Ревербератор и способ ревербирования звукового сигнала

Иллюстрации

Показать все

Группа изобретений относится к акустике, в частности к ревербератору и способу ревербирования звукового сигнала. Ревербератор звукового сигнала содержит процессор, в состав которого входят петли обратной связи с элементами задержки двух различных сигналов частотной подзоны. Процессор представляет звуковой сигнал различными петлями задержки для получения ревербированных сигналов частотной подзоны. При этом процессор включает для первого сигнала частотной подзоны, по крайней мере, два сигнала частотной подзоны первой линии задержки, имеющей первое множество отводов линии задержки, предоставляющих сигналы с задержкой различными отводами задержки, первую петлю обратной связи, подключенную к линии задержки, и первый блок объединения для объединенных выходов сигналов множеством отводов линии задержки. Процессор также содержит петли обратной связи с элементами задержки для второго сигнала частотной подзоны, по крайней мере, два сигнала частотной подзоны второй линии задержки, имеющей второе множество отводов линии задержки, предоставляющих сигналы с задержкой различными отводами задержки, вторую петлю обратной связи, подключенную ко второй линии задержки, и второй блок объединения для объединенных выходов сигналов вторым множеством отводов линии задержки. Технический результат - повышение качества звучания. 3 н. и 15 з.п. ф-лы, 23 ил.

Реферат

Примеры использования настоящего изобретения связаны с ревербератором и способом ревербирования звукового сигнала. Следующие примеры выполнения настоящего изобретения относятся к ревербератору эффективной частотной области преобразования с управлением произвольного времени реверберации.

Ревербераторы используются для создания пространственного эффекта звуковых сигналов. Существует множество приложений обработки звуковых сигналов, где есть необходимость добавить пространственный эффект сигналу, а именно ранние отражения и реверберацию. Из этих двух, ранние отражения появляются только на очень короткий период времени после самого сигнала, и могут быть смоделированы легче, в то время как реверберация охватывает длительный промежуток времени, и часто слышима до нескольких секунд после выключения источника звука. Длительный промежуток времени выдвигает проект ревербератора в центр внимания в системах, требующих пространственного эффекта, но в то же время требующих от низких до средних вычислительных затрат.

Задачей разработки ревербератора является необходимость максимизировать сходство по восприятию с определенным реальным или виртуальным пространством, или создать реверберацию, которая максимизирует некоторые другие свойства восприятия, чтобы максимизировать предпочтения слушателя. Существует несколько алгоритмов реверберации, особенно для сигналов во временной области, и цель разработки почти всегда найти баланс, где желаемое качество максимально достигнуто, в то время как вычислительная нагрузка минимальна.

Исторически, разработка искусственного эха почти полностью сосредоточена на сигналы временной области. Однако, в современных схемах обработки звуковых сигналов очень распространено иметь обработку в течение короткого времени частотной области преобразования, например, в QMF области (квадратурный зеркальный фильтробанк), используемой в MPEG Surround и связанных с ними технологий, MDCT области (модифицированное дискретное косинусное преобразование), используемой в перцептивных аудио ко деках и STFT области (кратковременное преобразование Фурье), которая используется в очень широком ассортименте приложений. В то время как эти методы имеют различия, общим фактором является то, что сигнал временной области разделен на частотно-временные плитки, такие, как показано на фиг.16. Преобразование и обратное преобразование, как правило, происходит без потерь, и информация о звуковом содержании, таким образом, полностью содержится в обоих представлениях. Частотно-временное представление используется, особенно в перцептивной обработке звука, поскольку она имеет большее сходство с тем, как человеческий слуховой аппарат обрабатывает звук.

На современном уровне развития есть несколько решений в создании реверберации. В "Frequency Domain Artificial Reverberation using Spectral Magnitude Decay", Vickers et al, 2006, 121th AES convention Oct 2006 and in US 2008/0085008 A1, описано известное функционирование алгоритма реверберации в частотной области. Кроме того, "Improvements of Artificial Reverberation by Use of Subband Feedback Delay Networks", 112 nd AES convention, 2002, Игорь Николич предлагает создание реверберации в частотных полосах.

Бесконечное повторение при ослабляющемся импульсном отклике реверберации можно найти в "Artificial Reverberation Based on a Pseudo-Random Impulse Response" parts I and II, Rubak & Johansen, 104th AES convention 1998 and 106th AES convention 1999 и "Reverberation Modeling Using Velvet Noise", Karjalainen & Jarveläinen, 30th AES conference March 2007. Тем не менее, только что упомянутые источники описывают алгоритмы реверберации временной области.

