Конструктивные улучшения дыхательного приспособления

Иллюстрации

Показать все

Группа изобретений относится к медицине. Дыхательное устройство для доставки газа пациенту содержит проходной канал для газов, который имеет проксимальный и дистальный концы, и дополнительное впускное отверстие для газа в боковой стенке проходного канала для газов. Дополнительное впускное отверстие для газа приспособлено направлять газ вдоль внутренней поверхности проходного канала для газов, так что газ следует по, в большинстве случаев, винтовой траектории в направлении дистального конца проходного канала для газов. Группа изобретений позволяет уменьшить травматичность при ее использовании и упростить конструкцию устройства. 3 н. и 23 з.п. ф-лы, 13 ил.

Реферат

Данное изобретение относится к дыхательному приспособлению и, в частности, к конструктивным улучшениям, касающимся доставки газов пациенту.

В случаях, когда требуется доставить газ пациенту, обычно применяются те или иные виды интерфейсных устройств. Интерфейсное устройство может быть инвазивное, то есть проникающее в дыхательные пути пациента. Устройства, приспособленные для этой цели, включают в себя интубационные трубки, ларингеальные маски и другие надъязычные дыхательные устройства. В качестве альтернативы, интерфейсное устройство может быть неинвазивное, то есть не проникающее в дыхательные пути пациента, примеры которого включают в себя респираторные маски, носовые полые иглы и назальные вкладыши. Также, принято доставлять дополнительный газ пациенту через инвазивные устройства, обеспечивающие воздуховод, которые преимущественно используются для осуществления свободного дыхания у пациента.

Инвазивные дыхательные устройства обычно содержат проходной канал для газов, который проходит от проксимального конца указанного устройства, который располагается в полости рта или в носу пациента, к дистальному концу указанного устройства, который располагается внутри дыхательных путей пациента, например, в гортани или трахее. Данные устройства могут быть приспособлены присоединяться своим проксимальным концом к приспособлению для доставки ингаляционных газов пациенту и также, по возможности, удаления выдыхаемых газов из пациента. В качестве альтернативы, дыхательные устройства могут быть приспособлены для сообщения с атмосферой с их проксимального конца.

В случае, когда необходимо доставить пациенту терапевтический газ, такой, как кислород, принято подавать указанный терапевтический газ с проксимального конца устройства либо по главному проходному каналу для газов, либо через дополнительный впуск. Недостаток данной конструкции состоит в том, что газы внутри остальной части устройства, то есть между проксимальным и дистальным концами, будут вдыхаться прежде, чем какой-либо терапевтический газ. Концентрация терапевтического газа, вдыхаемого пациентом, таким образом, является относительно низкой.

Традиционная конструкция, позволяющая смягчать данную проблему, предполагает введение катетера внутрь проходного канала для газов в описываемом устройстве, так что дистальный конец катетера находится в области дистального конца устройства, обеспечивающего воздуховод. Затем катетер используется для доставки терапевтического газа пациенту. Однако, такое решение не является полностью удовлетворительным, поскольку катетер частично перекрывает проходной канал для газов указанного устройства и может вызвать травму дыхательных путей пациента во время использования.

Другие попытки устранения указанной проблемы включают в себя конструкции, раскрываемые в документах US 5036847 и US 6516801. Данные конструкции предусматривают наличие трубок для газа внутри стенок устройства, обеспечивающего воздуховод, которые с высокой скоростью подают струи газа на дистальный конец устройства, обеспечивающего воздуховод. Однако, данные конструкции намного более сложны по сравнению с традиционными интерфейсными устройствами и устройствами, обеспечивающими воздуховод, следовательно, дорогостоящи для производства.

В дополнение, конструкции, раскрываемые в документах US 5036847 и US 6516801, применялись для создания постоянного положительного давления в дыхательных путях (СРАР), например, во впускном отверстии для газа респираторной маски. В частности, вихревое движение, образуемое струями газа высокой скорости, создает давление в дыхательных путях, которое может исключить необходимость дополнительных клапанов. Однако, данные конструкции также намного более сложны по сравнению с традиционными интерфейсными устройствами и устройствами, обеспечивающими воздуховод, и, следовательно, дорогостоящи для производства.

