Система и способ для определения местоположения рельефного ориентира
Иллюстрации
Показать всеИзобретение относится к медицине. Система для определения местоположения рельефного ориентира на ортопедическом имплантате содержит устройство, выполненное с возможностью обработки в автоклаве. Упомянутое устройство содержит корпус, генератор поля для генерации электромагнитного поля, первый электромагнитный датчик для размещения на заданном расстоянии от рельефного ориентира и элемент, соединенный с корпусом с возможностью отсоединения. Корпус выполнен с возможностью обработки в автоклаве. Упомянутый генератор поля содержит множество элементов, генерирующих магнитное поле и расположенных внутри корпуса. Упомянутое устройство выполнено с возможностью функционирования после стерилизации в автоклаве. Первый электромагнитный датчик для размещения на заданном расстоянии от рельефного ориентира генерирует показания датчика в ответ на генерируемое электромагнитное поле. Упомянутый элемент определяет продольную ось, представляющую одну ось генерируемого электромагнитного поля. Система выполнена с возможностью использования одной оси генерируемого электромагнитного поля для определения положения элемента относительно рельефного ориентира. Изобретение обеспечивает возможность легкой стерилизации или обработки в автоклаве для повторного использования. 14 з.п. ф-лы, 62 ил.
Реферат
Перекрестные ссылки на связанные заявки
[0001] По данной заявке испрашивается приоритет предварительной заявки США 61/173,069, поданной 27 апреля 2009 года, содержание которой включено целиком в данное описание в качестве ссылки.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Область техники:
[0002] Данное описание относится к определению местоположения скрытых рельефных ориентиров на ортопедических имплантатах.
Описание уровня техники:
[0003] Блокирующий стержень значительно расширил возможности для интрамедуллярного остеосинтеза (ИО) при переломах длинных костей. Закрепление стержня ИО на кости делает конструкцию более стабильной в продольном направлении и предотвращает вращение стержня в кости. Обычная операция крепления стержня ИО сочетает использование опорных пластин, рентгенографических исследований и ручного "визуального обследования" для определения положения и сверления дистальных винтовых отверстий и установки винтов в винтовых отверстиях.
[0004] При операции фиксации стержня ИО, стержень вставляют в канал сломанной длинной кости для того, чтобы зафиксировать сломанные концы вместе. Обычно вначале выполняют проксимальную блокировку, и она обычно выполняется с помощью опорной пластины. Однако деформация стержня во время установки при интрамедуллярном остеосинтезе может привести к тому, что опорная пластина будет обеспечивать недостаточную точность для дистальных винтов. Действительно, определение положения дистальных блокирующих винтов и выравнивание сверла для сверления дистальных винтовых отверстий является самым трудоемким и затруднительным этапом процедуры имплантации. Двумя основными причинами неэффективности дистальной блокировки являются (1) неправильная точка входа на кости и (2) неправильная ориентация сверла. Если возникает одна из этих проблем, то сверло не пройдет через стержневое отверстие. Неправильное положение точки входа усугубляет проблему, поскольку скругленный кончик головки сверла часто соскальзывает, повреждая здоровую кость, в результате чего усложняется размещение другого отверстия вблизи ошибочного отверстия. Неточная дистальная блокировка может привести к преждевременному нарушению с прорывом стержня через стержневое отверстие, поломке винта или поломке режущей части сверла в кости.
[0005] Ручная технология является самой распространенной и общепринятой технологией нахождения дистальных винтовых отверстий. Большинство ручных дистальных технологий позиционирования применяют направляющую втулку или цилиндрическую муфту, которые направляют сверло. Механизмы выравнивания направляющей втулки и удержания ее на месте различны. В некоторых случаях хирург использует направляющую втулку, разрезанную пополам в продольном направлении, или целиком, для обеспечения устойчивости головки сверла. В обоих случаях хирург выполняет надрез и вводит сверло через разрез. Ручные технологии основаны, в первую очередь, на мастерстве хирурга и используют радиографическую рентгенографию и механические приспособления.
[0006] Другим способом реализации этого на длинных стержнях является применение технологии, называемой "совершенные окружности" с использованием С-образного рычага. При этом пациент и С-образный рычаг ориентированы таким образом, что при наблюдении имплантата флюроскопическим образом отверстие, через которое должен пройти винт, выглядит в форме окружности. Если С-образный рычаг не расположен перпендикулярно отверстию, то кажется, что отверстие имеет удлиненную форму или его вообще не видно.