В "The Switch Convolution Reverberator", Lee et al, 127th AES Convention Oct. 2009 представлен искусственный ревербератор с малой памятью и небольшими затратами вычислений, который подходит для мобильных устройств. Ревербератор состоит из гребенчатого фильтра с амплитудно-частотными характеристиками, производящий свертку с короткой последовательностью шума. Коррекция ревербератора и коэффициент затухания контролируется БИХ-фильтрами низкого порядка, и эхо-плотность соответствует шумовой последовательности, в которой шумовая последовательность регулярно обновляется или "включается". Кроме того, описываются некоторые структуры для обновления шумовой последовательности, в том числе квазиинтегратор, чувствительный к фактору сигнального коэффициента амплитуды, и многополосной архитектуры.

Основная проблема существующих решений заключается в том, что современные передовые эффективные алгоритмы реверберации действуют во временной области. Тем не менее, многие приложения, которые работают в частотной области, требуют ревербератор. Таким образом, для того, чтобы применять эти алгоритмы временной области к сигналу, приложению необходимо будет сначала обратно преобразовать сигнал перед применением алгоритма реверберации во временной области. Это, однако, может быть непрактично в зависимости от приложения.

Другой недостаток известных ревербераторов временной области является то, что они могут быть негибкими в плане проектирования реверберации, чтобы соответствовать определенному набору частотно-зависимого времени реверберации, что особенно важно для человеческого пространственного восприятия.

Поэтому целью настоящего изобретения является создание концепции ревербированного звукового сигнала, что позволяет улучшить качество и эффективность реализации.

Эта цель достигается устройством по п.1, способом по п.15 или компьютерной программой по п.16.

Согласно примеру выполнения настоящего изобретения, ревербератор для ревербирования звукового сигнала включает в себя цепной процессор задержки обратной связи. Цепной процессор задержки обратной связи настроен на задержку, по меньшей мере, двух различных сигналов частотной подзоны, представляющие звуковой сигнал различными задержками цикла для получения ревербированного сигнала частотной подзоны.

В примерах выполнения представление сигнала частотной области может быть в реальной или комплексной области. Таким образом, все операции, выполняемые ревербератором (например, задержка, суммирование или умножение), могут быть реальными или сложными операциями.

Основная идея, лежащая в основе настоящего изобретения, заключается в том, что вышеупомянутые улучшенное качество/эффективная реализация могут быть достигнуты, когда по крайней мере два различных сигнала частотной подзоны, представляющие звуковой сигнал, задерживаются различными задержками цикла. Применив такую меру, можно избежать, или, по крайней мере, сократить, воспринимаемую повторяемость обработки обратной связи, тем самым позволяя лучше поддерживать воспринимаемое качество.

Согласно следующему примеру выполнения настоящего изобретения, цепной процессор задержки обратной связи включает в себя для каждого сигнала частотной подзоны фильтр с фильтром импульсного отклика, в котором фильтр импульсного отклика содержит первый блок образцов фильтра импульсного отклика и второй блок образцов фильтра импульсного отклика. Здесь второй блок может быть одинаковым с первым блоком в связи с расположением образцов импульсного отклика. Кроме того, первый образец импульсного отклика второго блока может быть задержан от первого образца импульсного отклика первого блока задержкой цикла для сигнала частотной подзоны. Таким образом, первые блоки и вторые блоки фильтра импульсных откликов фильтров для сигналов частотной подзоны будут задержаны на различные задержки цикла.

Согласно другому примеру выполнения настоящего изобретения цепной процессор задержки обратной связи включает в себя для каждого сигнала частотной подзоны, разреженный фильтр с переменной плотностью фильтра отвода. При соответствующем изменении плотности фильтра отвода фильтр импульсного отклика разреженного фильтра будет приблизительно равен заданной границе энергии. Таким образом, возможно управлять границами энергии импульсных откликов разреженных фильтров на основе частотной зависимости.

Согласно другому примеру выполнения настоящего изобретения, цепной процессор задержки обратной связи настроен для ослабления каждого сигнала частотной подзоны, по меньшей мере, двух сигналов частотной подзоны коэффициентом ослабления. Здесь коэффициент затухания может зависеть от заданного времени реверберации и задержки цикла для сигнала частотной подзоны. Это позволяет на уровне подзон регулировать коэффициент усиления цепного процессора задержки обратной связи так, что ослабление энергии согласно с желаемым временем реверберации может быть достигнуто.