К настоящему времени были разработаны дыхательные и соединительные устройства для доставки газа пациенту, которые в значительной степени преодолевают или уменьшают некоторые или все вышеупомянутые и/или другие недостатки, относящиеся к известному уровню техники.

В соответствии с первым аспектом данного изобретения, предлагается дыхательное устройство для доставки газа пациенту, причем, данное устройство содержит проходной канал для газов, который имеет проксимальный и дистальный концы, и дополнительный впуск для газа в боковой стенке проходного канала для газов, в котором дополнительный впуск для газа приспособлено направлять газ вдоль внутренней поверхности проходного канала для газов, так что газ следует по, в большинстве случаев, винтовой траектории в направлении дистального конца проходного канала для газов.

В соответствии с дальнейшим аспектом данного изобретения, предлагается способ доставки газа пациенту, причем, данный способ содержит следующие этапы:

(a) обеспечение дыхательного устройства для доставки газа пациенту, причем, данное устройство содержит проходной канал для газов, который имеет проксимальный и дистальный концы, и

(b) направление газа вдоль внутренней поверхности проходного канала для газов, так что газ следует по, в большинстве случаев, винтовой траектории в направлении дистального конца проходного канала для газов.

В соответствии с дальнейшим аспектом данного изобретения, предлагается дыхательное устройство для доставки газа пациенту, причем, данное устройство содержит проходной канал для газов, который имеет проксимальный и дистальный концы, и дополнительный впуск для газа в боковой стенке проходного канала для газов, в котором дополнительный впуск для газа приспособлено направлять газ во внеосевой участок проксимального конца проходного канала для газов, под непрямым углом к продольной оси проходного канала для газов, тем самым, создавая спиральный поток внутри проходного канала для газов в направлении дистального конца проходного канала для газов.

Дыхательные устройства и способ, согласно настоящему изобретению, являются эффективными, прежде всего, потому, что было обнаружено, что газ, направляемый вдоль внутренней поверхности устройства так, что газ следует по, в большинстве случаев, винтовой траектории в направлении дистального конца проходного канала для газов, пройдет большее расстояние вдоль проходного канала для газов перед тем, как смешаться с другими газами внутри проходного канала для газов, по сравнению с конструкциями известного уровня техники. Настоящее изобретение, следовательно, дает возможность вводить газ с проксимального участка проходного канала для газов, при этом газ смешивается с другими газами в проходном канале для газов, когда он достигает дистального участка проходного канала для газов.

Таким образом, настоящее изобретение является особенно подходящим для использования с инвазивными дыхательными устройствами. В частности, инвазивное дыхательное устройство может быть снабжено дополнительным впускным отверстием для газа в области устройства, которая располагается снаружи относительно тела пациента во время использования, и дополнительный впуск для газа может быть приспособлено направлять газ вдоль проходного канала для газов так, что газ следует по, в большинстве случаев, винтовой траектории в направлении дистального конца проходного канала для газов и смешивается с другими газами внутри проходного канала для газов в области описываемого устройства, которая располагается внутри тела пациента во время использования.

Следовательно, настоящее изобретение является подходящим для использования с инвазивными дыхательными устройствами, приспособленными функционировать в качестве интерфейсных устройств, то есть интерфейсов между дыхательным приспособлением и пациентом, такими как интубационные трубки, ларингеальные маски и надъязычные дыхательные трубки. Настоящее изобретение также подходит для использования с инвазивными дыхательными устройствами, которые приспособлены, прежде всего, для обеспечения свободного дыхания у пациента, то есть с такими устройствами, обеспечивающими воздуховод, как орофарингеальные воздуховоды и трахеотомические трубки.

Концентрация газа, подаваемого через дополнительный впуск для газа, которая вдыхается пациентом, таким образом, может быть увеличена, в частности, так называемое «мертвое пространство внутри дыхательного устройства может быть сокращено. Кроме того, дыхательное устройство, в соответствии с настоящим изобретением, не требует вспомогательных устройств, таких как катетеры, которые необходимо вводить в проходной канал для газов, а также не требует сложных конфигураций, например, трубок для газа внутри стенок устройства, обеспечивающего воздуховод, как в конструкциях известного уровня техники.

