньшей мере одной зоной, определяемой посредством внутреннего устройства, расположенного в нижней части реактора с восходящим потоком, при этом исходные углеводородные материалы для переработки вводят ниже по потоку после верхнего конца внутреннего устройства в указанном реакторе относительно направления течения катализатора внутри реактора. Изобретение также касается устройства для осуществления способа крекинга. Технический результат - максимизация базовых компонентов дизельного топлива. 2 н. и 14 з.п. ф-лы, 9 ил., 4 табл., 3 пр.
Реферат
Настоящее изобретение относится к способу каталитического крекинга для максимизации выработки базовых компонентов дизельного топлива, включающему стадию реакции крекинга по меньшей мере в одном реакторе с восходящим потоком с псевдоожиженным слоем, стадию разделения крекированных углеводородов и катализатора, стадию фракционирования крекированных углеводородов и стадию регенерирования закоксованного катализатора. Оно также относится к устройствам для осуществления указанного способа, которые могут содержать один или несколько реакторов с восходящим потоком.
В течение нескольких лет нефтепереработчики и компании, предлагающие технологию FCC (каталитического крекинга с псевдоожиженным слоем), работают над оптимизацией работы этих способов и соответствующих установок. Такая оптимизация изначально фокусировалась на получении легких сжиженных газовых продуктов (или LPG: сжиженного нефтяного газа), различных видов нафты и бензина, причем эти продукты, в основном, соответствуют либо рынку полимеров, получаемых посредством полимеризации легких олефинов, либо большей части потребления топлива флотом легких и тяжелых моторных транспортных средств. При операциях такого типа получение базовых компонентов дизельного топлива остается ограниченным.
Поскольку рынок автомобилей развивается быстро и потребление продуктов типа дизельного топлива значительно возрастает, становится все более необходимым ориентирование производства нефтеперерабатывающих заводов на получение базовых компонентов дизельного топлива и, кроме всего прочего, ограничение производства бензина. Как часто случается, эти нефтеперерабатывающие заводы снабжены установками FCC, и императивом является возможность преобразования этих установок в установки, благоприятствующие получению дизельных топлив. Отличительной особенностью способов FCC является одновременное получение легких сжиженных газов, различных видов нафты, бензинов, базовых компонентов дизельного топлива, называемых LCO (легкий рецикловый газойль), более тяжелых базовых компонентов, имеющих большое содержание ароматических соединений, не используемых сами по себе, называемых HCO (тяжелый рецикловый газойль), и шлама или отстоя углеводородов, используемых, в частности, в композиции дорожных покрытий, а чаще в качестве базовых компонентов топочных мазутов.
В контексте настоящего изобретения целью является максимизация производства базовых компонентов дизельного топлива в установках каталитического крекинга с псевдоожиженным слоем или FCC, при ограничении, в то же время, получения бензина, в то же время, с максимизацией или сохранением количества легких газов или LPG и ограничением образования шлама, без значительного изменения системы существующих установок FCC. Настоящее изобретение относится к модернизации существующих установок FCC или даже к новым установкам без значительных резких изменений в главных компонентах установки.
При современном уровне техники является обычной работа этих установок в режиме максимума бензина или максимального преобразования для получения большей части бензина из нефтяных фракций, получаемых при перегонке сырой нефти, предпочтительно, вакуумного дистиллята и/или атмосферного или вакуумного остатка, самого по себе или их смесей, причем эти фракции необязательно подвергают гидрообработке.
Для увеличения количества и качества дистиллята, соответствующего интервалу температур от 145 до 400°C, из тех же исходных материалов в установке каталитического крекинга с псевдоожиженным слоем необходимо понизить уровень конверсии в установке, где характеристикой качества дистиллята, получаемого таким образом, является измерение цетанового числа. К сожалению, как известно специалистам в данной области, понижение конверсии в установке каталитического крекинга неизбежно приводит к получению больших количеств менее пригодных для использования тяжелых продуктов, называемых HCO (тяжелый рецикловый газойль) и/или шлама, то есть любых молекул, как правило, перегоняющихся выше 330°C, предпочтительно, выше 350°C. Фракция HCO, как правило, соответствует интервалу от 350 до 450°C, в то время как шлам соответствует фракции, отгоняемой выше 450°C, или 450°C+.