Настоящее изобретение предоставляет структуру реверберации с повышенной эффективностью и, следовательно, низкими затратами для выполнения на маломощных процессорах.

Далее разъясняются примеры выполнения настоящего изобретения поясняется со ссылкой на прилагаемые фигуры, на которых:

На фиг.1A показана блок-схема примера выполнения ревербератора для ревербирования звукового сигнала;

На фиг.1B показан пример проекта различных задержек цикла, по меньшей мере, для двух сигналов частотной подзоны в соответствии с примером выполнения настоящего изобретения;

На фиг.1C показана блок-схема примера выполнения ревербератора отдельной подзоны для обработки индивидуального сигнала частотной подзоны;

На фиг.1D показана схематичная иллюстрация импульсного отклика примера выполнения ревербератора отдельной подзоны в соответствие с фиг.1C;

На фиг.2A показана блок-схема следующего примера выполнения ревербератора отдельной подзоны с делителем мощности цикла обратной связи;

На фиг.2B показана схематичная иллюстрация импульсного отклика примера выполнения ревербератора отдельной подзоны в соответствии с фиг.2A;

На фиг.3 показана блок-схема следующего примера выполнения ревербератора отдельной подзоны с экспоненциально ослабляющим шумовым фильтром;

На фиг.4 показан график-иллюстрация действия фильтра отклика, представляющий экспоненциально ослабляющийся шум, применяемый примером выполнения ревербератора отдельной подзоны в соответствии с фиг, 3;

На фиг.5 показан график-иллюстрация импульсного отклика примера выполнения ревербератора отдельной подзоны в соответствии с фиг.3;

На фиг.6 показана блок-схема следующего примера выполнения ревербератора отдельной подзоны с енными выходами линии задержки;

На фиг.7 показан график-иллюстрация действия фильтра отклика, представляющий единичные импульсы с ослабляющейся плотностью, применяемый вариантом выполнения ревербератора отдельной подзоны в соответствии с фиг.6;

На фиг.8 показан график иллюстративного импульсного отклика примера выполнения ревербератора отдельной подзоны в соответствии с фиг.6;

На фиг.9 показана блок-схема следующего примера выполнения ревербератора отдельной подзоны с разреженными выходами линии задержки и фазовыми операциями без умножения;

На фиг.10 показана таблица иллюстративных фазовых операций без умножения, применяемые примером выполнения ревербератора отдельной подзоны в соответствии с фиг.9;

На фиг.11A показана блок-схема единицы фазовой модификации в соответствии с примером выполнения настоящего изобретения;

На фиг.11B показана блок-схема единицы фазовой модификации в соответствии с следующим примером выполнения настоящего изобретения;

На фиг.11C показана блок-схема единицы фазовой модификации в соответствии с следующим примером выполнения настоящего изобретения;

На фиг.11D показана блок-схема единицы фазовой модификации в соответствии с следующим примером выполнения настоящего изобретения;

На фиг.12 показана блок-схема следующего примера выполнения ревербератора отдельной подзоны с последовательно соединенными единицами линии задержки, промежуточными множителями, входами линии задержки и выходами линии задержки;

На фиг.13 показана концептуальная структура примера выполнения ревербератора для ревербирования звукового сигнала, действующего в частотной области;

На фиг.14 показана блок-схема примера выполнения ревербератора для ревербирования звукового сигнала с спектральным конвертером, несколькими различными ревербераторами и выходным процессором;

На фиг.15 показана блок-схема следующего примера выполнения ревербератора для ревербирования звукового сигнала с ортогональными специфическими для канала выходными векторами; и

На фиг.16 показана схематическая иллюстрация представления последовательного кратковременного временно/частотного преобразования в соответствии с примером выполнения настоящего изобретения.

На фиг.1A показана блок-схема примера выполнения ревербератора 10 для ревербирования звукового сигнала. Как показано на фиг.1A, ревербератор 10 включает в себя цепной процессор задержки обратной связи 20 для задержки по крайней мере двух различных сигналов частотной подзоны 17, представляющие звуковой сигнал 5 различных задержек цикла 23 для получения ревербированных сигналов частотной подзоны 27. Ревербератор 10 может также включать выходной процессор 30 для обработки ревербированных сигналов частотной подзоны 27 для получения ревербированного звукового сигнала 41.

