Активный материал положительного электрода для электрического устройства, положительный электрод для электрического устройства и электрическое устройство

Иллюстрации

Показать все

Активный материал положительного электрода для электрического устройства содержит первый активный материал и второй активный материал. Первый активный материал состоит из оксида переходного металла, представленного формулой (1): Li1,5[NiaCobMnc[Li]d]O3 …(1), где в формуле (1) a, b, c и d удовлетворяют соотношениям: 0<d<0,5; a+b+c+d=1,5; и 1,0<a+b+c<1,5. Второй активный материал состоит из оксида переходного металла шпинельного типа, представленного формулой (2) и имеющего кристаллическую структуру, относящуюся к пространственной группе Fd-3m: LiMa'Mn2-a'O4 …(2), где в формуле (2) M является по меньшей мере одним элементом-металлом с валентностью 2-4, и a' удовлетворяет соотношению: 0≤a'<2,0. Относительное содержание первого активного материала и второго активного материала удовлетворяет, в массовом отношении, соотношению, представленному выражением (3): 100:0<MA:MB<0:100…(3) (где в формуле (3) MA является массой первого активного материала, и MB является массой второго активного материала). Повышение эффективности заряда/разряда аккумуляторной батареи с таким материалом является техническим результатом изобретения. 3 н. и 10 з.п. ф-лы, 4 ил., 6 табл.

Реферат

Область техники

[0001] Настоящее изобретение относится к активному материалу положительного электрода, к положительному электроду для электрического устройства и к электрическому устройству. В частности, обычно активный материал положительного электрода по настоящему изобретению подходящим образом используется в качестве активного материала положительного электрода литий-ионной аккумуляторной батареи или литий-ионного конденсатора, которая(ый) служит в качестве электрического устройства. Кроме того, электрическое устройство по настоящему изобретению подходящим образом используется, например, в качестве электрического устройства для транспортного средства, такого как электрическое транспортное средство (электромобиль), транспортное средство на топливных элементах и гибридное электрическое транспортное средство.

Предпосылки изобретения

[0002] В последние годы, чтобы справляться с загрязнением воздуха и глобальным потеплением, имеется существенная потребность в снижении величины выбросов углекислого газа. В автомобильной промышленности ожидания, в первую очередь, связаны с таким снижением величины выбросов углекислого газа за счет внедрения электромобилей (EV) и гибридных электромобилей (HEV). Поэтому проводятся тщательные разработки электрического устройства, такого как аккумуляторная батарея для приведения в действие электромотора, причем электрическое устройство служит в качестве ключевого фактора для практического применения этих транспортных средств.

[0003] В качестве аккумуляторной батареи для приведения в действие электромотора привлекает внимание литий-ионная аккумуляторная батарея, имеющая высокую теоретическую энергию, и в настоящее время ее разработка быстро продвигается. В общем, литий-ионная аккумуляторная батарея имеет строение, при котором положительный электрод, отрицательный электрод и расположенный между ними электролит размещены в кожухе батареи. Следует отметить, что положительный электрод формируется посредством покрытия поверхности токоотвода суспензией положительного электрода, содержащей активный материал положительного электрода, а отрицательный электрод формируется посредством покрытия поверхности токоотвода отрицательного электрода суспензией отрицательного электрода, содержащей активный материал отрицательного электрода.

[0004] В таком случае, для того улучшать характеристики емкости, характеристики мощности и т.п. литий-ионной аккумуляторной батареи, чрезвычайно важным является выбор соответствующих материалов.

[0005] К настоящему моменту предложена аккумуляторная батарея с неводным электролитом, в которой в качестве активного материала положительного электрода использован сложный оксид лития-никеля-марганца, имеющий гексагональную слоистую структуру каменной соли, относящуюся к пространственной группе R-3m, и содержащий Li в узле 3b, в котором содержится переходный металл (например, см. патентный документ 1). Этот сложный оксид лития-никеля-марганца представлен формулой Li[LixNiyMnz]O2-a. К тому же в этой формуле x находится в диапазоне: 0<x<0,4; y находится в диапазоне: 0,12<y<0,5; z находится в диапазоне: 0,3<z<0,62; и a находится в диапазоне: 0≤a<0,5, которые удовлетворяют следующим соотношениям: x>(1-2y)/3; 1/4≤y/z≤1,0; и x+y+z=1,0.