Для модификации конверсии в реакторе соответствующим образом можно подобрать активность катализатора и, следовательно, его эффективность при превращении исходных материалов углеводородов при температуре каталитической реакции в реакторе с восходящим потоком (райзере). Для специалистов в данной области доступны две альтернативы:
- либо циркуляция катализатора с низкой активностью, имеющего умеренную или низкую удельную площадь поверхности, например ниже чем 110 м2/г, в установке, благоприятствующая преобразованию в нижней части реактора самых тяжелых компонентов исходных материалов и ограничивающая преобразование исходных материалов, но с выходом сухих газов и сжиженных газов или LPG, который является слишком низким (как правило, ниже чем 15%),
- либо модификация площади активной поверхности катализатора посредством коксования с использованием коммерческого кислотного катализатора, например тех, которые сегодня используют для работы с максимальным получением бензина, чтобы сделать его менее активным перед введением свежих исходных материалов в реактор и тем самым ограничить их конверсию.
Эта вторая альтернатива является, как правило, предпочтительной, поскольку другие катализаторы с более низкой конверсией отсутствуют или недоступны более на рынке.
Для модифицирования активности массы катализатора внутри реактора с псевдоожиженным слоем в точке введения исходных материалов рассматривается введение в реактор с восходящим потоком по меньшей мере одного потока частично закоксованного катализатора, предпочтительно двух потоков катализатора, при различных скоростях и температурах, причем первый из них сформирован в основном из регенерированного катализатора, а второй - из закоксованного катализатора. Этот поток или эти два потока составляет (составляют) каталитическую массу, имеющую контролируемую активность, которая, при контакте с исходными материалами, делает возможным их оптимизированный крекинг с желаемой селективностью по дистилляту.
Например, патент США №7008527, IFP, описывает ступенчатое введение регенерированного катализатора в реактор с восходящим потоком посредством трубы, расположенной коаксиально в нижней части реактора, причем катализатор сохраняет стандартную структуру циркуляции, как в обычной установке FCC. Первая зона введения катализатора, расположенная в основании райзера, как и в схеме обычной установки FCC, служит для обеспечения получения бензина и базовых компонентов дизельного топлива, а также для получения других фракций, получаемых с помощью обычной установки FCC. Второй ввод регенерированного катализатора, расположенный выше, чем первый, в реакторе с восходящим потоком, вступает в контакт с конкретными исходными материалами и, при определенных рабочих условиях, служит для того, чтобы вносить дополнительную активность, которая, в зависимости от указанных дополнительных конкретных исходных материалов, приводит к более полной реакции крекинга, приводящей к увеличению получения олефинов и к уменьшению образования дистиллята. Введение инертной текучей среды служит для охлаждения реакционной смеси в ходе процесса и, прежде всего, для блокирования механизмов реакции крекинга, в то же время благоприятствуя получению пропилена.
Патент США №4417974, Chevron, предлагает способ дезактивации соединений катализатора крекинга посредством использования трубы, расположенной внутри райзера, располагающейся по существу коаксиально с ним. В эту трубу вводят вместе часть регенерированного катализатора и исходных материалов углеводородов в условиях мягкого крекинга, поскольку температура внутри центральной трубы находится в пределах между 400 и 500°C, ограничивая тем самым коксование катализатора. Другая часть катализатора, которая протекает снаружи коаксиальной трубы, вступает в контакт с главной частью исходных материалов, содержащей добавленные соединения для дезактивации катализатора, вводимые на стенках райзера. Потоки катализатора, имеющие одинаковую плотность, исходящие из центральной трубы и из кольцевой части, встречаются на относительно высоком уровне реактора с восходящим потоком. Соединения для дезактивации катализатора состоят из фракций углеводородов, имеющих температуру кипения выше, чем 600°C, и уже крекированных рециклируемых соединений углеводородов, эти соединения имеют высокую концентрацию асфальтенов и соединений азота и серы.