Обращаясь к фиг.1A, ревербератор 10 может дополнительно содержать фильтровый банк 12, такой как QMF (квадратурный зеркальный фильтр) для создания по меньшей мере двух различных сигналов частотной подзоны 17 от оригинального звукового сигнала 5. Кроме того, цепной процессор задержки обратной связи 20 может содержать первый блок цикла задержки 22-1 для задержки первого сигнала частотной подзоны 15-1, по меньшей мере, двух различных сигналов частотной подзоны 17 первой задержки с получением первого ревербированного сигнала частотной подзоны 25-1 и второй блок цикла задержки 22-2 для задержки второго сигнала частотной подзоны 15-2, по меньшей мере, двух различных сигналов частотной подзоны 17 второй различной задержкой для получения второго ревербированного сигнала частотной подзоны 25-2. Первый и второй ревербированные сигналы частотной подзоны 25-1, 25-2 может составлять ревербированные сигналы частотной подзоны 27. В примере выполнения на фиг.1A выходной процессор 30 ревербератора 10 может быть настроен на обработку, по меньшей мере, двух сигналов частотных подзоны 17 и соответствующих ревербированных сигналов частотной подзоны 27 для получения смешанных сигналов 37 и соединения смешанных сигналов 37 для получения наконец ревербированного звукового сигнала 41. Как показано на фиг.1A, выходной процессор 30 может включать в себя первые и вторые любые устройства обработки 32-1, 32-2 и соответствующие счетные устройства 34-1, 34-2. Первое устройство обработки любого рода 32-1 может быть настроено на выполнение какой-либо обработки на первом ревербированном сигнале частотной подзоны 25-1 для получения первого обработанного сигнала 33-1 и второе устройство обработки любого рода 32-2 может быть настроено на выполнение какой-либо обработки на втором ревербированном сигнале частотной подзоны 25-2 для получения второго обработанного сигнала 33-2. Здесь любая обработка, выполненная первым и вторым устройством обработки любого рода 32-1, 32-2, может, например, быть такой, что заданное умножение или коэффициенты усиления будут применены к первому и второму ревербированным сигналам частотным сигналам 25-1, 25-2 ревербированных сигналов частотной подзоны 27. Первое счетное устройство 34-1 может быть настроено, чтобы добавить первый сигнал частотной подзоны 15-1, по меньшей мере, двух различных сигналов частотной подзоны 17 или обработанного варианта соответственно, и первый обработанный сигнал 33-1 устройства обработки любого рода 32-1 для получения первого добавленного сигнала 35-1 и второе счетное устройство 34-2 может быть настроено на добавление второго сигнала частотной подзоны 15-2, по меньшей мере, двух различных сигнала частотной подзоны 17 или обработанной версии, и второй обработанный сигнал 33-2 устройства обработки любого рода 32-2 для получения второго добавленного сигнала 35-2. Здесь первый и второй добавленные сигналы 35-1, 35-2 могут представлять собой, по меньшей мере, два смешанных сигнала 37.

Как показано на фиг.1A, выходной процессор 30 может дополнительно содержать по меньшей мере два дополнительных устройства обработки любого рода 44-1, 44-2 для обработки первого и второго сигнала частотной подзоны 15-1, 15-2, по меньшей мере, двух различных сигналов частотной подзоны 17. Первое дополнительное устройство обработки любого рода 44-1 может быть настроено на выполнение любой дополнительной обработки на первом сигнале частотной подзоны 15-1 для получения первого дополнительно обработанного сигнала 45-1 и поставки первого дополнительно обработанного сигнала 45-1 соответствующему счетному устройству 34-1, в то время как второе дополнительное устройство обработки любого рода 44-2 может быть настроено на выполнение любой дополнительной обработки на втором сигнале частотной подзоны 15-2 для получения второго дополнительно обработанного сигнала 45-2 и поставки второго дополнительно обработанного сигнала 45-2 соответствующему счетному устройству 34-2.