[0007] Существует потребность в улучшении системы и способа точного и надежного обнаружения рельефных ориентиров для медицинских имплантатов. Кроме того, существует потребность в обеспечении точного размещения дистальных блокирующих винтов и выравнивания сверла при высверливании дистальных винтовых отверстий. Помимо этого, существует потребность улучшения системы обнаружения рельефных ориентиров, компоненты которой могут быть легко стерилизованы или подвергнуты обработке в автоклаве и использованы повторно.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0008] В общем виде, система определения местоположения рельефных ориентиров включает в себя генератор поля для генерации электромагнитного поля и определитель рельефных ориентиров. Генератор поля и определитель рельефных ориентиров расположены в общем корпусе, и генератор поля, определитель рельефных ориентиров и общий корпус выполнены с возможностью обработки в автоклаве. Система также включает в себя ортопедический имплантат, расположенный в электромагнитном поле, причем ортопедический имплантат содержит по меньшей мере один рельефный ориентир. Первый магнитный датчик расположен на определенном расстоянии от по меньшей мере одного рельефного ориентира, и процессор сравнивает показания первого датчика и определителя рельефного ориентира и использует указанное определенное расстояния для вычисления местоположения определителя рельефного ориентира относительно по меньшей мере одного рельефного ориентира.
[0009] Варианты исполнения могут иметь один или более из следующих признаков. Например, рельефные ориентиры выбирают из группы, состоящей из структуры, отверстия, полости, выступа, канала, фиксатора, фланца, канавки, элемента, среза, ступени, отверстия, просверленного отверстия, углубления, лунки, протока, зазора, выемки, окна, прохода, щели и прорези. Ортопедический имплантат может представлять собой интрамедуллярный стержень. Ортопедический имплантат имеет внешнюю поверхность и внутреннюю поверхность, образующие канюляцию, и в дистальный участок зонда установлен первый датчик, проходящий в канюляцию, Обычный корпус некоторых вариантов также содержит мотор вращения сверла, выполненный с возможностью подсоединения к головке сверла. Корпус может содержать обойму сверла. Корпус может быть выполнен в форме диска. Сверло выступает наружу перпендикулярно корпусу в форме диска. Система также может содержать вставную рукоятку, присоединенную с возможностью отсоединения к ортопедическому имплантату. К имплантату может быть подсоединен регулируемый стопор, содержащий щель, сквозь которую проходит зонд. Регулируемый стопор содержит зажимное приспособление для удержания зонда в фиксированном положении. Зонд может содержать несколько отстоящих на расстоянии друг от друга меток, и регулируемый стопор содержит зажимное приспособление для удержания зонда в фиксированном положении на метке или между метками.
[0010] В другом общем аспекте обнаружение местоположения рельефного ориентира включает в себя шаги: берут систему ортопедического имплантата, имеющего по меньшей мере один рельефный ориентир, имплантируют в пациента систему ортопедического имплантата и размещают зонд в имплантате. Зонд содержит электромагнитный датчик. Обнаружение местоположения рельефного ориентира может дополнительно включать шаги: генерируют электромагнитное поле, охватывающее датчик и рельефный ориентир, определяют местоположения указанного по меньшей мере одного рельефного ориентира посредством определителя рельефного ориентира, устанавливают трансфиксационный элемент в по меньшей мере одном рельефном ориентире и удаляют зонд. Определитель рельефного ориентира расположен в корпусе, выполненном с возможность обработки в автоклаве.
[0011] Варианты исполнения могут иметь один или более из следующих признаков. Например, рельефные ориентиры выбирают из группы, состоящей из структуры, отверстия, полости, выступа, канала, фиксатора, фланца, канавки, элемента, среза, ступени, отверстия, просверленного отверстия, углубления, лунки, протока, проема, выемки, окна, прохода, щели и прорези. Ортопедический имплантат может представлять собой интрамедуллярный стержень. Ортопедический имплантат имеет внешнюю поверхность и внутреннюю поверхность, образующие канюляцию, а определение местоположения рельефного ориентира дополнительно включает установку первого датчика в дистальный участок зонда, проходящего в канюляцию, Генератор поля и определитель рельефного ориентира расположены в общем корпусе, выполненном с возможность обработки в автоклаве, и определение местоположения рельефного ориентира также включает обработку корпуса в автоклаве. Генератор поля и определитель рельефного ориентира расположены в общем корпусе, выполненном с возможность обработки в автоклаве, который также может содержать мотор вращения сверла, причем мотор вращения сверла соединен с головкой сверла, и определение местоположения рельефного ориентира дополнительно включает обработку в автоклаве корпуса и сверла. Корпус может содержать обойму сверла. Корпус может быть выполнен в форме диска. Определение местоположения рельефного ориентира также включает подсоединение вставной рукоятки к ортопедическому имплантату с возможностью отсоединения и/или закрепление зонда в фиксированном положении. Зонд содержит несколько отстоящих на расстоянии друг от друга меток, и зонд закреплен в фиксированном положении на метке или между метками.