Патент EP0180291, Mobil, описывает способ, который состоит в разделении свежего регенерированного катализатора в двух последовательных полостях в нижней части реактора с восходящим потоком. Первая зона, имеющая форму трубки Вентури, позволяет исходным материалам вступать в контакт с частью свежего регенерированного катализатора, причем эта первая зона также благоприятствует ускорению действия катализатора, и с парообразной нефтью в реакторе. Другая часть регенерированного катализатора затем разделяется снаружи трубки Вентури. В первой зоне проходит частичная дезактивация катализатора и испарение нефти после введения исходных материалов в эту зону. Когда они покидают трубку Вентури, испаренная нефть и частично дезактивированный катализатор снова вступают в контакт с по-прежнему очень горячим и активным катализатором второй зоны, и реакция крекинга продолжается. Целью здесь является сведение к минимуму локального перегрева, который генерирует коксование за счет избыточного крекинга, посредством пошагового испарения исходных материалов для облегчения получения легких продуктов, таких как бензины, и более легких продуктов, сухих газов и LPG.
Патент FR 2829143, China Petroleum, описывает способ каталитического крекинга, способный одновременно обрабатывать тяжелые нефти и легкие нефти посредством введения этих двух исходных материалов в две различные, но концентрические полости, заполненные одним и тем же регенерированным катализатором, причем реактор имеет форму двойной трубы. Как в и предыдущих патентах, целью является максимизация получения бензиновых фракций.
В противоположность способам и устройствам, описанным выше, целью настоящего изобретения является максимизация базовых компонентов дизельного топлива, чтобы удовлетворить новые потребности рынка в продуктах типа дизельного топлива, в то же время сводя к минимуму получение базовых компонентов бензинов. Кроме того, целью является не изменение конфигурации существующих реакторов, но изменение режима их работы с помощью небольших модификаций, при этом возвращение к максимальному получению бензина возможно в любой момент. Кроме того, работа, предназначенная для максимизации базовых компонентов дизельного топлива или средних фракций дистиллятов, не должна быть вредной для получения легких фракций, таких как сжиженные газы, в то же время ограничивая получение бензина настолько, насколько это возможно.
По этой причине настоящее изобретение относится к способу каталитического крекинга для максимизации получения базовых компонентов дизельного топлива, включающему стадию реакции крекинга в реакторе с восходящим потоком с псевдоожиженным слоем, стадию разделения крекированных углеводородов и закоксованного катализатора, стадию фракционирования крекированных углеводородов и стадию регенерирования указанного закоксованного катализатора, где исходные материалы углеводородов вводятся в реактор с восходящим потоком на каталитическую массу, состоящую из катализатора, частично дезактивированного посредством коксования по меньшей мере его части в том же самом реакторе с восходящим потоком, так что температура реакции (или TRX) эффлюентов, покидающих указанный реактор, изменяется от 470 до 600°C. Это коксование может осуществляться до введения исходных материалов или непосредственно после него.
В контексте настоящего изобретения стадия разделения, осуществляемая в сепараторе, означает стадию, которая служит, одновременно или последовательно, для отделения газообразных эффлюентов крекинга от зерен катализатора и/или мелкодисперсных частиц и для «отпаривания» катализатора. Когда катализатор «отпаривают», легкие фракции, по-прежнему присутствующие на катализаторе или внутри него, вытесняются, например, под действием водяного пара.
Первое преимущество настоящего изобретения заключается в его применимости к существующим установкам, включая их ограниченные модификации, при использовании, в то же время, катализаторов, доступных на рынке, как правило, очень активных и максимизирующих получение бензина.
Второе преимущество заключается в его обратимости: поскольку используют одну и ту же установку и один и тот же катализатор, всегда возможно обратить изменения и опять максимизировать получение бензина, если рыночный тренд изменяется. Тогда могут использоваться кислотные катализаторы с микропористыми и мезопористыми порами, для которых отношение микропористой удельной поверхности к мезопористой удельной поверхности составляет от 1 до 6, предпочтительно от 1 до 4, наиболее предпочтительно от 3 до 4.
Удельная поверхность может измеряться с использованием способа БЭТ (Браунауэра, Эммета и Теллера).
Третье преимущество заключается в том, что поддерживается получение сухих газов и сжиженных газов, в частности пропилена.