Настоящее изобретение также подходит для использования с неинвазивными дыхательными устройствами, в которых полезным является обеспечение смешивания газов в области проходного канала для газов, которая удалена от дополнительного впуска для газа. В частности, газ, подаваемый через дополнительный впуск для газа, может быть приспособлен смешиваться с другими газами внутри проходного канала для газов в области описываемого устройства, в которой невозможно, или нежелательно, предусмотреть впуск для газа. В дополнение, как более подробно описывается ниже, настоящее изобретение может применяться в неинвазивном дыхательном устройстве для того, чтобы обеспечивать положительное давление в конце выдоха (PEEP) и/или постоянное положительное давление в дыхательных путях (СРАР). Примерами неинвазивных дыхательных устройств являются респираторные маски, носовые полые иглы и назальные вкладыши.

Считается, что сочетание движущей силы газа, подаваемого через дополнительный впуск для газа, и центростремительной силы, прикладываемой внутренней поверхностью устройства, обеспечивающего воздуховод, служит для поддержания потока газа в радиально внешней области проходного канала для газов, до тех пор, пока движущая сила газа не сократится в достаточной мере для того, чтобы поток газа стал вихревым в радиально внутренней области проходного канала для газов, тем самым, вызывая смешивание указанного газа с другими газами в проходном канале для газов.

«Другими газами в проходном канале для газов» обычно являются газы, которые подаются через проксимальный конец проходного канала для газов либо из дыхательного приспособления, к которому описываемое устройство подключено, либо из атмосферы, и газы, которые выдыхаются пациентом. Считается, что данные «другие газы» образуют главный поток во внутренней области проходного канала для газов, притом что газ, подаваемый через дополнительный впуск для газа, проходит в радиально внешней области проходного канала для газов, пока не произойдет смешивание.

Дыхательное устройство, в соответствии с настоящим изобретением, в частности, подходит для использования в кислородной терапии. В частности, дополнительный впуск для газа может быть присоединено к источнику кислорода, так что, при использовании, поток кислорода проходит по винтовой траектории в направлении дистального конца проходного канала для газов. Кислород, таким образом, может смешиваться с другими газами внутри проходного канала для газов в дистальной области указанного проходного канала для газов, тем самым, увеличивая концентрацию кислорода, вдыхаемого пациентом, по сравнению с устройствами известного уровня техники.

Дыхательное устройство может быть приспособлено для присоединения к дыхательному контуру с проксимального конца проходного канала для газов. В качестве альтернативы, проходной канал для газов может быть приспособлен для сообщения с атмосферой с его проксимального конца, как, например, в случае устройства, обеспечивающего воздуховод. В данных вариантах осуществления, дополнительный впуск для газа может быть закрыт, когда дыхательное устройство подсоединено к дыхательному контуру, такому как анестезиологический дыхательный контур, или дыхательное устройство сообщается с атмосферой с его проксимального конца. Однако, в случае, когда необходимо обеспечить пациента терапевтическим газом, таким как кислород, источник указанного газа может быть присоединен к дополнительному впуску для газа и газ подан пациенту, как описывается выше. Например, такие устройства особенно подходят для послеоперационной кислородной терапии.

Поскольку дыхательное устройство, согласно данному изобретению, может применяться для обеспечения вихревой области газа, такого как кислород, при относительно высокой концентрации на дистальном участке проходного канала для газов, устройство, обеспечивающее воздуховод, также особенно полезно для использования при пассивном насыщении кислородом. В частности, в случае, когда пациент не дышит, источник кислорода может быть подсоединен к дополнительному впуску для газа дыхательного устройства, согласно данному изобретению, и кислород подан пациенту. Было обнаружено, что вихревой поток кислорода в дистальной области газа проходного канала для газов, как предусматривает настоящее изобретение, может содействовать газообмену между устройством, обеспечивающим воздуховод, и легкими пациента более эффективно, чем простая броуновская газовая диффузия. Это может быть особенно полезным во время реанимации.