[0012] В другом общем аспекте система обнаружения рельефных ориентиров содержит корпус, выполненный с возможностью обработки в автоклаве, содержащий генератор поля для генерации электромагнитного поля, определитель рельефных ориентиров и двигатель вращения сверла. Ортопедический имплантат расположен в электромагнитном поле, и ортопедический имплантат имеет по меньшей мере один рельефный ориентир. Зонд содержит первый электромагнитный датчик, и он расположен в пределах ортопедического имплантата и отстоит на определенном расстоянии от по меньшей мере одного рельефного ориентира. Также предусмотрен процессор, предназначенный для сравнения показаний, поступающих от первого датчика и от определителя рельефного ориентира и для использования указанного определенного расстояния для вычисления положения определителя рельефного ориентира относительно по меньшей мере одного рельефного ориентира. Первый электромагнитный датчик подсоединен к процессору через зонд.
[0013] В другом общем аспекте приспособление для обнаружения рельефных ориентиров на медицинских имплантатах содержит корпус, выполненный с возможностью обработки в автоклаве, содержащий генератор поля для генерации электромагнитного поля и определитель рельефных ориентиров. Также предусмотрено несколько ортопедических имплантатов, один из которых расположен внутри электромагнитного поля. Каждый ортопедический имплантат содержит по меньшей мере один рельефный ориентир. Предусмотрено несколько зондов, каждый из которых содержит электромагнитный датчик. Один из зондов выбирают в зависимости от размера имплантата, расположенного в электромагнитном поле. Выбранный зонд располагают в пределах имплантата в электромагнитном поле на определенном расстоянии от по меньшей мере одного рельефного ориентира. Предусмотрен процессор, предназначенный для сравнения показаний, поступающих от первого датчика и от определителя рельефного ориентира, и для использования указанного определенного расстояния для вычисления положения определителя рельефного ориентира относительно по меньшей мере одного рельефного ориентира, причем первый электромагнитный датчик подсоединен к процессору посредством зонда.
[0014] В другом общем аспекте система для определения положения рельефного ориентира ортопедического имплантата содержит корпус, выполненный с возможность обработки в автоклаве, генератор поля, расположенный в корпусе, для генерации электромагнитного поля, первый электромагнитный датчик для расположения на определенном расстоянии от рельефного ориентира, генерирующий показания датчика в ответ на генерированное электромагнитное поле, и элемент, соединенный с корпусом с возможностью отсоединения, причем элемент задает продольную ось, представляющую одну ось генерированного магнитного поля. Система выполнена с возможностью использования указанной одной оси генерированного электромагнитного поля для определения положения элемента относительно рельефного ориентира.