Таким образом, первое и второе дополнительное устройство обработки любого рода 44-1, 44-2 может фактически быть вставленным в параллельную (неотраженный звук) ветвь между фильтровым банком 12 и счетными устройствами 34-1, 34-2, соответственно, для первого и второго сигнала частотной подзоны 15-1, 15-2, по меньшей мере, двух различных сигналов частотной подзоны 17. Например, в бинауральной обработке первое и второе дополнительные устройства обработки любого рода 44-1, 44-2 могут быть настроены на применение HRTFs (head related transfer functions) в первом и втором сигнале частотной подзоны 15-1, 15-2, по крайней мере, двух различных сигналов частотной подзоны 17 для получения первого и второго дополнительно обработанных сигналов 45-1,45-2.

Здесь первое счетное устройство 34-1 может быть настроено на добавление первого обработанного сигнала 33-1 устройства обработки любого рода 32-1 и первого дополнительно обработанного сигнала 45-1 дополнительного устройства обработки любого рода 44-1 для получения первого добавленного сигнала 35-1, в то время как второе счетное устройство 34-2 может быть настроено на добавление второго обработанного сигнала 33-2 любого устройства обработки 32-2 и второго дополнительно обработанного сигнала 45-2 дополнительного устройства обработки любого рода 44-2 для получения второго добавленного сигнала 35-2. Здесь первый и второй добавленный сигналы 35-1, 35-2 может представлять собой, по меньшей мере, два смешанных сигнала 37.

Кроме того, показано на фиг.1A, что выходной процессор 30 также может содержать сумматор 38 для объединения смешанных сигналов 37 для получения ревербированного звукового сигнала 41. Сумматор 38 выходного процессора 30 может содержать по меньшей мере еще два любых устройства обработки 36-1, 36-2 и соединяющего вместе устройства 39. Первое дополнительное устройство обработки любого рода 36-1 может быть настроено на дальнейшую обработку первых смешанных сигналов 35-1 по меньшей мере, двух смешанных сигналов 37 для получения первого дальнейшего обработанного сигнала 37-1 и второго дальнейшего устройства обработки любого рода 36-2 может быть настроено на дальнейшую обработку второго смешанного сигнала 35-2 по меньшей мере, двух смешанных сигналов 37 для получения второго дальнейшего обработанного сигнала 37-2. Как и в первом и втором устройствах обработки любого рода 32-1, 32-2, первый и второй дополнительные устройства обработки любого рода 36-1, 36-2 могут выполнять любые дальнейшие операции обработки с применением заданного умножения или факторов усиления в смешанных сигналах 37.

Соединяющее вместе устройство 39 сумматора 38 в выходном процессоре 30 может быть настроено на последовательное соединение вместе и объединение первого и второго дальнейших обработанных сигналов 37-1, 37-2 для получения ревербированного звукового сигнала 41 на выходе ревербератора 10. При обработке такой, как была выполнена ревербератором 10, будет получен ревербированный звуковой сигнал, представляющий объединенные ревербированные сигналы частотной подзоны, имеющие блок объединения или широкую пропускную способность. Фактически пример выполнения на фиг.1A показывает ревербератор для ревербированного звукового сигнала в области подзоны, такой как в области QMF.

Фиг.1B показывает иллюстративную разработку 50 разных задержек цикла для по меньшей мере двух различных сигналов частотной подзоны в соответствии с примером выполнения настоящего изобретения. Что касается фиг.1A, 16, ревербератор 10 может содержать цепной процессор задержки обратной связи 54, который может быть настроен так, что задержка цикла 56-2 для второго сигнала частотной подзоны 51-2 по меньшей мере, двух сигналов частотной подзоны 53, представляющие более низкий частоту диапазона и которая будет больше, чем задержка цикла 56-1 для первого сигнала частотной подзоны 51-1 по меньшей мере, двух сигналов частотной подзоны 53, представляющие более высокий частотный диапазон. В частности, цепной процессор задержки обратной связи 54 может содержать, по меньшей мере два устройства задержки цикла 57, где первое устройство задержки цикла может быть настроено на задержку первого сигнала частотной подзоны 51-1, представляющего высокую частоту диапазона первой задержкой цикла 56-1 для получения первого ревербированного сигнала частотной подзоны 55-1 и вторая задержка цикла может быть настроена на задержку второго сигнала частотной подзоны 51-2, представляющего меньшую частоту диапазона второй большей задержкой цикла 56-2 для получения второго ревербированного сигнала частотной подзоны 55-2.