Четвертое преимущество представляет собой возможное обеднение соединений, имеющих температуру кипения выше, чем 350°C, то есть обеднение HCO и шлама.
Пятое преимуществ заключается в том, что сохраняется тепловое равновесие установки, несмотря на низкие температуры реакции, как правило, в пределах между 470 и 515°C. Для сравнения, в режиме максимального получения бензина температура реакции иногда бывает ниже чем 525°C для данного кислотного катализатора. Однако если используются катализаторы с очень низкой активностью, необходимая температура реакции должна быть ближе к 600°C, чем к 490°C.
Для достижения этой температуры реакции первое средство в соответствии с настоящим изобретением представляет собой введение по меньшей мере одного углеводородного соединения, имеющего температуру кипения равную или более высокую чем 350°C, по меньшей мере на часть регенерированного катализатора, причем эта часть ограничена по меньшей мере одной зоной, определяемой посредством внутреннего устройства. Среди углеводородных соединений HCO и/или шлам, получаемые посредством реакции крекинга, извлекаются на стадии фракционирования для коксования по меньшей мере части регенерированного катализатора по меньшей мере в одной из зон, ограниченных посредством указанного внутреннего устройства, в нижней части реактора с восходящим потоком стадии реакции. Предварительное коксование части катализатора с последующим смешиванием его с регенерированным катализатором служит при этом для контроля остаточного содержания углерода на массе катализатора или CRC (углерод на регенерированном катализаторе) и, как следствие, его активности и, наконец, скорости преобразования исходных материалов углеводородов, вводимых в реактор с восходящим потоком.
Остается в рамках настоящего изобретения, если это предварительное коксование катализатора должно осуществляться с использованием стандартных исходных материалов углеводородов, например, таких же, как вводятся в массу частично закоксованного катализатора.
В предпочтительном варианте осуществления рециклированные HCO являются особенно желательными не только для ограничения преобразования катализатора посредством предварительного коксования, но также и потому, что они имеют лучшее качество и имеют более высокий потенциал крекинга. Это происходит потому, что HCO, получаемые от крекинга с низким преобразованием, содержат высокий потенциал LCO, примерно от 15 до 40%, предпочтительно 20-30% массовых, и получается больший их объем.
Использование внутреннего устройства, уже используемого, служит для ограничения зон, в которых различные углеводороды могут преобразовываться при жестких, но контролируемых условиях. Например, регенерированные рыночные катализаторы могут использоваться при температурах реакции выше чем 525°C и при отношении C/O (массовое отношение катализатора к нефти или отношение Cat-to-Oil) в пределах от 5 до 20 или еще выше. Эти жесткие условия благоприятствуют коксованию HCO и/или исходных материалов типа шлама на катализаторе, поскольку кокс частично покрывает активные центры катализатора и тем самым уменьшает его активность контролируемым образом. Регулировка соответствующих количеств закоксованных катализаторов и катализаторов, происходящих из второй зоны, ограниченной внутренним устройством, до введения исходных материалов углеводородов в реактор с восходящим потоком, служит для того, чтобы сделать условия крекинга более мягкими, с максимизацией, в то же время, получения дистиллятов, главным образом, LCO. Эта регулировка количеств закоксованных и незакоксованных каталитических зерен предназначена для получения среднего коэффициента остаточного углерода (или CRC) от 0,2 до 0,7 на всех зернах массы катализатора, встречающегося в исходных материалах. Тип крекированных исходных материалов является стандартным и, как правило, состоит из вакуумных остатков (RSV), атмосферных дистиллятов (RAT) сырой нефти и/или вакуумного газойля (VGO). Он может также содержать любое углеводородное производное, получаемое посредством конверсии сырой нефти и/или любого производного биомассы.
Другие средства для получения среднего коэффициента CRC, подобного указанному выше, представляют собой возвращение части закоксованного катализатора, отделенного, а затем удаленного во время стадии разделения, в реактор с восходящим потоком до точки введения, в точке введения и/или после точки введения исходных материалов углеводородов, при температуре равной или более низкой чем температура реакции.