Также, выяснилось, что в случае, когда к дополнительному впуску для газа подается высокоскоростной поток газа, например, кислорода, вихревой поток, генерируемый при смешивании газа с другими газами в проходном канале для газов, обеспечивает невосприимчивость к выдыханию и/или вдыханию пациента и, следовательно, может создавать положительное давление в конце выдоха (PEEP) и/или постоянное положительное давление в дыхательных путях (СРАР). Это давление РЕЕР/СРАР может быть относительно низким, но может быть достаточным для того, чтобы поддерживать легкие пациента, по меньшей мере, частично наполненными, а также увеличивать эффективность газообмена. Фактически, настоящее изобретение предлагает конструкцию для создания РЕЕР/СРАР, намного более простую и поэтому менее дорогостоящую для производства, чем конструкции известного уровня техники.

Было обнаружено, что РЕЕР/СРАР может создаваться, когда скорость потока через дополнительный впуск для газа достаточно высока, для заданного размера выходного отверстия дополнительного впуска для газа. Это означает, что конкретное дыхательное устройство может обеспечивать РЕЕР/СРАР, когда скорость потока через дополнительный впуск для газа превышает пороговое значение. В частности, выяснилось, что в случае, когда диаметр выходного отверстия равен приблизительно 0,8 мм, РЕЕР/СРАР может создаваться при скорости потока через дополнительный впуск для газа, равной приблизительно 15 литров в минуту или выше. Таким образом, если РЕЕР/СРАР не требуется, скорость потока может быть уменьшена до приблизительно 10 литров в минуту, например.

Дополнительный впуск для газа, предпочтительно, включает в себя проксимальный конец, приспособленный для подсоединения к источнику газа, и дистальный конец, сообщающийся по текучей среде с выходным отверстием в боковой стенке проходного канала для газов. Дополнительный впуск для газа, предпочтительно, приспособлено подавать газ на выходное отверстие так, чтобы струя газа направлялась по внутренней поверхности проходного канала для газов. Площадь выходного отверстия, предпочтительно, меньше площади проксимального конца дополнительного впуска для газа, так что дополнительный впуск для газа увеличивает скорость потока газа через выходное отверстие.

Дополнительный впуск для газа, предпочтительно, направляет газ во внеосевой участок проходного канала для газов, под непрямым углом к продольной оси проходного канала для газов, чтобы создать спиральный поток внутри проходного канала для газов. Дополнительный впуск для газа для газа, предпочтительно, направляет газ в проходной канал для газов под углом к продольной оси проходного канала для газов, который составляет от 10 до 80, более предпочтительно, от 30 до 60, например, приблизительно, 45.

Дополнительный впуск для газа, предпочтительно, выступает из боковой стенки проходного канала для газов в направлении, параллельном, но смещенном относительно осевой плоскости участка проходного канала для газов, в которой сформировано дополнительный впуск для газа. Дополнительный впуск для газа, предпочтительно, также выступает из проходного канала для газов под непрямым углом к участку проходного канала для газов, в котором сформирован дополнительный впуск для газа, в направлении проксимального конца проходного канала для газов. В соответствии с дальнейшим аспектом данного изобретения, предлагается дыхательное устройство для доставки газа пациенту, причем, данное устройство содержит проходной канал для газов, который имеет проксимальный и дистальный концы, и дополнительный впуск для газа в боковой стенке проходного канала для газов, в котором дополнительный впуск для газа выступает из боковой стенки проходного канала для газов в направлении, параллельном, но смещенном относительно осевой плоскости участка проходного канала для газов, в которой сформирован дополнительный впуск для газа, и дополнительный впуск для газа также выступает из проходного канала для газов под непрямым углом к участку проходного канала для газов, в котором сформировано дополнительный впуск для газа, в направлении проксимального конца проходного канала для газов.

Площадь выходного отверстия, предпочтительно, значительно меньше внутренней площади поперечного сечения проходного канала для газов. В частности, величина диаметра выходного отверстия, предпочтительно, находится в пределах от 0,2 до 3 мм, более предпочтительно, в пределах от 0,4 до 2 мм, и наиболее предпочтительно, в пределах от 0,6 до 1,2 мм. Внутренний диаметр проходного канала для газов обычно составляет величину в пределах от 10 до 25 мм, например, приблизительно, 15 мм.