[0015] Варианты исполнения могут иметь один или более из следующих признаков. Например, система может содержать первый зонд, имеющий проксимальный участок и дистальный участок, причем первый электромагнитный датчик расположен на дистальном участке зонда, зонд, выполненный с возможностью втягивания, содержащий первый электромагнитный датчик, или зонд, выполненный с возможностью втягивания, содержащий первый электромагнитный датчик и корпус, способный вместить по меньшей мере часть выполненного с возможностью втягивания зонда. Также может быть предусмотрен второй электромагнитный датчик, расположенный на проксимальном участке первого зонда. Система может содержать второй зонд, имеющий проксимальный и дистальный участок, и третий электромагнитный датчик, расположенный на дистальном конце второго зонда, причем второй зонд длиннее первого зонда. Система также может содержать процессор для сравнения показаний, поступающих от первого электромагнитного датчика и от указанного элемента, и использующий указанное определенное расстояние для вычисления положения элемента относительно рельефного ориентира. Система может содержать регулируемый стопор, выполненный с возможностью соединения с ортопедическим имлантатом. Регулируемый стопор может содержать прорезь, через которую проходит первый или второй зонд, и зажимное приспособление для удержания первого или второго зонда в фиксированном положении. Первый и второй зонд могут содержать несколько разнесенных между собой отметок так, что зажимное приспособление может быть выборочно установлен для удержания первого или второго зонда в фиксированном положении около одной отметки или между отметками. К ортопедическому имплантату может быть присоединена ручка с возможностью отсоединения. Выполненный с возможностью обработки в автоклаве корпус может иметь форму диска. Указанный элемент может содержать одно из следующего: направляющую сверла, обойму сверла, сверло, носик сверла, зажимной патрон сверла или фиксирующий элемент. Ортопедический имплантат может содержать одно из следующего: интрамедуллярный стержень, костную пластину, бедренный протез, коленный протез, позвоночный протез и плечевой протез. Первый или второй зонд перед помещением в ортопедический имплантат может быть свернут в кольцо или согнут. Первый электромагнитный датчик содержит проксимальный конец и дистальный конец. Дистальный конец первого электромагнитного датчика соединен с проксимальным концом ортопедического имплантата так, что первый электромагнитный датчик находится на определенном расстоянии от по меньшей мере одного рельефного ориентира, расположенной в проксимальной области ортопедического имплантата. По меньшей мере корпус и указанный элемент выполнены с возможностью повторного использования. Корпус выполнен из одного из следующих материалов: керамики, силикона, полипропилена (ПП), поликарбоната (ПК), полиметилпентена (ПМП), ПТФЭ смолы или полиметилметакрилата (ПММА или акрилового полимера).
[0016] В другом общем аспекте аппарат для определения положения рельефного ориентира ортопедического имплантата содержит вставную рукоятку, прикрепленную с возможностью отсоединения к ортопедическому имплантату, регулируемый стопор, содержащий привод, и зонд, содержащий датчик и несколько меток, способствующих размещению зонда и датчика в требуемом положении относительно ортопедического имплантата.
[0017] Варианты исполнения могут иметь один или более из следующих признаков. Например, регулируемый стопор содержит стыковочный участок так, что когда стопор присоединен к вставной рукоятке, стопор расположен или фиксирован с тремя степенями свободы. Вставная рукоятка присоединена к ортопедическому имплантату посредством использования канюлированного болта.
[0018] В другом общем аспекте приспособление для определения местоположения рельефного ориентира ортопедического имплантата содержит проксимальный прицельный зонд, содержащий ленточную основу, и датчик, содержащийся внутри или на ленточной основе на заданном расстоянии от точки отсчета ленточной основы. Проксимальный прицельный зонд содержит первый индикатор, указывающий, что проксимальный прицельный зонд должен быть использован для определения местоположения проксимальных рельефных ориентиров ортопедического имплантата. Приспособление также содержит дистальный прицельный зонд, содержащий ленточную основу, более длинную, чем ленточная основа проксимального прицельного зонда, а датчик содержится внутри или на ленточной основе дистального прицельного зонда на втором заданном расстоянии от второго начала отсчета искомого тела дистального прицельного зонда. Дистальный прицельный зонд содержит второй индикатор, указывающий, что дистальный прицельный зонд должен быть использован для определения местоположения дистальных рельефных ориентиров ортопедического имплантата.
[0019] Варианты исполнения могут иметь один или более из следующих признаков. Например, первый индикатор содержит захват с цветовой маркировкой, а второй индикатор содержит захват с цветовой маркировкой, цвет которого отличен от цвета первого индикатора. Первый индикатор содержит захват с цветовой маркировкой, а второй индикатор содержит захват с цветовой маркировкой, цвет которого отличен от цвета первого индикатора. Проксимальный прицельный зонд содержит кабель для передачи сигнала от датчика, содержащегося внутри или на ленточной основе проксимального прицельного зонда, к контрольному модулю, а дистальный прицельный зонд содержит второй кабель для передачи сигнала от датчика, содержащегося внутри или на ленточной основе дистального прицельного зонда, к контрольному модулю. Датчики, содержащиеся внутри или на ленточной основе проксимального или дистального прицельных зондов, подсоединены к одному или более микрочипу программируемого ПЗУ, который определяет, используются ли Проксимальный и дистальный прицельный зонды для проксимального или дистального определения местоположения. Ленточные основы проксимального или дистального прицельных зондов содержат один или более изгиб для смещения, по меньшей мере частичного, ленточных основ относительно стенки ортопедического имплантата.