При конфигурации, при которой рециклируемые углеводороды имеют температуру кипения выше 350°C, контролируемое коксование катализатора получают посредством регулировки скорости рециклирования, композиции этих рециклируемых материалов и/или рабочих условий C/O и TRX.
В этом варианте осуществления настоящего изобретения присутствие закоксованного катализатора служит для уменьшения активности катализатора в точке введения исходных материалов под воздействием разбавления катализатора, уже присутствующего в реакторе.
Выше по потоку или в точке введения исходных материалов углеводородов, которые должны подвергаться крекингу, такое рециклирование делает возможным предварительное коксование части катализатора. Ниже по потоку, предпочтительно вблизи точки введения исходных материалов, это позволяет лучшее испарение исходных материалов посредством повышения температуры смешивания катализатора и исходных материалов в точке введения; это представляет собой эффект непрерывного MTC (смешанного контроля температуры).
В рамках настоящего изобретения будет находиться случай, когда этот рециклируемый катализатор объединяют с множеством вводов различных фракций углеводородов вдоль реактора с восходящим потоком до точки введения исходных материалов, после нее или до точки этого рециклирования.
Закоксованный катализатор может рециклироваться либо с помощью внешнего рециклирования, либо с помощью внутреннего рециклирования. Внешнее рециклирование заключается в циркулировании закоксованного катализатора из сепаратора наружу из реактора с восходящим потоком, в который его затем повторно вводят. Внутренние рециклирование имеет место под действием внутренней дефлегмации закоксованного катализатора в реакторе с восходящим потоком, причем закоксованный катализатор вводят без циркуляции закоксованного катализатора вне указанного реактора. В обоих случаях рециклирование благоприятствует конверсии в нижней части реактора за счет увеличения C/O и испарения исходных материалов, если оно расположено ниже по потоку после этих операций. Это обеспечивает некоторое предварительное коксование катализатора при стенках реактора, причем крекинг углеводородов ускоряется в центре реактора. Чтобы дополнительно способствовать эффекту MTC, температуру рециклируемого катализатора нужно понижать посредством размещения охладителя на внешнем контуре рециклирования и/или введения жидкости типа бензина при отделении закоксованного катализатора. Последняя альтернатива применима также к внутреннему рециклированию.
Другой вариант осуществления настоящего изобретения заключается в объединении эффектов этих двух действий. Таким образом, часть регенерированного катализатора коксуется выше по потоку, чем точка введения исходных материалов, по меньшей мере, с помощью одного углеводородного соединения, имеющего температуру кипения равную или более высокую чем 350°C, необязательно, в присутствии внутреннего устройства, и часть закоксованного и удаленного катализатора, извлеченного в сепараторе, направляют в положение выше по потоку, чем точка введения, в точку введения и/или ниже по потоку, чем точка введения исходных материалов в реактор с восходящим потоком. В рамках настоящего изобретения остается случай, когда несколько фракций различных типов должны вводиться до исходных материалов.
Для специалиста в данной области, посредством тщательной регулировки рабочих условий, температуры реакции, циркуляции катализатора или даже парциального давления углеводородов, вводимых или рециклируемых в реактор с восходящим потоком, будет простым максимизация получения дистиллята. Он сможет регулировать коксование катализатора посредством контроля скорости потока углеводородного соединения и количества рециклированного закоксованного катализатора, чтобы регулировать условия крекинга исходных материалов в реакторе с восходящим потоком. Как правило, целевые условия крекинга соответствуют среднему значению CRC в пределах между 0,2 и 0,7 и значению C/O ниже чем 5, предпочтительно примерно 4.
В предпочтительном варианте осуществления от 1 до 100% фракции углеводородов, отгоняемых при 350°C или выше, как правило, фракций HCO и шлама, извлекаемых на выходе стадии фракционирования, регенерированный катализатор, вводимый в нижней части реактора с восходящим потоком, рециклируется на 1-100% масс. Остается в рамках настоящего изобретения, когда свежие исходные материалы используют сами по себе.
В другом варианте осуществления настоящего изобретения, который может объединяться с предыдущим, 1-75% масс. закоксованного и удаленного катализатора, извлеченного на стадии разделения, рециклируют в реактор с восходящим потоком до (выше по потоку) точки введения, в точку введения и/или после (ниже по потоку) точки введения исходных материалов.