Размер выходного отверстия, предпочтительно, выбирается так, чтобы получить желаемый диапазон расхода спирального потока внутри проходного канала для газов, который также определяется внутренним диаметром проходного канала для газов и скоростью потока газа через выходное отверстие. В частности, было обнаружено, что выходное отверстие размером от 0,6 до 1,2 мм оказывается подходящим в случае, когда внутренний диаметр проходного канала для газов равен приблизительно 15 мм, а скорость потока газа находится в пределах от 5 до 15 lm-1.

В случае, когда дыхательное устройство представляет собой инвазивное интерфейсное устройство, такое как ларингеальная маска или интубационная трубка, дистальный конец проходного канала для газов, предпочтительно, приспособлен находиться в герметичном контакте с дыхательными путями пациента, такими как вход в гортань или трахея. Следовательно, в данных вариантах осуществления, описываемое дыхательное устройство, предпочтительно, включает в себя уплотняющий элемент на его дистальном конце, который имеет внешнюю форму, легко деформирующуюся в форму, соответствующую форме внутренней поверхности дыхательных путей пациента в том месте, где с ними будет контактировать уплотняющий элемент. Например, в случае, когда дыхательное интерфейсное устройство представляет собой интубационную трубку, наружная поверхность уплотняющего элемента, предпочтительно, имеет, по существу, округлую или эллиптическую форму поперечного сечения, до начала использования. Такой уплотняющий элемент принято называть «манжетой».

Проксимальный конец проходного канала для газов может быть просто приспособлен сообщаться по текучей среде с атмосферой, так чтобы атмосферный воздух вдыхался пациентом, а выдыхаемые пациентом газы уходили в атмосферу, в процессе использования. Однако, в случае, когда дыхательное устройство является интерфейсным устройством, проксимальный конец проходного канала для газов приспособлен для присоединения к дыхательному приспособлению, такому как дыхательный контур. Таким образом, в данных вариантах осуществления, дыхательное устройство, предпочтительно, содержит соединительный элемент на проксимальном конце проходного канала для газов. Наиболее предпочтительно, дополнительный впуск для газа сформировано интегрально с соединительным элементом, то есть указанный соединительный элемент и дополнительный впуск для газа могут быть изготовлены в виде единого компонента, например, путем одиночного производства методом литьевого прессования.

Проходной канал для газов, предпочтительно, имеет форму, подходящую для поддержания спирального потока газа на необходимом расстоянии. В частности, проходной канал для газов, предпочтительно, имеет в целом округлое поперечное сечение и, предпочтительно, имеет в целом постоянное поперечное сечение, по меньшей мере, вдоль того участка проходного канала для газов, в котором необходимо поддерживать спиральный поток газа от дополнительного впуска для газа, во время использования. Внутренняя поверхность проходного канала для газов, предпочтительно, является, по существу, гладкой. Однако, внутренняя поверхность проходного канала для газов может включать в себя структуры, способствующие вихревому потоку в дистальной области проходного канала для газов, в случае необходимости, которые могут иметь форму выступов и/или углублений во внутренней поверхности.

В случае, когда дыхательное устройство является инвазивным, проходной канал для газов данного дыхательного устройства, предпочтительно, является достаточно деформируемым для того, чтобы облегчать его введение в дыхательные пути пациента. Однако, в данных вариантах осуществления, дыхательное устройство, предпочтительно, содержит соединительный элемент на проксимальном конце проходного канала для газов, причем, дополнительный впуск для газа выступает из его боковой стенки. Соединительный элемент, таким образом, может быть сформирован из более жесткого материала, чем остальная часть проходного канала для газов, с тем чтобы способствовать присоединению к дыхательному контуру и/или источнику газа.

Фактически, соединительный элемент для дыхательного приспособления, который включает в себя дополнительный впуск для газа, выступающее из боковой стенки, может поставляться отдельно для использования с традиционными дыхательными устройствами.