[0006] Кроме того, к настоящему времени предложен катодный состав для литий-ионной батареи, который имеет формулу (a) LiyM1(1-b)Mnb]O2 или формулу (b) Lix[M1(1-b)Mnb]O1,5+c (например, см. патентный документ 2). Следует отметить, что в этих формулах удовлетворяются следующие соотношения: 0≤y<1; 0<b<1; и 0<c<0,5, и M1 обозначает один или более типов элементов-металлов. Тем не менее, в случае формулы (a), M1 представляет собой элементы-металлы, отличные от хрома. В таком случае, этот состав имеет однофазную форму с кристаллической структурой O3, которая не вызывает фазового перехода к шпинельной структуре, когда осуществляется циклическая работа в течение заданного полного цикла заряда/разряда.

Список библиографических ссылок

Патентные документы

[0007] Патентный документ 1: публикация не прошедшей экспертизу заявки на патент Японии № 2007-242581

Патентный документ 2: публикация не прошедшей экспертизу заявки на патент Японии № 2004-538610

Сущность изобретения

[0008] Аккумуляторная батарея с неводным электролитом, описанная в патентном документе 1, повышает эффективность первоначального заряда/разряда за счет вызывания дефицита кислорода. Тем не менее, имела место такая проблема, что высокая емкость не может поддерживаться, поскольку кристаллическая структура сложного оксида лития-никеля-марганца, представленного формулой Li[LixNiyMnz]O2-a, не стабилизирована.

[0009] Кроме того, в ходе исследования авторами настоящего изобретения даже в литий-ионной батарее с предназначенным для нее катодным составом, который описан в патентном документе 2, имела место такая проблема, что емкость разряда, напряжение операции разряда и первоначальные токовые характеристики не являются достаточными.

[0010] Настоящее изобретение было создано с учетом описанных выше проблем, которые внутренне присущи традиционной технологии. Поэтому цель настоящего изобретения заключается в том, чтобы предоставить активный материал положительного электрода для электрического устройства, который способен проявлять превосходную эффективность первоначального заряда/разряда при поддержании высокой емкости за счет сохранения высокой обратимой емкости. Другая цель настоящего изобретения заключается в том, чтобы предоставить положительный электрод для электрического устройства, который использует активный материал положительного электрода для электрического устройства, и предоставить электрическое устройство.

[0011] Активный материал положительного электрода для электрического устройства согласно одному аспекту настоящего изобретения содержит первый активный материал и второй активный материал. Первый активный материал состоит из оксида переходного металла, представленного формулой состава (1):

Li1,5[NiaCobMnc[Li]d]O3 …(1)

(где в формуле (1) Li является литием, Ni является никелем, Co является кобальтом, Mn является марганцем, O является кислородом, a, b, c и d удовлетворяют соотношениям: 0<d<0,5; a+b+c+d=1,5; и 1,0<a+b+c<1,5). Второй активный материал состоит из оксида переходного металла шпинельного типа, представленного формулой состава (2) и имеющего кристаллическую структуру, относящуюся к пространственной группе Fd-3m:

LiMa′Mn2-a′O4 …(2)

(где в формуле (2) Li является литием, M является по меньшей мере одним элементом-металлом с валентностью 2-4, Mn является марганцем, O является кислородом, и a′ удовлетворяет соотношению: 0≤a′<2,0). Далее, относительное содержание первого активного материала и второго активного материала удовлетворяет, в массовом отношении, соотношению, представленному выражением (3):

100:0<MA:MB<0:100 …(3),

(где в выражении (3) MA является массой первого активного материала, и MB является массой второго активного материала).

Краткое описание чертежей

[0012] ФИГ. 1 является схематичным видом в поперечном сечении, показывающим пример литий-ионной аккумуляторной батареи согласно варианту воплощения настоящего изобретения.

ФИГ. 2 является графиком, показывающим кривые заряда/разряда из соответствующих примеров и сравнительных примеров в первом варианте воплощения.

ФИГ. 3 является графиком, показывающим эффективности первоначального заряда/разряда из соответствующих примеров и сравнительных примеров в первом варианте воплощения.

ФИГ. 4 является графиком, поясняющим определение коэффициента изменения шпинельной структуры.