Первый и второй ревербированные сигналы частотной подзоны 55-1, 55-2 могут представлять собой ревербированные сигналы частотной подзоны 57. Здесь цепной процессор задержки обратной связи 54, сигналы частотной подзоны 53 и ревербированные сигналы частотной подзоны 57 на фиг.1B могут соответствовать цепному процессору задержки обратной связи 20, по меньшей мере, двух различных сигналов частотной подзоны 17 и ревербированных сигналов частотной подзоны 27 на фиг.1A, соответственно. В конструкции на фиг.1B ревербератор 10 может содержать выходной процессор 60, который может быть настроен на обработку ревербированных сигналов частотной подзоны 57 для получения ревербированного звукового сигнала 61. Здесь, выходной процессор 60, показанный на фиг.1B может соответствовать выходному процессору 30, показанному на фиг.1A, в то время как ревербированный звуковой сигнал 61 на выход выходного процессора 60 может соответствовать ревербированному звуковому сигналу 41 на выход выходного процессора 30 на фиг.1A. Таким образом, согласно конструкции разных задержек цикла в соответствии с фиг.1B, задержки цикла для последовательных сигналов частотной подзоны, по меньшей мере, двух сигналов частотной подзоны, представляющих увеличение диапазона частот может быть сделано снижением в среднем так, что будет достигнуто улучшенное качество восприятия реверберации.

В примерах выполнения задержки цикла для последовательных сигналов частотной подзоны могут, например, линейно уменьшаться или устанавливаться в случайном порядке. Устанавливая различные задержки цикла для, по меньшей мере, двух различных сигналов частотной подзоны можно избежать или, по крайней мере, сократить эффекты повторения реверберации.

Фиг.1C показывает блок-схему примера выполнения ревербератора отдельной подзоны 100 для обработки отдельного сигнала частотной подзоны. Ревербератор отдельной подзоны 100 содержит линию задержки 110, цикл обратной связи 120 и сумматор 130. Как показано на фиг.1C, линия задержки 110 имеет множество 115 выходов линии задержки или отводов линии задержки, представляющих различные задержки. Линия задержки 110 настроена на предоставление суммы задержки (N). Здесь, линия задержки 110, которая обозначается Zn, имеет вход линии задержки 105 для отдельного сигнала частотной подзоны 101.

Цикл обратной связи 120 соединен с линией задержки 110 и настроен на обработку отдельного сигнала частотной подзоны 101 или задержанной версии и для подачи обработанного сигнала или отдельного сигнала частотной подзоны 101 или задержанной версии отдельного сигнала частотной подзоны на входе линии задержки 105. Цикл обратной связи 120 вместе с линией задержки 110 по существу представляет собой цикл задержки обратной связи, вводящий соответствующую сумму задержки N сигналу для каждого туда и обратно циркулирующих сигналов в цикле обратной связи 120. Сумматор 130 настроен для объединения выходов сигналов множеством 115 выходов линии задержки или отводов линии задержки для получения ревербированного сигнала частотной подзоны 135. В частности, сумматор 130 может быть использован для добавления выхода сигналов множеством 115 выходов линии задержки вместе или сначала для умножения сигналов с коэффициентами усиления и/или ослабления, и затем их объединения или для объединения линейно выбранного выхода сигналов множеством 115 выходов линии задержки. Ревербератор отдельной подзоны 100 на фиг.1C примера выполнения позволяет генерировать ревербированный сигнал частотной подзоны 135, который имеет реверберацию, соответствующую времени реверберации большему, чем сумма задержки N.

Фиг.1D показывает схематическое изображение импульсного отклика 150 примера выполнения ревербератора отдельной подзоны 100 в соответствии с фиг.1C. Как показано на фиг.1D, импульсный отклик 150 содержит последовательность (P0, P1, P2, P3, …) равноотстоящих импульсов, разделенных суммой задержки N. Равно расположенные импульсы (P0, P1, P2, P3, …) определяют повторяющийся интервал 160, соответствующий сумме задержки N. Кроме того, задержанные импульсы 155 на выходе множеством 115 выходов линии задержки распределяются в повторяющимся интервале 160 равно расположенных импульсов (P0, P1, P2, P3, …). Как видно на фиг.1D, что равно расположенные импульсы (P0, P1, P2, P3, …) импульсного отклика 150 ревербератора отдельной подзоны 100 имеют одинаковую амплитуду, соответственно. Ссылаясь на фиг.1C; 1D, реверберация ревербированного сигнала частотной подзоны 135 может соответствовать периоду времени 165, что больше, чем сумма задержки N.