[0020] В другом общем аспекте зонд, используемый для определения местоположения рельефного ориентира ортопедического имплантата, содержит корпус и тело, выполненное с возможностью втягивания или выдвижения, расположенное в корпусе. Тело выполнено таким образом, что оно имеет по существу прямую форму при выдвижении из корпуса. Датчик расположен в корпусе и выполнен с возможностью размещения в первом положении для определения местоположения проксимального рельефного ориентира ортопедического имплантата. Датчик выполнен с возможностью размещения во втором положении для определения местоположения дистального рельефного ориентира ортопедического имплантата. Тело содержит одно из следующего: слоистые гибкие стальные пружинные ленты, эластичный пластик или резиновые рукава или пластины. Тело содержит несколько вмонтированных трубчатых сегментов, которые могут выдвигаться или втягиваться посредством скольжения внутри прилегающих трубчатых сегментов.
[0021] В другом общем аспекте устройство для определения местоположения рельефных ориентиров, расположенных на проксимальном конце ортопедического имплантата, содержит вставную рукоятку и датчик, расположенный внутри или на вставной рукоятке на заданном расстоянии от проксимального фиксирующего отверстия, образующегося в ортопедическом имплантате при прикреплении вставной рукоятки к ортопедическому имплантату. Датчик является пассивным или запитан электричеством. Датчик установлен в корпусе, который объединен или составляет единое целое с вставной рукояткой.
[0022] Раскрытые способы и устройства содержат различные усовершенствования. Во-первых, раскрытые способы и устройства могут быть реализованы независимо от флюороскопии и устраняют необходимость использования рентгенографических устройств для определения местоположения трансфиксационных элементов, тем самым снижая воздействие радиации на пользователей и пациентов. Во-вторых, раскрытые способы и устройства позволяют пользователям заблокировать ведущий конец имплантата раньше, чем не ведущий конец имплантата. Другими словами, раскрытые способы и устройства не требуют использования канюляции имплантата, при которой проксимальная фиксация должна быть выполнена до дистальной фиксации.
[0023] Другие преимущества и признаки будут понятны из последующего подробного описания, ссылки в котором относятся к прилагаемым чертежам.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0024] Фиг.1 иллюстрирует систему для определения местоположения рельефного ориентира.
[0025] Фиг.2 - вид в сечении ортопедического имплантата фиг.1.
[0026] Фиг.3 - часть вида в сечении имплантата по фиг.1 и 2, иллюстрирующего установку датчика.
[0027] Фиг.4 - часть вида в сечении другого варианта установки датчика в имплантате.
[0028] Фиг.5 - вид в сечении датчика и имплантата, представленного на фиг.4.
[0029] Фиг.6 иллюстрирует другую конструкцию ортопедического имплантата.
[0030] Фиг.7 - частичный вид сбоку съемного устройства ввода.
[0031] Фиг.8 - вид сверху конструкции ортопедического имплантата, представленной на фиг.6.
[0032] Фиг.9 иллюстрирует определитель рельефного ориентира, содержащий обойму сверла.
[0033] Фиг.10 - частичный вид и вид в сечении, иллюстрирующий двухточечные контакты имплантата.
[0034] Фиг.11 - другой частичный вид в сечении, иллюстрирующий двухточечные контакты другого имплантата.
[0035] Фиг.12А - частичный вид и вид в сечении имплантата, иллюстрирующий обжимное электрическое соединение.
[0036] Фиг.12В - частичное изображение в разобранном виде, иллюстрирующее электрическое соединение в имплантате согласно изобретению.
[0037] Фиг.12С - вид сбоку электрического соединения, представленного на фиг.12В.
[0038] Фиг.12D - частичное изображение в разобранном виде, иллюстрирующее электрическое соединение в другом имплантате согласно изобретению.
[0039] Фиг.13А - частичное аксонометрическое изображение и изображение в разобранном виде, иллюстрирующие альтернативный вариант механизма выравнивания ортопедического имплантата и вставной рукоятки согласно изобретению.
[0040] Фиг.13В - частичное аксонометрическое изображение и изображение в разобранном виде, иллюстрирующие альтернативный вариант механизма выравнивания ортопедического имплантата согласно изобретению и электрического соединения.
[0041] Фиг.14 - частичный вид сбоку, иллюстрирующий соединение вставной рукоятки с ортопедическим имплантатом.
[0042] Фиг.15 иллюстрирует другую систему для определения местоположения рельефного ориентира.