В соответствии с дальнейшим аспектом данного изобретения, предлагается переходный элемент для использования с дыхательным устройством для доставки газа пациенту, причем, переходный элемент включает в себя проходной канал для газов, приспособленный присоединяться к проксимальному концу проходного канала для газов дыхательного устройства, и дополнительный впуск для газа в боковой стенке проходного канала для газов переходного элемента, в котором дополнительный впуск для газа приспособлено направлять газ по внутренней поверхности проходного канала для газов переходного элемента и/или устройства, обеспечивающего воздуховод, так что газ следует по, в большинстве случаев, винтовой траектории в направлении дистального конца проходного канала для газов дыхательного устройства.

Дыхательное устройство может принадлежать к любому типу дыхательных устройств, описываемых выше в отношении предыдущих аспектов данного изобретения. Вышеупомянутый переходный элемент, предпочтительно, содержит цилиндрический соединительный элемент, приспособленный для сцепления с проксимальным концом устройства, обеспечивающего воздуховод, и также, предпочтительно, цилиндрический соединительный элемент, приспособленный для присоединения к дыхательному устройству. Проходные каналы для газов переходного элемента и дыхательного устройства, предпочтительно, являются соосными, то есть совмещенными, и предпочтительно, имеют одинаковые формы и размеры поперечного сечения. В частности, проходной канал для газов дыхательного устройства может содержать углубление, приспособленное для вмещения цилиндрического соединительного элемента переходного элемента, так что внутренняя поверхность скомбинированной конструкции переходного элемента и дыхательного устройства является достаточно гладкой для того, чтобы не оказывать воздействия на спиральный поток газа во время использования. В качестве альтернативы, цилиндрический соединительный элемент переходного элемента может представлять собой охватывающую соединительную деталь, в случае чего проходной канал для газов переходного элемента может содержать углубление, приспособленное для вмещения цилиндрического соединительного элемента дыхательного устройства.

Переходный элемент, предпочтительно, формируется как единый компонент, например, путем одиночного производства методом литьевого прессования.

Под «в большинстве случаев, спиральной траекторией» подразумевается траектория, которая имеет в целом круговую составляющую и в целом осевую составляющую. В частности, угол указанной траектории относительно оси проходного канала для газов варьируется в зависимости от потока других газов внутри проходного канала для газов, а также движущей силы самого газового потока, как иллюстрируется в отношении конкретных вариантов осуществления, описываемых ниже.

Дыхательное устройство и переходный элемент, описываемые выше, предпочтительно, изготавливаются из пластикового материала. Переходный элемент, предпочтительно, формируется как единый компонент. Аналогично, дыхательное устройство, предпочтительно, содержит соединительный элемент, который сформирован как единый компонент. Данное дыхательное устройство может включать в себя другие компоненты, такие как компонент проходного канала для газов, который может быть изготовлен из другого материала, чем соединительный элемент, например, более мягкого материала, с целью снижения риска травмы пациента.

Предпочтительный вариант осуществления данного изобретения далее будет описываться более подробно, только в качестве примера, со ссылкой на прилагаемые чертежи, на которых:

На Фиг. 1 изображен вид в поперечном сечении первого варианта осуществления интубационной трубки, согласно данному изобретению;

На Фиг. 2а изображен частичный вид в поперечном сечении второго варианта осуществления интубационной трубки, согласно данному изобретению, который включает в себя схематическое изображение потока воздуха внутри устройства во время использования;

Фиг. 2b представляет собой вид, аналогичный изображенному на Фиг. 2а, который включает в себя схематическое изображение потока воздуха внутри интубационной трубки во время вдыхания;

Фиг. 2с представляет собой вид, аналогичный изображенному на Фиг. 2а, который включает в себя схематическое изображение потока воздуха внутри интубационной трубки во время выдыхания;

На Фиг. 3 изображен схематический вид трахеотомической трубки, в соответствии с данным изобретением;

Фиг. 4а иллюстрирует вид в перспективе респираторной маски, в соответствии с данным изобретением;

Фиг. 4b иллюстрирует вид сбоку респираторной маски, представленной на Фиг. 4а, который включает в себя схематическое изображение потока воздуха внутри устройства во время использования;

На Фиг. 5а изображен вид в перспективе орофарингеального воздуховода, согласно данному изобретению;

Фиг. 5b иллюстрирует вид спереди орофарингеального воздуховода, изображенного на Фиг. 5а;

