Способ получения нанокапсул l-аргинина в пектине

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул L-аргинина в пектине. В качестве оболочки нанокапсул используется яблочный или цитрусовый высоко- или низкоэтерифицированный пектин, а в качестве ядра - L-аргинин. Согласно способу по изобретению L-аргинин суспензируют в бензоле, диспергируют полученную смесь в суспензию яблочного или цитрусового высоко- или низкоэтерифицированного пектина в бензоле в присутствии препарата Е472с при перемешивании 1000 об/с. Далее добавляют четыреххлористый углерод, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре. Процесс осуществляют в течение 15 минут. Способ по изобретению обеспечивает упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. 6 пр.

Реферат

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул L-аргинина в пектине.

Ранее были известны способы получения микрокапсул.

В патенте 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения

В патенте 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 об/мин).

Наиболее близким методом является способ, предложенный в патенте 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул L-аргинина, отличающимся тем, что в качестве оболочки нанокапсул используется высоко- и низкоэтерифицированные яблочный и цитрусовый пектины, а в качестве ядра - L-аргинин при получении инкапсулируемых частиц методом осаждения нерастворителем с применением четыреххлористого углерода в качестве осадителя, процесс получения нанокапсул осуществляется без специального оборудования.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием четыреххлористого углерода в качестве осадителя, а также использование яблочных и цитрусовых высоко- и низкоэтерифицированных пектинов в качестве оболочки частиц и L-аргинина - в качестве ядра.

Результатом предлагаемого метода является получение нанокапсул L-аргинина.

ПРИМЕР 1. Получение нанокапсул L-аргинина в яблочном высокоэтерифицированном пектине, соотношение оболочка:ядро 1:5

5 г L-аргинина суспензируют в 10 мл бензола и диспергируют полученную смесь в суспензию яблочного высокоэтерифицированного пектина в бензоле, содержащую указанного 1 г полимера в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием при перемешивании 1000 об/с. Далее приливают 5 мл четыреххлористого углерода. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 6 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул L-аргинина в яблочном высокоэтерифицированном пектине, соотношение оболочка:ядро 3:1

1 г L-аргинина суспензируют в 5 мл бензола и диспергируют полученную смесь в суспензию яблочного высокоэтерифицированного пектина в бензоле, содержащую указанного 3 г полимера в присутствии 0,01 г препарата Е472с при перемешивании 1000 об/с. Далее приливают 3 мл четыреххлористого углерода. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 3. Получение нанокапсул L-аргинина в яблочном высокоэтерифицированном пектине, соотношение оболочка:ядро 1:1

1 г L-аргинина суспензируют в 10 мл бензола и диспергируют полученную смесь в суспензию яблочного высокоэтерифицированного пектина в бензоле, содержащую указанного 1 г полимера в присутствии 0,01 г препарата Е472с при перемешивании 1000 об/с. Далее приливают 5 мл четыреххлористого углерода. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 6 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 4. Получение нанокапсул L-аргинина в яблочном низкоэтерифицированном пектине, соотношение оболочка:ядро 1:5

5 г L-аргинина суспензируют в 10 мл бензола и диспергируют полученную смесь в суспензию яблочного низкоэтерифицированного пектина в бензоле, содержащую указанного 1 г полимера в присутствии 0,01 г препарата Е472с при перемешивании 1000 об/с. Далее приливают 5 мл четыреххлористого углерода. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 6 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 5. Получение нанокапсул L-аргинина в цитрусовом низкоэтерифицированном пектине, соотношение оболочка:ядро 1:5

5 г L-аргинина суспензируют в 10 мл бензола и диспергируют полученную смесь в суспензию цитрусового низкоэтерифицированного пектина в бензоле, содержащую указанного 1 г полимера в присутствии 0,01 г препарата Е472с при перемешивании 1000 об/с. Далее приливают 5 мл четыреххлористого углерода. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 6 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 6. Получение нанокапсул L-аргинина в цитрусовом высокоэтерифицированном пектине, соотношение оболочка:ядро 1:5

5 г L-аргинина суспензируют в 10 мл бензола и диспергируют полученную смесь в суспензию цитрусового высокоэтерифицированного пектина в бензоле, содержащую указанного 1 г полимера в присутствии 0,01 г препарата Е472с при перемешивании 1000 об/с. Далее приливают 5 мл четыреххлористого углерода. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 6 г порошка нанокапсул. Выход составил 100%.

Таким образом, получены нанокапсулы L-аргинина с высоким выходом без специального оборудования в течение 15 мин.

Способ получения нанокапсул L-аргинина в пектине, характеризующийся тем, что в качестве оболочки нанокапсул используются яблочные и цитрусовые высоко- и низкоэтерифицированные пектины, а в качестве ядра - L-аргинин, при этом L-аргинин суспензируют в бензоле, диспергируют полученную смесь в суспензию яблочного или цитрусового высоко- или низкоэтерифицированного пектина в бензоле в присутствии препарата Е472с при перемешивании 1000 об/с, далее добавляют четыреххлористый углерод, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, процесс осуществляют в течение 15 мин.