Фиг. 2A показывает блок-схему следующего примера выполнения ревербератора отдельной подзоны 200 с делителем мощности 210 в цикле обратной связи. Устройство 200 на фиг.2A по существу состоит из тех же блоков, что и устройство 100 на фиг.1C. Таким образом, идентичные блоки, имеющие аналогичную реализацию и/или функции, обозначаются одними и теми же цифрами. Тем не менее, цикл обратной связи 220 ревербератора отдельной подзоны 200 на фиг.2A примера выполнения включает в себя аттенюатор 210 для ослабления задержанного сигнала 205. Здесь, задержанный сигнал 205 получается от линии задержки 110, предоставляющей сумму задержки N для каждого получения ослабленного сигнала 215 или сигнала частотной подзоны 101 на входе линии задержки 105. Как показано на фиг.2A, аттенюатор 210, настроен применять коэффициент затухания b задержанному сигналу 205, где коэффициент затухания b зависит от предоставленной суммы задержки N и времени реверберации T60. В результате ослабления аттенюатором 210 в цикле обратной связи 220, импульсный отклик цикла обратной связи 220 характеризуется последовательностью равно расположенных затухающих импульсов (P0, P1, P2, P3, …), где повторяющийся интервал 160 равно расположенных затухающих импульсов (P0, P1, P2, P3, …), снова определяется суммой задержки N.

Фиг.2B показывает схематическое изображение импульсного отклика 250 примера выполнения ревербератора отдельной подзоны 200 в соответствии с фиг.2A. Ссылаясь на фиг.2A варианта выполнения, реверберация ревербированного сигнала частотной подзоны 135 может соответствовать импульсному отклику 250, содержащему последовательность равно расположенных ослабляющихся импульсов (P0, P1, P2, P3, …), где задержанные импульсы 255 на выходе множеством 115 выходов линии задержки распределяются в повторяющимся интервале 160 из равно расположенных затухающих импульсов (P0, P1, P2, P3, …).

Фиг.3 показывает блок-схему следующего примера выполнения ревербератора отдельной подзоны 300 с экспоненциально затухающим шумовым фильтром. Ревербератор отдельной подзоны 300 на фиг.3 примера выполнения по существу соответствует ревербератору отдельной подзоны 200 на фиг.2a примера выполнения. Как показано на фиг.3, линия задержки 310, которая может соответствовать линии задержки 110 на фиг.1B, 2A, содержит множество последовательно соединенных единиц линии задержки ( z − D 1 , z − D 2 , …, z − D N ) для последовательной задержки ослабленного сигнала 215 или сигнала частотной подзоны 101, поданного на вход линии задержки 105, соответственно. Здесь каждая единица линии задержки 312 линии задержки 310 имеет соответствующий выход линии задержки 314 для последовательного задержанного сигнала. Сумматор 330 ревербератора отдельной подзоны 300, который может соответствовать сумматору 130 ревербератора отдельной подзоны 100, 200, содержит множество 350 из множителей каждый подключенного к соответствующему выходу линии задержки. В частности, множество 350 мультипликаторов настроено для умножения каждого выхода последовательно задержанного сигнала множества 115 выходов линии задержки с соответствующим коэффициентом фильтра, функция отклика h(n), n=1, 2, …, N, соответственно, для получения множителя выходного сигнала 355.

В примерах выполнения отдельный блок линии задержки (слот отдельной элементарной задержки) можно обозначить z − D i , где Di (i=1, 2, …, N)) является частичной суммой задержки, которая вводится с помощью отдельного блока линии задержки. В частности, D1, D2, …, DN может быть таким же z − D i , как и 1 (z-1) или может иметь различные значения. Это обобщение относится и к другим фигурам, хоть и не явно обозначенным. Здесь, частичная сумма задержки Di может соответствовать задержке одним образцом (тайм-слот), так что выход задержанных импульсов множеством выходов линии задержки будут располагаться близко друг к другу. В частности, линия задержки может включать в себя ряд отдельных единиц линии задержки, которая соответствует сумме задержки N, предоставляемой линией задержки, состоящую из множества последовательно соединенных единиц линией задержки ( z − D i ). Согласно следующим примерам выполнения, сумма задержки N, предоставляемая линией задержки может быть также получена, когда частичная сумма задержки Di увеличится соответственно задержке одним или более образцом, и в одно и то же время, число отдельных единиц линии задержки сокращается. В этом случае задержанный выход импульса множеством выходов линии задержки будут располагаться дальше друг от друга соответственно низкой разрешающей способности.