На Фиг. 5с изображен вид в поперечном сечении орофарингеального воздуховода, изображенного на Фиг. 5а;

На Фиг. 6а изображен вид в перспективе устройства для насыщения кислородом, согласно данному изобретению;

На Фиг. 6b изображен вид в перспективе устройства для насыщения кислородом, представленного на Фиг. 6а, которое присоединено к надъязычной дыхательной трубке;

На Фиг. 6с изображен вид в поперечном сечении устройства для насыщения кислородом, представленного на Фиг. 6а, которое присоединено и к надъязычной дыхательной трубке, и к дыхательному мешку;

Фиг. 7 иллюстрирует вид в поперечном сечении ларингеальной маски, согласно данному изобретению;

Фиг. 8 представляет собой вид сбоку надъязычного дыхательного устройства, согласно данному изобретению;

Фиг. 9 иллюстрирует вид спереди надъязычного дыхательного устройства, изображенного на Фиг. 8;

На Фиг. 10 изображен вид в поперечном сечении надъязычного дыхательного устройства вдоль линии III-III на Фиг. 9;

На Фиг. 11 изображен вид в поперечном сечении надъязычного дыхательного устройства вдоль линии III-III на Фиг. 9, который включает в себя схематическое изображение потока воздуха внутри устройства во время использования;

На Фиг. 12 схематически изображена ориентация впуска для подвода кислорода и проходного канала для газов для надъязычного дыхательного устройства, представленного на Фиг. 8-11; и

Фиг. 13 иллюстрирует вид в поперечном сечении переходного элемента, согласно данному изобретению.

На Фиг. 1 изображен первый вариант осуществления интубационной трубки, согласно данному изобретению, которая в целом обозначена позицией 10. Интубационная трубка 10 содержит соединительный элемент 20, дыхательную трубку 30 и уплотняющий элемент 40. Интубационная трубка 10 приспособлена для введения в дыхательные пути пациента через рот, так чтобы соединительный элемент 20 выступал из полости рта пациента, а уплотняющий элемент 40 размещался в трахее пациента.

Дыхательная трубка 30 является, в большинстве случаев, гибкой трубкой, которая определяет проходной канал для газов, по существу, постоянного округлого поперечного сечения, которая входит в контакт с соединительным элементом 20 с ее проксимального конца. Уплотняющий элемент 40 окружает участок дыхательной трубки 30 вблизи ее дистального конца. Внутренний и наружный диаметры дыхательной трубки 30 выбираются в соответствии с размерами пациента, то есть взрослого или ребенка.

Соединительный элемент 20 включает в себя охватываемый цилиндрический соединительный элемент 22, подходящий для присоединения к традиционному дыхательному контуру, и соосный элемент 26 зацепления, который плотно вмещается внутрь проксимального конца дыхательной трубки 30. Соединительный элемент 22 и элемент 26 зацепления вместе определяют проходной канал для газов, по существу, постоянного округлого поперечного сечения. Выступающий в направлении наружу опорный фланец 24 предусмотрен между соединительным элементом 22 и элементом 26 зацепления, который вплотную прилегает к концу дыхательной трубки 30.

Уплотняющий элемент 40 имеет такие размер и форму, которые соответствуют трахее пациента. Во время использования, дистальный конец дыхательной трубки вводится в ротовую полость пациента и внутрь трахеи. Уплотняющий элемент 40 приспособлен образовывать эффективное герметичное уплотнение в трахее пациента.

Соединительный элемент 20 изготавливается из, по существу, жесткого материала, такого как полипропилен. Дыхательная трубка 30, однако, изготавливается интегрально из материала более мягкого и деформируемого, с тем чтобы снизить риск травмы для пациента, но все-таки достаточно жесткого, чтобы предотвратить сдавливание дыхательной трубки 30 во время использования.

Дополнительный впуск, в частности, впуск 50 для подвода кислорода имеет форму, в большинстве случаев, цилиндрической трубки, которая выступает из соединительного элемента 20, и приспособлено для присоединения к источнику кислорода. В частности, впуск 50 для подвода кислорода выступает из стенки соединительного элемента 20, из положения, прилегающего к опорному фланцу 24 и смещенного от центральной плоскости описываемого устройства. Впуск 50 для подвода кислорода проходит под углом приблизительно 45 к соединительному элементу 22 в направлении проксимального конца соединительного элемента 22.