Для поддержания или даже увеличения выхода сжиженных газов и сухих газов по меньшей мере одну фракцию, имеющую температуру кипения ниже чем 160°C, вводят на регенерированный катализатор в реакторе с восходящим потоком до точки введения исходных материалов. Предпочтительно, эти рециклируемые материалы, состоящие из легких бензинов или LCN (легкой крекированной нафты), вводят в ту часть реактора с восходящим потоком, где условия крекинга являются наиболее жесткими. Как правило, там температура реакции гораздо выше чем 525°C, и отношение C/O гораздо выше, чем отношения C/O, используемые обычно для максимизации конверсии этих фракций, без значительного ухудшения активности катализатора, поскольку они производят мало кокса.
Для увеличения производительности крекинга в способе по настоящему изобретению и, прежде всего, для оптимального контроля крекинга исходных материалов, способ по настоящему изобретению включает дополнительную стадию реакции крекинга в реакторе с восходящим потоком, работающем параллельно первой стадии реакции. В этом втором реакторе с восходящим потоком, фракции углеводородов, имеющие температуру кипения равную или более низкую чем 160°C, предпочтительно ниже чем 145°C, и/или фракции углеводородов, имеющих температуру кипения равную или более высокую чем 330°C, предпочтительно выше чем 350°C, рециклируют на регенерированный катализатор, происходящий из регенератора. Эти углеводородные фракции выбирают из фракций, получаемых с помощью фракционирования в самой установке каталитического крекинга, и из установок конверсии и/или перегонки сырой нефти, включая фракции, полученные из биомассы. Предпочтительно некоторые из этих фракций, извлеченные на стадии фракционирования после первой стадии крекинга исходных материалов и находящие мало применений или являющиеся нежелательными, рециклируются и вводятся в реактор с восходящим потоком на второй стадии реакции. Условия крекинга этих фракций углеводородов изменяются в соответствии с типами рециклируемого углеводородного соединения: отношения C/O могут находиться в пределах от 4 до 20 и даже выше, а температуры реакции - от 470 до 650°C.
Другой целью настоящего изобретения является устройство для осуществления способа, содержащее по меньшей мере один реактор с восходящим потоком, снабженный внутренним устройством, размещенным в нижней части реактора, вблизи входа для регенерированного катализатора, сепаратором эффлюентов крекинга и закоксованного катализатора, регенератором и устройством фракционирования, причем эти различные устройства соединяются так, чтобы позволить циркуляцию текучих сред и/или катализатора между ними, и оно содержит линии для рециклирования фракций углеводородов, имеющих температуру кипения равную или более низкую чем 160°C, и/или фракций углеводородов, имеющих температуру кипения равную или более высокую чем 350°C, в реактор с восходящим потоком, во внутреннем устройстве, и/или средства для рециклирования закоксованного катализатора, присутствующего в сепараторе, в реактор с восходящим потоком.
Внутреннее устройство может размещаться перед устройством для введения исходных материалов внутри указанного реактора.
В одном из вариантов осуществления устройство в соответствии с настоящим изобретением может содержать линии для рециклирования фракций углеводородов, имеющих температуру кипения равную или более высокую чем 350°C, в реактор с восходящим потоком, ко внутреннему устройству, размещенному до устройства для введения исходных материалов внутри указанного реактора, и/или средства для рециклирования закоксованного катализатора, присутствующего в сепараторе, в реактор с восходящим потоком.
В другом варианте осуществления устройство в соответствии с настоящим изобретением может содержать линии для рециклирования в реактор с восходящим потоком фракций углеводородов, имеющих температуру кипения равную или более высокую чем 350°C, и линии для рециклирования фракций углеводородов, имеющих температуру кипения равную или более низкую чем 160°C, ко внутреннему устройству, размещенному перед устройством для введения исходных материалов внутри указанного реактора, и/или средства для рециклирования закоксованного катализатора, присутствующего в сепараторе, в реактор с восходящим потоком.