Описание вариантов воплощения

[0013] Приводится подробное описание активного материала положительного электрода для электрического устройства согласно настоящему изобретению, положительного электрода для электрического устройства, который использует активный материал положительного электрода, и электрического устройства. При этом активный материал положительного электрода для электрического устройства согласно настоящему изобретению применим, например, в качестве активного материала положительного электрода литий-ионной аккумуляторной батареи в качестве электрического устройства. Соответственно, подробное описание вышеозначенного приводится при рассмотрении, в качестве примера, активного материала положительного электрода для литий-ионной аккумуляторной батареи и литий-ионной аккумуляторной батареи.

Первый вариант воплощения

[0014] Сначала приводится описание активного материала положительного электрода для литий-ионной аккумуляторной батареи согласно первому варианту воплощения настоящего изобретения. Активный материал положительного электрода для литий-ионной аккумуляторной батареи согласно первому варианту воплощения содержит первый активный материал, состоящий из оксида переходного металла, представленного формулой состава (1). Кроме того, вышеописанный активный материал положительного электрода содержит второй активный материал, состоящий из оксида переходного металла шпинельного типа, который представлен формулой состава (2) и имеет кристаллическую структуру, относящуюся к пространственной группе Fd-3m:

[0015] Li1,5[NiaCobMnc[Li]d]O3 …(1),

где в формуле (1) Li является литием, Ni является никелем, Co является кобальтом, Mn является марганцем, и O является кислородом. Кроме того, a, b, c и d удовлетворяют соотношениям: 0<d<0,5; a+b+c+d=1,5; и 1,0<a+b+c<1,5.

[0016] LiMa′Mn2-a′O4 …(2),

где в формуле (2) Li является литием, M является по меньшей мере одним элементом-металлом с валентностью 2-4, Mn является марганцем, и O является кислородом. Кроме того, a′ удовлетворяет соотношению: 0≤a′<2,0.

[0017] Кроме того, активный материал положительного электрода для литий-ионной аккумуляторной батареи согласно этому варианту воплощения представляет собой активный материал положительного электрода, в котором относительное содержание первого активного материала и второго активного материала удовлетворяет соотношению, которое представлено выражением (3), в массовом отношении:

100:0<MA:MB<0:100 …(3),

где в выражении (3) MA является массой первого активного материала, и MB является массой второго активного материала.

[0018] В случае если активный материал положительного электрода, как описано выше, используется для литий-ионной аккумуляторной батареи, активный материал положительного электрода способен проявлять превосходную эффективность первоначального заряда/разряда при поддержании высокой емкости за счет сохранения высокой обратимой емкости. Соответственно, активный материал положительного электрода подходящим образом используется для положительного электрода для литий-ионной аккумуляторной батареи. Как результат, литий-ионная аккумуляторная батарея может быть подходящим образом использована в качестве литий-ионной аккумуляторной батареи для источника питания привода или вспомогательного источника питания транспортного средства. Кроме того, литий-ионная аккумуляторная батарея также в достаточной степени применима в качестве литий-ионной аккумуляторной батареи, предназначенной для мобильного аппарата, такого как сотовый телефон.

[0019] Здесь, в случае, если d не удовлетворяет 0<d<0,5 в формуле состава (1), кристаллическая структура первого активного материала в некоторых случаях не стабилизирована. Напротив, в случае, если d удовлетворяет 0<d<0,5, первый активный материал склонен становиться слоистым оксидом переходного металла, относящимся к пространственной группе C2/m. Следует отметить, что из-за того, что первый активный материал является слоистым оксидом переходного металла, относящимся к пространственной группе C2/m, и дополнительно смешивается с вышеописанным вторым активным материалом, необратимая емкость в начальный период уменьшается в большей степени, за счет чего появляется возможность поддерживать высокую обратимую емкость.

[0020] Кроме того, в формуле состава (1) в случае, если d составляет 0,1 или более, другими словами, в случае, если d удовлетворяет 0,1≤d<0,5, состав первого активного материала менее склонен приближаться к Li2MnO3, и заряд/разряд становится простым, и, соответственно, это является предпочтительным. Кроме того, в случае, если d составляет 0,45 или менее, другими словами, в случае, если d удовлетворяет 0<d≤0,45, емкость заряда/разряда активного материала положительного электрода на единицу веса может задаваться равной 200 мА∙ч/г или более, что выше, чем в существующем слоистом активном материале положительного электрода, и, соответственно, это является предпочтительным. Следует отметить, что с вышеописанной точки зрения, в формуле состава (1) в случае, если d удовлетворяет 0,1≤d≤0,45, емкость заряда/разряда может быть увеличена при упрощении заряда/разряда, и, соответственно, это является особенно предпочтительным.