Изнутри впуск 50 для подвода кислорода образует проходной канал для газов, имеющий, по существу, постоянное поперечное сечение, но уменьшающийся в диаметре вблизи стенки соединительного элемента 22 и заканчивающийся небольшим выходным отверстием 52. В частности, выходное отверстие 52 имеет диаметр приблизительно 0,8 мм, который, как выяснилось, является эффективным для проходного канала для газов сквозь устройство диаметром приблизительно 15 мм. Внутренняя часть впуска 50 для подвода кислорода слегка сужена, что облегчает присоединение источника кислорода.

Впуск 50 для подвода кислорода приспособлено направлять струю кислорода через выходное отверстие 52 в проходной канал для газов интубационной трубки 10. Струя кислорода направляется по окружности вдоль внутренней поверхности соединительного элемента 20, но также и под углом приблизительно 45 к основному направлению потока через проходной канал для газов интубационной трубки 10, тем самым, заставляя струю кислорода следовать по винтовой траектории вдоль проходного канала для газов в направлении дистального конца.

Ориентация впуска 50 для подвода кислорода и размер выходного отверстия 52 заставляют кислород поступать внутрь проходного канала для газов устройства 10 таким способом, который обеспечивает существенные преимущества по сравнению с известным уровнем техники. В частности, было обнаружено, что кислород, поступающий через впуск 50 для подвода кислорода, смешивается с другими газами в проходном канале для газов описываемого устройства на более дальнем участке проходного канала для газов, а именно, ближе к дистальному концу проходного канала для газов, чем в конструкциях известного уровня техники.

В настоящее время считается, что поток кислорода в интубационной трубке 10, во время использования, протекает вдоль линий, которые схематически изображены на Фиг. 2а-2с, что касается второго варианта осуществления интубационной трубки, в соответствии с данным изобретением, и описывается более подробно ниже.

Фиг. 2а-2с иллюстрируют участок проксимального конца второго варианта осуществления интубационной трубки, в соответствии с данным изобретением, который в целом обозначен позицией 110, а также схематические изображения потока кислорода, который, как предполагается, возникает, когда кислород нагнетается через впуск 150 для подвода кислорода во время использования.

Интубационная трубка 110, изображенная на Фиг. 2а-2с, содержит соединительный элемент 122 с ее проксимального конца и дыхательную трубку 130, которая проходит внутрь трахеи пациента во время использования. Соединительный элемент 122 имеет такую же форму, как и соединительный элемент 20, описываемый выше в отношении Фиг. 1. В частности, упомянутый соединительный элемент включает в себя впуск 150 для подвода кислорода. Впуск 150 для подвода кислорода приспособлено впускать струю кислорода внутрь интубационной трубки 110, так что струя кислорода направляется по внутренней поверхности интубационной трубки 110, которая в остальном является традиционной.

Фиг. 2а иллюстрирует схематическое изображение потока кислорода, поступающего через впуск 150 для подвода кислорода внутрь проходного канала для газов интубационной трубки 110, от входа в виде струи 160, через выходное отверстие 152, к конечному выходному отверстию через соединительный элемент 122 интубационной трубки 110. В частности, поток кислорода, изображенный на Фиг. 2а, является тем потоком, который предполагается, когда нет суммарного потока других газов через проходной канал для газов интубационной трубки 110.

Как иллюстрирует Фиг. 2а, струя кислорода 160 направляется посредством впуска 150 для подвода кислорода вдоль внутренней поверхности интубационной трубки 110, под углом приблизительно 45 к центральной оси проходного канала для газов. Струя кислорода 160 изначально имеет линейную траекторию, но внутренняя поверхность интубационной трубки 110 придает центростремительную силу, что заставляет струю кислорода 160 двигаться по, в большинстве случаев, винтовой траектории. Считается, что сочетание движущей силы кислорода 160, подаваемого через впуск 150 для подвода кислорода, и центростремительной силы, прилагаемой внутренней поверхностью интубационной тру