[0043] Фиг.16 - схематическая иллюстрация критериев выбора вида.
[0044] Фиг.17 - блок-схема, иллюстрирующая выбор вида во время операции фиксации.
[0045] Фиг.18 - схематическая иллюстрация другого способа выравнивания определителя рельефного ориентира.
[0046] Фиг.19 - схематическая иллюстрация другого способа выравнивания определителя рельефного ориентира согласно изобретению.
[0047] Фиг.20 иллюстрирует монитор согласно изобретению с примерами видов.
[0048] Фиг.21 иллюстрирует другой определитель рельефного ориентира согласно изобретению.
[0049] Фиг.22 - частичный вид другой вставной рукоятки согласно изобретению.
[0050] Фиг.23 иллюстрирует другую систему для определения местоположения рельефного ориентира согласно изобретению.
[0051] Фиг.24 - частичный вид еще одной вставной рукоятки согласно изобретению.
[0052] Фиг.25 иллюстрирует другую систему для определения местоположения рельефного ориентира согласно изобретению.
[0053] Фиг.26 - часть вида в сечении интрамедуллярного стержня.
[0054] Фиг.27 иллюстрирует упаковку имплантата согласно изобретению.
[0055] Фиг.28 иллюстрирует способ соединения системы определителя рельефного ориентира к сети.
[0056] Фиг.29 иллюстрирует еще одну систему для определения местоположения рельефного ориентира согласно изобретению.
[0057] Фиг.30 - блок-схема использования системы для определения местоположения рельефного ориентира согласно изобретению.
[0058] Фиг.31 - другая блок-схема использования системы для определения местоположения рельефного ориентира согласно изобретению.
[0059] Фиг.32 - схематическая иллюстрация отслеживания глубины сверла.
[0060] Фиг.33А и 33 В также представляют собой схематические иллюстрации отслеживания глубины сверла.
[0061] Фиг.34 - частичная иллюстрация устройства согласно изобретению для отслеживания глубины сверла.
[0062] Фиг.35 - аксонометрическое изображение другой вставной рукоятки.
[0063] Фиг.36 - аксонометрическое изображение сверху регулируемого стопора.
[0064] Фиг.37 - аксонометрическое изображение снизу регулируемого стопора представленного на фиг.36.
[0065] Фиг.38 - еще одна иллюстрация калибровки системы.
[0066] Фиг.39 - аксонометрическое изображение другого определителя рельефного ориентира, заключающего в себе генератор поля и обойму сверла, и который может быть стерилизован или подвергнут процедуре обработки в автоклаве.
[0067] Фиг.40 - вид сбоку определителя рельефного ориентира/генератора поля/обоймы сверла по фиг.39, осуществляющих контакт с костью.
[0068] Фиг.41 - аксонометрическое изображение определителя рельефного ориентира/генератора поля/выполненного с возможностью обработки в автоклаве корпуса фиг.39, соединенного с принадлежностью отвертки.
[0069] Фиг.42 - вид сбоку вставной рукоятки, регулируемого стопора и зонда.
[0070] Фиг.43 - аксонометрическое изображение примера регулируемого стопора, удерживающего зонд в требуемом положении.
[0071] Фиг.44 - аксонометрическое изображение другого примера регулируемого стопора.
[0072] Фиг.45 - аксонометрическое изображение интрамедуллярного стержня, вставной рукоятки, регулируемого стопора и зонда.
[0073] Фиг.46 - аксонометрическое изображение другого варианта интрамедуллярного стержня, вставной рукоятки, регулируемого стопора и зонда.
[0074] Фиг.47 - аксонометрическое изображение двух зондов для использования при определении местоположения рельефных ориентиров имплантата.
[0075] Фиг.48 - аксонометрическое изображение другого варианта зонда для использования при определении местоположения рельефных ориентиров имплантата.
[0076] Фиг.49 - вид в сечении зонда, выполненного с возможностью втягивания.
[0077] Фиг.50 - аксонометрическое изображение интрамедуллярного стержня, вставной рукоятки и регулируемого стопора.
[0078] Фиг.51 - иллюстрация системы для определения местоположения рельефного ориентира имплантата.
[0079] Фиг.52 - иллюстрация устройства для использования при калибровке системы фиг.51.
[0080] На фиг.53-62 представлены иллюстрации регулируемых стопоров.