[0021] Кроме того, в формуле состава (1), предпочтительно, a+b+c удовлетворяет 1,05≤a+b+c≤1,4. При этом, в общем, известно то, что с точки зрения повышения чистоты материала и повышения электронной проводимости никель (Ni), кобальт (Co) и марганец (Mn) способствуют характеристикам емкости и мощности литий-ионной аккумуляторной батареи. Затем, из-за того, что a+b+c удовлетворяет 1,05≤a+b+c≤1,4, соответствующие элементы оптимизированы, и характеристики емкости и мощности могут еще более улучшаться. Следовательно, в случае, если для литий-ионной аккумуляторной батареи используется активный материал положительного электрода, содержащий первый активный материал, который удовлетворяет этому соотношению, то поддерживается высокая обратимая емкость, за счет чего возможно проявить превосходную эффективность первоначального заряда/разряда при поддержании высокой емкости.

[0022] Следует отметить, что если в формуле состава (1) удовлетворяются соотношения a+b+c+d=1,5 и 1,0<a+b+c<1,5, то значения a, b и c конкретно не ограничены. Тем не менее, предпочтительно, a удовлетворяет 0<a<1,5. Следует отметить, что в случае, если a не удовлетворяет a≤0,75, поскольку никель содержится в активном материале положительного электрода в описанном выше диапазоне d при условии, что никель (Ni) является двухвалентным, кристаллическая структура первого активного материала не в некоторых случаях стабилизирована. Следует отметить, что в случае, если a удовлетворяет a≤0,75, первый активный материал склонен становиться слоистым оксидом переходного металла, относящимся к пространственной группе C2/m с точки зрения кристаллической структуры.

[0023] Кроме того, в формуле состава (1), предпочтительно, b удовлетворяет 0≤b<1,5. Тем не менее, в случае, если b не удовлетворяет b≤0,5, то кристаллическая структура в некоторых случаях не стабилизирована, поскольку никель содержится в активном материале положительного электрода в описанном выше диапазоне d при условии, что никель (Ni) является двухвалентным, и дополнительно, поскольку в активном материале положительного электрода содержится кобальт (Co). Следует отметить, что в случае, если b удовлетворяет b≤0,5, первый активный материал склонен становиться слоистым оксидом переходного металла, относящимся к пространственной группе C2/m с точки зрения кристаллической структуры.

[0024] Кроме того, в формуле состава (1), предпочтительно, c удовлетворяет 0<c<1,5. Однако, в случае, если c не удовлетворяет c≤1,0, никель и кобальт содержатся в активном материале положительного электрода в описанном выше диапазоне d при условии, что никель является двухвалентным. Кроме того, марганец (Mn) содержится в активном материале положительного электрода в описанном выше диапазоне d при условии, что марганец является четырехвалентным. Поэтому кристаллическая структура активного материала положительного электрода в некоторых случаях не стабилизирована. Следует отметить, что в случае, если c удовлетворяет c≤1,0, первый активный материал склонен становиться слоистым оксидом переходного металла, относящимся к пространственной группе C2/m с точки зрения кристаллической структуры.

[0025] Кроме того, в формуле состава (1), предпочтительно, удовлетворяется соотношение a+b+c+d=1,5 с точки зрения стабилизации кристаллической структуры первого активного материала.

[0026] Кроме того, в формуле состава (2) в случае, если a′ не удовлетворяет 0≤a′<2,0, то с точки зрения кристаллической структуры второй активный материал не становится оксидом переходного металла шпинельного типа, относящимся к пространственной группе Fd-3m. Следует отметить, что в случае, если a′ равно 0,2 или менее, т.е. в случае, если a′ удовлетворяет 0≤a′≤0,2, емкость заряда/разряда активного материала положительного электрода на единицу веса может задаваться равной 200 мА∙ч/г или более, что выше, чем в существующем слоистом активном материале положительного электрода, и, соответственно, это является предпочтительным.

[0027] Кроме того, в формуле состава (2), M является по меньшей мере одним элементом-металлом с валентностью 2-4. В качестве подходящих примеров элемента-металла, как описано выше, например, можно упомянуть никель (Ni), кобальт (Co), цинк (Zn) и алюминий (Al). В активном материале положительного электрода они могут содержаться отдельно, или два или более из них могут содержаться в комбинации.