Как показано на фиг.3, блок объединения 330 может включать в себя сумматор 360 для объединения выходных сигналов множителя 355 для получения ревербированного сигнала частотной подзоны 135. Согласно примеру выполнения, показанному на фиг.3, блок объединения 330 может быть установлен так, чтобы функция фильтра отклика h(n) будет иметь затухающие амплитудные характеристики, где длина N функции фильтра отклика h(n) равна сумме задержки N. Кроме того, на примере выполнения на фиг.3 цикл обратной связи 120 ревербератора отдельной подзоны 300 настроен для получения задержанного сигнала, который может соответствовать задержанному сигналу 205 на фиг.2A, в направлении обработки, последний выходной блок линии задержки 315 линии задержки 310. Здесь, направление обработки указано, указывая направление стрелок в цикле обратной связи 120 и линии задержки 310.

На фиг.4 показан график на примере функции фильтра отклика 400, представляющего экспоненциально затухающий шум работающего в примере выполнения ревербератора отдельной подзоны 300 в соответствии с фиг, 3. В частности, блок объединения 330 ревербератора отдельной подзоны 300 может быть настроен для работы функции фильтра отклика 400 на основе hDNF(n)=noise(n)·a n, n=1, 2, …, N, где шум (n) является функцией шума, и где затухающие амплитудные характеристики функции фильтра отклика hDNF(n) основаны на экспоненциально затухающей границе a n. Функция шума noise(n) и envelope a n на примере функции фильтра отклика hDNF (п) 400 отчетливо видны на фиг.4. Кроме того, фильтр функции отклика hDNF(n) 400 образцово показан в диапазоне между 0 и N, где этот диапазон соответствует длине 405 функции фильтра отклика hDNF(n), которая может быть примерно равна сумме задержки N, предоставляемые линией задержки 310, как показано на фиг.3. В частности, блок объединения 330 ревербератора отдельной подзоны 300 может быть установлен так, что envelope a n зависит от затухания за временной интервал, в котором затухание на слот времени основано на предопределенном параметре T60, соответствующем времени реверберации. Применив эту меру, функция фильтра отклика hDNF(n) может быть отрегулирована так, чтобы представить соответствующую экспоненциально затухающую кривую распределения энергии.

Ревербератор отдельной подзоны 300, показанный на фиг.3, может также включать аттенюатор 340, который может соответствовать аттенюатору 210, показанному на фиг.2A, расположенному в цикле обратной связи 120. Аттенюатор 340 ревербератора отдельной подзоны 300 может быть использован для ослабления задержанного сигнала, принимаемого от последнего выхода блока линии задержки 315 с применением коэффициент затухания задержанному сигналу для каждого циркулирования туда и обратно сигнала цикла обратной связи 120. В частности, аттенюатор 340 ревербератора отдельной подзоны 300 настроен применять коэффициент затухания, равный b=a N задержанному сигналу, где a - затухание на временной интервал и N сумма задержки. Здесь затухание для каждого циркулирования туда и обратно в цикле обратной связи 120 производится путем умножения задержанного сигнала от последнего выхода линии задержки 315 на коэффициент затухания b=a N.

Фиг.5 показывает график на примере импульсной отклика 500 примера выполнения ревербератора отдельной подзоны 300 в соответствии с фиг.3. Как показано на фиг.5, импульсный отклик 500 ревербератор отдельной подзоны 300 характеризуется экспоненциально затухающим шумом 510 с функцией envelope a n, где затухание за временной интервал может быть установлен в соответствии с предопределенным параметром T60.

В частности, коэффициент затухания в цикле обратной связи (т.е. коэффициент затухания Ь, который будет применяться аттенюатором в цикле обратной связи) может быть вычислен из желаемого времени реверберации в определенном диапазоне частот формулой

b=a N,

где b результат коэффициент затухания в цикле обратной связи и a = 10 − 3 ⋅ P T 60 f s ,

где a - затухание на временной интервал, N - длина линии задержки (то есть сумма задержки, предоставленная линией задержки) в определенном диапазоне частот, P коэффициент понижающего дискретизатора частотного преобразования, T60 - время реверберации и fs - частота дискретизации. Эта формула по существу дает коэффициент затухания, который соответствует данному времени реверберации T60.

Экспоненциально затухающий гауссов шум на уровне диапазона, как правило, считается хорошим приближением к реа