[0081] Следует понимать, что масштаб в чертежах не всегда соблюден, и что описанные варианты реализации иногда проиллюстрированы схематично и частичным образом. В некоторых случаях детали, которые являются не обязательными для раскрытия изобретения или которые мешают восприятию других деталей, могут быть опущены. Следует, конечно, понимать, что данное описание не ограничено конкретными вариантами реализации, проиллюстрированными в нем.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
[0082] Ссылаясь на прилагаемые чертежи, на которых одинаковые номера позиций соответствуют одинаковым элементам, фиг.1 иллюстрирует одну систему 10 для определения местоположения рельефного ориентира согласно изобретению. Система 10 может содержать процессор 12, генератор 16 магнитного поля, определитель 18 рельефного ориентира и сборку 28 ортопедического имплантата. Система 10 может также включать монитор 14, соединенный электрическим образом с процессором 12, и вставную рукоятку 40, прикрепленную с возможностью отсоединения к сборке 28 ортопедического имплантата. Процессор 12 изображен в виде стационарного компьютера на фиг.1, но могут быть использованы и другие типы компьютерных устройств. Например, процессор 12 может быть стационарным компьютером, портативным компьютером, карманным персональным компьютером (КПК), мобильным переносным устройством или специально предназначенным устройством. Генератор 16 магнитного поля является устройством, поставляемым компанией Ascension Technology Corporation, расположенной по адресу 107 Catamount Drive, Milton Vermont, U.S.A.; компанией Northern Digital Inc. по адресу 103 Randall Drive, Waterloo, Ontario, Canada; или компанией Polhemus, расположенной по адресу 40 Hercules Drive, Colchester Vermont, U.S.A. Конечно, могут быть использованы другие генераторы. Например, генератор 16 поля может обеспечивать электромагнитное поле импульсного постоянного тока или электромагнитное поле переменного тока. Система 10 может также включать контрольный модуль (не изображен), соединенный с магнитным генератором 16 поля. Контрольный модуль управляет генератором 16 поля, получает сигналы от небольших мобильных индуктивных датчиков и сообщается с процессором 12 проводным или беспроводным образом. Контрольный модуль может быть интегрирован с процессором 12 посредством аппаратного или программного обеспечения.
[0083] Система 10 представляет собой магнитную систему определения положения. В качестве иллюстрации, система 10 может содержать генератор 16 магнитного поля, содержащий соответствующим образом расположенные электромагнитные индуктивные катушки, служащие в качестве пространственной магнитной системы координат (т.е. X, Y, Z). Система 10 может также содержать небольшие мобильные индуктивные датчики, прикрепленные к объекту, подлежащему отслеживанию. Следует понимать, что могут быть легко предусмотрены другие варианты. Положение и угловая ориентация небольших мобильных индуктивных датчиков определяется по их магнитному взаимодействию с полем источника, производимым генератором 16 магнитного поля.
[0084] Следует отметить, что генератор 16 магнитного поля генерирует последовательность, или набор, в данном случае из шести различных пространственных конфигураций магнитного поля, или распределений, каждая из которых детектируется посредством небольших мобильных индуктивных датчиков. Каждая последовательность обеспечивает возможность генерации последовательности сигналов небольшими мобильными индуктивными датчиками. Обработка последовательности сигналов обеспечивает возможность определения положения и/или ориентации небольших мобильных индуктивных датчиков, и, следовательно, положения объекта, к которому прикреплен небольшой мобильный индуктивный датчик, относительно магнитной системы координат, положение которой зафиксировано по отношению к генератору 16 магнитного поля. Процессор 12 или контрольный модуль может использовать систему отсчета и детектированные данные для создания матрицы преобразований, включающей информацию о положении и ориентации.