Еще в одном варианте осуществления устройство в соответствии с настоящим изобретением может содержать линии для рециклирования в реактор с восходящим потоком фракций углеводородов, имеющих температуру кипения равную или более высокую чем 350°C, и линии для рециклирования в реактор с восходящим потоком фракций углеводородов, имеющих температуру кипения равную или более низкую чем 160°C, к внутреннему устройству, размещенному перед устройством для введения исходных материалов внутри указанного реактора, и/или средства для рециклирования закоксованного катализатора, присутствующего в сепараторе, в реактор с восходящим потоком.
В первом варианте осуществления внутреннее устройство позиционируется в реакторе с восходящим потоком так, чтобы определить отсек (X), где его поперечное сечение изменяется в пределах от 10 до 90% от сечения реактора с восходящим потоком, при этом длина изменяется в пределах от 0,5 м до половины высоты указанного реактора с восходящим потоком.
Предпочтительно внутреннее устройство состоит из трубы, размещенной коаксиально с реактором с восходящим потоком, и/или по меньшей мере одной разделительной пластины, зафиксированной в реакторе с восходящим потоком параллельно его оси, предпочтительно из двух параллельных и/или пересекающихся пластин.
В одном из вариантов осуществления устройства по настоящему изобретению линия рециклируемых материалов или линии фракций углеводородов, имеющих температуру кипения равную или более низкую чем 160°C, и/или фракций углеводородов, имеющих температуру кипения равную или более высокую чем 350°C, заканчиваются в основании реактора с восходящим потоком, внутри или снаружи указанного отделения (X).
В соответствии с другим вариантом осуществления устройство содержит средства для внутреннего или внешнего рециклирования катализатора, закоксованного и удаленного в сепараторе, в реактор с восходящим потоком. Первые средства рециклирования представляют собой внешнюю линию для рециклирования закоксованного и удаленного катализатора из сепаратора в реактор с восходящим потоком. Это линия рециклирования приходит в точку(-и) выше и/или ниже по потоку относительно устройства для введения исходных материалов в реактор с восходящим потоком, причем эта линия необязательно снабжается охладителем (охладителем катализатора). Остается в рамках настоящего изобретения, если вместо этого охладителя или в дополнение к нему добавляется устройство для гашения катализатора с помощью одной или нескольких углеводородных жидкостей.
Вторые средства для рециклирования закоксованного и удаленного катализатора предназначены для использования реактора с восходящим потоком, у которого верхние боковые стенки содержат по меньшей мере одно отверстие (20), имеющее необязательно изменяемый размер, например, за счет использования поршневых клапанов или любой другой системы. Эти отверстия служат для направления зерен указанного закоксованного и удаленного катализатора из плотного слоя указанного сепаратора непосредственно в реактор с восходящим потоком, поскольку на этом уровне давление в сепараторе выше, чем давление в верхней части реактора.
В соответствии с дополнительным вариантом осуществления настоящего изобретения устройство содержит второй реактор, размещенный параллельно первому реактору с восходящим потоком, соединенный с регенератором, в его нижней части, через первую линию, и с сепаратором, в его верхней части, через вторую линию. Этот второй реактор содержит линии введения дистиллята, размещенные вдоль указанного реактора, необязательно, многоступенчатым образом. Напомним, что эти дистилляты представляют собой главным образом фракции углеводородов с низкими температурами кипения и дистилляты с высокими температурами кипения, например рециклируемые материалы нежелательных фракций углеводородов, полученных в установке для фракционирования.
Для облегчения понимания различных элементов, необходимых для удовлетворительной работы устройства по настоящему изобретению, приводятся фиг.1-6, но их вид не является ограничением для изобретения вида.
Фиг.1 представляет собой схему установки, содержащей реактор с восходящим потоком, включающий рециклирование тяжелых углеводородов, имеющих температуру выше 350°C, типа HCO и/или шлама.
Фиг.2 представляет собой схему установки, содержащей внешнее рециклирование части закоксованного и удаленного катализатора из разделительной емкости в реактор с восходящим потоком, причем позиционирование рециклирования тяжелых продуктов типа HCO и/или шлама является необязательным.