[0028] Кроме того, в литий-ионной аккумуляторной батарее по этому варианту воплощения относительное содержание первого активного материала и второго активного материала удовлетворяет соотношению, которое представлено выражением (3), в массовом отношении. Тем не менее, с точки зрения обеспечения возможности проявления превосходной эффективности первоначального заряда/разряда, предпочтительно, относительное содержание удовлетворяет соотношению, представленному выражением (4). Кроме того, с точки зрения обеспечения возможности проявления превосходной эффективности первоначального заряда/разряда, более предпочтительно, относительное содержание удовлетворяет соотношению, представленному выражением (5):

[0029] 100:0<MA:MB<0:100 …(3)

100:0<MA:MB≤50:50 …(4)

100:0<MA:MB≤85:15 …(5),

где в выражениях (3)-(5) MA является массой первого активного материала, и MB является массой второго активного материала.

[0030] В настоящее время считается, что в активном материале положительного электрода по этому варианту воплощения его эффекты получаются посредством механизма, который описывается ниже. Тем не менее, в объем настоящего изобретения включен даже случай, когда эти эффекты получаются независимо от механизма, который описывается ниже.

[0031] Во-первых, считается необходимым, чтобы в активном материале положительного электрода по этому варианту воплощения сосуществовали: первый активный материал, который имеет кристаллическую структуру, содержащую избыточный литий (Li), который является необратимым; и второй активный материал, который имеет кристаллическую структуру с дефектом или узлом, в который может входить литий. То есть, когда сосуществуют первый активный материал и второй активный материал, которые являются такими, как описано выше, по меньшей мере часть избыточного лития, который является необратимым, в первом активном материале внедряется в дефект или узел второго активного материала, в который может входить литий, и количество такого необратимого лития уменьшается. Таким образом может поддерживаться высокая обратимая емкость и может сохраняться высокая емкость. Кроме того, рассматривается следующее. В частности, даже если количество необратимого лития уменьшается, содержится первый активный материал, который имеет кристаллическую структуру, содержащую избыточный литий, и, соответственно, повышается эффективность первоначального заряда/разряда.

[0032] Кроме того, в случае если рассматривается упомянутый выше механизм внедрения лития, предпочтительно, первый активный материал и второй активный материал размещаются рядом друг с другом. Следовательно, предпочтительно, частицы первого активного материала и частицы второго активного материала смешиваются друг с другом, и первый активный материал и второй активный материал содержатся в состоянии, при котором частицы их обоих приведены в соприкосновение друг с другом; тем не менее, состояние первого активного материала и второго активного материала не ограничивается этим и может быть неоднородным. Например, первый активный материал и второй активный материал могут быть размещены уложенными «стопкой» друг на друга. То есть, в положительном электроде литий-ионной аккумуляторной батареи слой, содержащий первый активный материал, и слой, содержащий второй активный материал, могут быть уложены «стопкой» друг на друга в состоянии приведения в прямой контакт друг с другом. В случае, если рассматривается упомянутый выше механизм внедрения лития, считается, что, предпочтительно, первый активный материал размещается на стороне описываемого ниже токоотвода, а второй активный материал размещается на стороне описываемого ниже слоя электролита.

[0033] Далее, со ссылкой на чертежи приводится подробное описание положительного электрода для литий-ионной аккумуляторной батареи согласно варианту воплощения настоящего изобретения и литий-ионной аккумуляторной батареи согласно ему. Следует отметить, что соотношения размеров на чертежах, которые содержатся по ссылке в следующих вариантах воплощения, преувеличены для удобства пояснения и в некоторых случаях отличаются от фактических соотношений.

Строение литий-ионной аккумуляторной батареи

[0034] ФИГ. 1 показывает литий-ионную аккумуляторную батарею согласно варианту воплощения настоящего изобретения. Следует отметить, что литий-ионная аккумуляторная батарея, как описано выше, называется многослойной литий-ионной аккумуляторной батареей.

[0035] Как показано на ФИГ. 1, литий-ионная аккумуляторная батарея 1 по этому варианту воплощения имеет строение, при котором элемент 10 батареи с присоединенными выводом 21 положительного электрода и выводом 22 отрицательного электрода заключен вовнутрь внешнего корпуса 30, сформированного из многослойной пленки. Далее, в этом варианте воплощения, вывод 21 положительного электрода и вывод 22 отрицательного электрода выведены в противоположных друг другу направлениях изнутри внешнего корпуса 30 наружу. Следует отметить, что хотя это и не показано, вывод положительного электрода и вывод отрицательного электрода могут быть выведены в одно и том же направлении изнутри внешнего корпуса наружу. Кроме того, вывод положительного электрода и вывод отрицательного электрода, которые являются такими, как описано выше, могут присоединяться к токоотводам положительного электрода и токоотводам отрицательного электрода, которые описываются ниже, например, посредством ультразвуковой сварки, контактной сварки и т.п.