[0085] Определитель 18 рельефного ориентира используется для определения положения рельефного ориентира, например, рельефного ориентира на сборке 28 ортопедического имплантата. Определитель 18 рельефного ориентира может содержать один или более небольших мобильных индуктивных датчиков или может содержать генератор поля. Определитель 18 рельефного ориентира содержит второй датчик 20. Определитель 18 рельефного ориентира может содержать любое количество устройств. Например, определитель рельефного ориентира может быть устройством, содержащим структуру, обеспечивающую пользователю понимание местоположения и ориентацию скрытого рельефного ориентира. Например, определитель рельефного ориентира может содержать направляющую сверла, обойму сверла, сверло, носик сверла, ствол сверления, зажимной патрон сверла или фиксирующий элемент. В некоторых вариантах реализации структура может быть корпусом, имеющим отверстие, или другой структурой, указывающей местоположение и ориентацию рельефного ориентира. На фиг.1 определитель 18 рельефного ориентира является обоймой сверла и содержит датчик 20, причем на фиг.39 определитель 2016 рельефного ориентира содержит корпус 2020, имеющий центральное отверстие, и содержит генератор магнитного поля (не изображен) в корпусе 2020. Определитель 18 рельефного ориентира может содержать один или более зубчатых кончиков 22, трубку 24 и ручку 26. Трубка 24 также может быть названа втулкой, цилиндром, направляющей или направляющей размещения сверла/винта. Второй датчик 20 ориентирован относительно оси трубки 24. Трубка 24 может принимать сверло. Этот сдвиг датчика 20 относительно трубки 24 обеспечивает положение и ориентацию трубки, размещаемой в пространстве в шести степенях свободы (три поступательных и три угловых) относительно генератора 16 магнитного поля и/или другого датчика в системе. Может потребоваться калибровка процессора 12 для корректировки расстояния сдвига второго датчика 20. Определитель 18 рельефного ориентира и генератор 16 поля могут быть объединены в единый компонент. Например, генератор 16 поля может быть встроен внутри ручки 26.
[0086] Сборка 28 ортопедического имплантата может содержать имплантат 30 и один или более небольших мобильных индуктивных датчиков. Сборка 28 ортопедического имплантата содержит первый датчик 32. На фиг.1, имплантат 30 имеет форму интрамедуллярного стержня, но могут быть использованы другие типы имплантатов. Например, имплантат может быть интрамедуллярным стержнем, костной пластиной, плечевым протезом, бедренным протезом или коленным протезом. Первый датчик 32 ориентирован и находится в заданном положении относительно одного или более рельефных ориентиров на имплантате 30. Например, рельефный ориентир может быть структурой, полостью, выступом, каналом, фиксатором, фланцем, канавкой, элементом, срезом, ступенью, проемом, просверленным отверстием, углублением, лункой, протоком, дырой, выемкой, окном, проходом, щелью, отверстием или прорезью. На фиг.1, рельефные ориентиры являются трансфиксационными отверстиями 31. Сдвиг первого датчика 32 относительно рельефного ориентира обеспечивает локализацию положения рельефного ориентира, размещаемого в пространстве с шестью степенями свободы (три поступательных и три угловых) относительно генератора 16 магнитного поля или другого датчика в системе, например, второго датчика 32. Может потребоваться калибровка процессора для корректировки расстояния сдвига первого датчика 32.
[0087] Первый датчик 32 и второй датчик 20 соединены с процессором 12. Это может быть обеспечено посредством провода или беспроводным образом. Первый датчик 32 и второй датчик 20 могут представлять собой датчик с шестью степенями свободы, предназначенный для задания местоположения каждого датчика в трех поступательных осях, обычно называемых X, Y и Z, и в трех угловых направлениях, обычно называемых тангаж, рыскание и крен. Посредством размещения датчика в этих системах координат, и зная местоположение и ориентацию каждого датчика, определитель 18 рельефного ориентира может быть расположен относительно рельефного ориентира на имплантате 30. В частных вариантах реализации, информация от датчиков позволяет хирургу планировать хирургический путь для фиксации и соответствующего выравнивания сверла со скрытым отверстием 31 фиксации. Датчики 32, 20 представляют собой датчики с шестью степенями свободы, поставляемые компаниями Ascension Technology Corporation of 107 Catamount Drive, Milton Vermont, U.S.A.; Northern Digital Inc. of 103 Randall Drive, Waterloo, Ontario, Canada; или Polhemus of 40 Hercules Drive, Colchester Vermont, U.S.A. Конечно, могут быть использованы другие датчики.
[0088] Первый датчик 32 может быть прикреплен к имплантату 30. Например, первый датчик 32 может быть прикреплен к внешней поверхности 37. На фиг.1, имплантат 30 может также включать канавку 34 и карман 36 (лучше виден на фиг.2). Канавка 34 и карман 36 расположены в стенке имплантата 30. Первый датчик 32 предназначен для прикрепления к имплантату 30 и размещения в пациенте на время срока службы имплантата 30. Дополнительно, сборка 28 ортопедического имплантата может содержать крышку 38 для покрытия кармана 36 и/или канавки 34. Крышка 38 может быть по существу установлена вровень с внешней поверхностью 37 имплантата 30. Соответствующим образом, имплантат 30 может содержать второе отверст