Фиг.3 представляет собой схему установки, содержащей внутреннее рециклирование части закоксованного катализатора из разделительной емкости в реактор с восходящим потоком, при этом позиционирование рециклирования тяжелых продуктов типа HCO и/или шлама является необязательным.
Фиг.4 представляет собой схему установки, содержащей второй реактор с восходящим потоком, параллельный первому реактору, с позиционированием рециклирования легких продуктов типа легкого бензина (LCN) и тяжелых продуктов HCO и/или шлама.
Фиг.5a-5d показывают поперечное сечение различных внутренних устройств, пригодных для ограничения одной или нескольких различных зон, в которые могут вводиться одна или несколько углеводородных фракций выше по потоку введения свежих исходных материалов.
Фиг.6 ясно показывает воздействие углерода, еще присутствующего в катализаторе, на его каталитическую активность.
Предлагаемое в настоящем документе изобретение основывается на этих наблюдениях, демонстрирующих падение каталитической активности, связанное с присутствием остаточного углерода.
На фиг.1 устройство по настоящему изобретению представляет собой схематическую установку FCC, содержащую реактор с восходящим потоком (1), сепаратор (2) продуктов крекинга и закоксованного катализатора, содержащий стриппер (2a) и сепаратор (2b) газ/твердые продукты, регенератор (3) и установку (4) фракционирования, снабжаемую через линию (5) текучими средами из сепаратора (2). Закоксованный катализатор из сепаратора (2) направляют в регенератор (3) через линию (6), и регенерированный катализатор, покидающий регенератор (3), направляют через линию (7) в нижнюю часть реактора с восходящим потоком (1). Внутреннее устройство в форме коаксиальной трубы (9) размещается в нижней части реактора (1) вблизи входа (8) через линию (7) регенерированного катализатора в реактор (1), причем эта труба (9) служит для разделения двух различных потоков катализатора - внутреннего потока в трубе (9) и кольцевого потока между наружной стенкой трубы (9) и внутренней стенкой реактора (1). Уровень введения исходных материалов в реактор (1) обозначен как (10), выше трубы (9).
На выходе установки (4) фракционирования показаны линии для откачки различных эффлюентов крекинга, тяжелые эффлюенты HCO и шлама транспортируются по отдельности или в смеси через линии (11b) и (11a) и линии (12b) и (12a) соответственно внутри трубы (9) или в кольцевой части между трубой (9) и внутренней стенкой реактора (1). Часть легкого бензина или LCN из установки (4) фракционирования рециклируют через линию (13) в нижнюю часть реактора (1) на уровне устройства для введения водяного пара, позволяющего катализатору подниматься в реакторе (1), но не показанного на фиг.1.
Предпочтительно эффлюенты типа тяжелых HCO рециркулируют в кольцевую полость через линию (12a), а легкие фракции внутри трубы (9) - через линию (12b), а исходные материалы вводят на периферии трубы (9) и выше них.
Фиг.2 показывает главным образом внешнее рециклирование закоксованного катализатора из сепаратора (2) в реактор (1) через линию (14), на которой может необязательно устанавливаться охладитель (15), и охлажденный катализатор может повторно вводиться через линии (14a) и (14b) либо после устройства (10), либо на одном уровне с ним (не показано), либо до устройства (10) для введения исходных материалов. Фиг.2 предполагает, что является возможным одновременное рециклирование тяжелых и легких продуктов и внешнее рециклирование закоксованного катализатора в реактор (1).
Фиг.3 показывает устройство для внутренней рециркуляции закоксованного и удаляемого катализатора или внутренний рецикл из сепаратора (2) в верхнюю часть реактора (1). Здесь часть реактора (1) размещается внутри сепаратора (2), с центром на его оси или смещенным относительно его оси. В части реактора (1), которая полностью погружена в плотный слой закоксованного и удаленного катализатора (23), который отделяется от газообразных углеводородных эффлюентов в основании сепаратора (2), предусматриваются одно или несколько отверстий (20) в верхних торцевых стенках реактора (1). Эти отверстия являются достаточно большими для того, чтобы позволить прохождение зерен закоксованного и удаленного катализатора в реактор (1). Эти отверстия (20) предпочтительно располагаются выше устройств для