Вывод положительного электрода и вывод отрицательного электрода

[0036] Вывод 21 положительного электрода и вывод 22 отрицательного электрода состоят, например, из металлического материала, такого как алюминий (Al), медь (Cu), титан (Ti), никель (Ni), их сплавы и нержавеющая сталь (SUS). Тем не менее, металлический материал не ограничивается ими, и могут использоваться материалы, которые к настоящему времени общеизвестны и используются в качестве выводов для литий-ионной аккумуляторной батареи.

[0037] Следует отметить, что в качестве вывода положительного электрода и вывода отрицательного электрода могут использоваться сформированные из идентичного материала или сформированные из различных материалов. Кроме того, в этом варианте воплощения выводы, которые приготовлены отдельно, может подключаться к токоотводам положительного электрода и токоотводам отрицательного электрода, или альтернативно, выводы могут формироваться индивидуально посредством удлинения соответствующих токоотводов положительного электрода и соответствующих токоотводов отрицательного электрода, которые описываются ниже. Хотя это и не показано, предпочтительно, вывод положительного электрода и вывод отрицательного электрода на участках выведения из внешнего корпуса покрыты теплостойкими и изоляционными термоусадочными трубками и т.п. с тем, чтобы не оказывать влияние на изделия (например, автомобильные компоненты и, в частности, электронные компоненты и т.п.) из-за вызывания утечки тока и т.д. при контактировании с периферийными приборами, проводами и т.п.

[0038] Кроме того, хотя это и не показано, в целях отведения тока за пределы батареи могут использоваться токоотводящие пластины. Токоотводящие пластины электрически подключены к токоотводам и выводам и выведены за пределы многослойной пленки в качестве наружного упаковочного материала батареи. Материал, который составляет токоотводящие пластины, конкретно не ограничен, и может быть использован высокоэлектропроводящий материал, который является общеизвестным и к настоящему времени используется в качестве токоотводящих пластин для литий-ионной аккумуляторной батареи. В качестве такого составляющего токоотводящие пластины материала предпочтителен, например, металлический материал, такой как алюминий (Al), медь (Cu), титан (Ti), никель (Ni), их сплавы и нержавеющая сталь (SUS), а с точки зрения облегченной конструкции, коррозионной стойкости и высокой проводимости более предпочтительны алюминий, медь и т.п. Следует отметить, что для токоотводящей пластины положительного электрода и токоотводящей пластины отрицательного электрода может быть использован один и тот же материал, или же могут использоваться различные материалы.

Внешний корпус

[0039] Предпочтительно, внешний корпус 30 выполнен, например, из пленочного наружного упаковочного материала из соображений миниатюризации и снижения веса. Тем не менее, внешний корпус не ограничивается этим, и может быть использован материал, который к настоящему времени общеизвестен и используется для внешнего корпуса для литий-ионной аккумуляторной батареи. Другими словами, также может применяться кожух в форме металлической коробки.

[0040] Следует отметить, что с точки зрения обеспечения превосходного повышения мощности и характеристик охлаждения и надлежащего применения в батарее для большого аппарата, такого как электромобиль и гибридный электромобиль, в качестве внешнего корпуса можно упомянуть составную многослойную пленку полимер-металл, имеющую превосходную теплопроводность. Более конкретно, может надлежащим образом использоваться внешний корпус, который выполнен из многослойной пленки с трехслойной структурой, образованной посредством укладки полипропилена в качестве термокомпрессионного слоя, алюминия в качестве металлического слоя и нейлона в качестве внешнего защитного слоя друг на друга в этом порядке.

[0041] Следует отметить, что вместо вышеуказанной многослойной пленки, внешний корпус может состоять из другой структуры, например, многослойной пленки, которая не имеет металлического материала, полимерной пленки, такой как полипропилен, пленки металла и т.п.

[0042] При этом общее строение внешнего корпуса может быть представлено пакетной структурой из внешнего защитного слоя/металлического слоя/термокомпрессионного слоя. Тем не менее, в некоторых случаях внешний защитный слой состоит из нескольких слоев, и термокомпрессионный слой состоит из нескольких слоев. Следует отметить, что достаточно, если металлический слой выполняет функцию непроницаемой барьерной пленки, и может быть использована не только алюминиевая фольга, но и фольга из нержавеющей стали, никелевая фольга, железная фольга с покрытием и т.п. Тем не менее, в качестве металлического слоя может быть надлежащим образом использована алюминиевая фольга, которая является тонкой, легкой и имеет превосходную обрабатываемость.

[0043] Конфигурации, применимые в качестве внешнего корпуса, перечислены ниже в формате (внешний защитный слой/металлический слой/термокомпрессионный слой): нейлон/алюминий/нерастянутый полипропилен; полиэтилентерефталат/алюминий/нерастянутый полипропилен; полиэтилентерефталат/алюминий/полиэтилентерефталат/нерастянутый полипропилен; полиэтилентерефталат/нейлон/алюминий/нерастянутый полипропилен; полиэтилентерефталат/нейлон/алюминий/нейлон/нерастянутый полипропилен; полиэтилентерефталат/нейлон/алюминий/нейлон/полиэтилен; нейлон/полиэтилен/алюминий/полиэтилен низкой плотности с неразветвленной цепью; полиэтилентерефталат/полиэтилен/алюминий/полиэтилентерефталат/полиэтилен низкой плотности; полиэтилентерефталат/нейлон/алюминий/полиэтилен низкой плотности/нерастянутый полипропилен; и т.п.

Элемент батареи

[0044] Как показано на ФИГ. 1, элемент 10 батареи имеет строение, при котором положительные электроды 11, слои 13 электролита и отрицательные электроды 12 уложены стопкой друг на друга. При этом в каждом из положительных электродов 11 слои 11B активного материала положительного электрода сформированы на обеих основных поверхностях токоотвода 11A положительного электрода, и в каждом из отрицательных электродов 12 слои 12B активного материала отрицательного электрода сформированы на обеих основных поверхностях токоотвода 12A отрицательного электрода. При этом слой 11B активного материала положительного электрода, который сформирован на одной из основных поверхностей токоотвода 11A положительного электрода в одном положительном электроде 11, и слой 12B активного материала отрицательного электрода, который сформирован на одной из основных поверхностей токоотвода 12A отрицательного электрода в отрицательном электроде, смежном с этим одним положительным электродом 11, обращены друг к другу при размещении между ними слоя 13 электролита. Таким образом, множества положительных электродов, слоев электролита и отрицательных электродов уложены стопкой друг на друга в этом порядке.

[0045] Таким образом, слой 11B активного материала положительного электрода, слой 13 электролита и слой 12B активного материала отрицательного электрода, которые являются смежными друг с другом, составляют один слой 14 единичного аккумулятора. Следовательно, литий-ионная аккумуляторная батарея 1 по этому варианту воплощения становится литий-ионной аккумуляторной батареей, в которой множество слоев 14 единичного аккумулятора уложены стопкой друг на друга и тем самым электрически подключены параллельно друг к другу. Следует отметить, что каждый из положительных электродов и отрицательных электродов может быть тем, в котором каждый из слоев активного материала сформирован на одной из основных поверхностей каждого токоотвода. В этом варианте воплощения, например, на токоотводе 12A отрицательного электрода, расположенном на самом внешнем слое элемента 10 батареи, слой 12B активного материала отрицательного электрода сформирован только на одной его поверхности.

[0046] Кроме того, хотя это и не показано, на внешних окружных перифериях слоев единичного аккумулятора могут быть предусмотрены изолирующие слои для изоляции друг от друга токоотводов положительного электрода и токоотводов отрицательного электрода, которые являются смежными друг с другом. Предпочтительно, описанные выше изолирующие слои образованы из материала, который удерживает электролит, содержащийся в слоях электролита и т.п., и предотвращает утечку жидкости электролита наружу из слоев единичного аккумулятора. В частности, могут применяться: пластики общего назначения, такие как полипропилен (PP), полиэтилен (PE), полиуретан (PUR), смола на основе полиамида (PA), политетрафторэтилен (PTFE), поливинилиденфторид (PVDF) и полистирол (PS); термопластический олефиновый каучук; и т.п. Кроме того, также может быть использован силиконовый каучук.

Токоотвод положительного электрода и токоотвод отрицательного электрода

[0047] Токоотводы 11A положительного электрода и токоотводы 12A отрицательного электрода состоят из электропроводящего материала. Размер токоотводов может быть определен в зависимости от назначения применения батареи. Например, если токоотводы используются для крупной батареи, от которой требуется высокая плотность энергии, то используются токоотводы с большой площадью. Толщина токоотводов также конкретно не ограничена. Обычно, толщина токоотводов приблизительно составляет в диапазоне 1-100 мкм. Форма токоотводов конкретно не ограничена. В элементе 10 батареи, показанном на ФИГ. 1, помимо токоотводной фольги, могут использоваться токоотводы с сетчатым рисунком (развернутая сетка и т.п.) и т.п. Следует отметить, что в случае, если тонкопленочный сплав в качестве примера активного материала отрицательного электрода непосредственно формируется на токоотводах 12A отрицательного электрода способом распыления и т.п., желательно использовать токоотводную фольгу.

[0048] Этот материал, который составляет токоотводы, конкретно не ограничен. Например, может использоваться металл и может использоваться смола, в которой электропроводящий заполнитель добавлен к электропроводящему полимерному материалу или неэлектропроводящему полимерному материалу. В частности, в качестве металла, приводятся алюминий (Al), никель (Ni), железо (Fe), нержавеющая сталь (SUS), титан (Ti), медь (Cu) и т.п. Помимо них, предпочтительно использовать плакированный материал из никеля и алюминия, плакированный материал из меди и алюминия, покрытый металлом материал, в котором эти металлы комбинируются друг с другом, и т.п. Кроме того, металл может быть фольгой, в которой алюминий нанесен на поверхность металла. Из них, алюминий, нержавеющая сталь, медь и никель являются предпочтительными с точки зрения электронной проводимости, рабочего потенциала батареи и т.п.

[0049] Кроме того, в качестве электропроводящего полимерного материала, например, приводятся полианилин, полипиррол, политиофен, полиацетилен, полипарафенилен, полифениленвинилен, полиакрилонитрил, полиоксадиазол и т.п. Такие электропроводящие полимерные материалы имеют достаточную электропроводность, даже если электропроводящий заполнитель не добавляется в них, и, соответственно, являются преимущественными в отношении упрощения процесса изготовления или снижения веса токоотводов.

[0050] В качестве неэлектропроводящего полимерного материала, например, приводятся полиэтилен (PE: полиэтилен высокой плотности (HDPE), полиэтилен низкой плотности (LDPE) и т.п.), полипропилен (PP), полиэтилентерефталат (PET), полиэфирнитрил (PEN), полиимид (PI), полиамидоимид (PAI), полиамид (PA), политетрафторэтилен (PTFE), стиролбутадиеновый каучук (SBR), полиакрилонитрил (PAN), полиметилакрилат (PMA), полиметилметакрилат (PMMA), поливинилиденхлорид (PVC), поливинилиденфторид (PVDF), полистирол (PS) и т.п. Такие неэлектропроводящие полимерные материалы имеют превосходную стойкость к потенциалу и стойкость к растворителям.

[0051] Согласно потребностям, электропроводящий заполнитель может добавляться к электропроводящему полимерному материалу или неэлектропроводящему полимерному материалу, который описывается выше. В частности, в случае, если смола, которая служит в качестве материала основы токоотводов, состоит только из неэлектропроводящего полимера, электропроводящий заполнитель становится совершенно обязательным для того, чтобы придать смоле электропроводность. При условии, что он представляет собой обладающий электропроводностью материал, может быть использован электропроводящий заполнитель без конкретных ограничений. Например, в качестве материала, обладающего превосходной электропроводностью, стойкостью к потенциалу или свойствами барьера для ионов лития, приводятся металл, электропроводящий углерод и т.п.

[0052] В качестве металла, используемого в качестве электропроводящего заполнителя, можно упомянуть по меньшей мере один металл, выбранный из группы, состоящей из никеля (Ni), титана (Ti), алюминия (Al), меди (Cu), платины (Pt), железа (Fe), хрома (Cr), олова (Sn), цинка (Zn), индия (In), сурьмы (Sb) и калия (K). Кроме того, в качестве предпочтительных примеров также можно упомянуть сплавы или оксиды металлов, которые содержат эти металлы.

[0053] Кроме того, в качестве предпочтительного примера электропроводящего углерода можно упомянуть по меньш