Устройство преобразования мощности

Иллюстрации

Показать все

Изобретение относится к области электротехники и может быть использовано в устройствах преобразования электрической мощности. Технический результат - предотвращение нарушения коммутации в устройстве преобразования мощности. Устройство преобразования электрической мощности содержит схему преобразования с несколькими парами двунаправленно переключаемых переключающих элементов, подключенных к соответствующим фазам для преобразования мощности переменного тока в электрическую мощность переменного тока. Вычисляется первое время переключения, в течение которого один из переключающих элементов схемы верхнего плеча одной фазы включается, другие переключающие элементы схемы верхнего плеча другой фазы выключаются. По меньшей мере, один переключающий элемент схемы нижнего плеча других фазах включается, а другие переключающие элементы схемы нижнего плеча в одной фазе выключаются с использованием определенных посредством средства определения напряжения напряжений, и выходного значения команды управления. Вычисляется второе время переключения, в течение которого несколько пар переключающих элементов одной фазы включаются, а несколько пар переключающих элементов других фазах выключаются. Второе время переключения является таким, что в один период электрической мощности переменного тока, выведенной из схемы преобразования, содержащееся в первом полупериоде одного периода, равно второму времени переключения, содержащемуся во втором полупериоде одного периода. 5 з.п. ф-лы, 16 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

[0001] Настоящее изобретение относится к устройству преобразования электрической мощности.

УРОВЕНЬ ТЕХНИКИ

[0002] Известно устройство управления для управления преобразователем электрической мощности, которое содержит: PWM-выпрямитель (ШИМ-выпрямитель), который выполняет преобразование переменного тока в постоянный ток; и инвертор, подключенный к PWM-выпрямителю, чтобы выполнять инвертирование постоянного тока в переменный ток, причем устройство управления включает в себя: средство двухпозиционной фазовой модуляции для формирования команды управления выходным напряжением, чтобы выполнять двухпозиционную фазовую модуляцию для инвертора; первое средство вычисления величины компенсации для вычисления величины компенсации, корректирующей команду управления выходным напряжением, чтобы компенсировать ошибку выходного напряжения, сформированную, когда выполняется двухпозиционная фазовая модуляция для инвертора; средство формирования PWM-шаблонов инвертора для формирования PWM-импульсов для полупроводниковых переключающих элементов PWM-выпрямителя на основе команды управления входным током; средство определения переключения для определения присутствия или отсутствия переключения PWM-выпрямителя; средство определения абсолютной величины напряжения для определения напряжения максимальной фазы, напряжения средней фазы и напряжения минимальной фазы из входного напряжения каждой фазы; и средство определения полярности для определения полярности тока нагрузки, при этом первое средство вычисления величины компенсации вычисляет величину компенсации, корректирующую команду управления выходным напряжением, с использованием вывода средства определения абсолютной величины напряжения, вывода средства определения полярности, вывода средства определения переключения, частоты переключения инвертора и мертвого времени.

[0003] Тем не менее, возникает проблема в том, что известное устройство управления для устройства преобразования электрической мощности компенсирует только ошибку напряжения, сформированную согласно коммутации, но не может предотвращать само нарушение коммутации.

ПРЕДВАРИТЕЛЬНО ОПУБЛИКОВАННЫЕ ДОКУМЕНТЫ

[0004] Патентный документ 1. Первая публикация заявки на патент (Япония) (tokkai) номер 2006-20384.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0005] Задача настоящего изобретения заключается в том, чтобы предоставлять устройство преобразования электрической мощности, которое может предотвращать нарушение коммутации.

[0006] Вышеописанная задача может решаться посредством настоящего изобретения таким образом, что предоставляются секция вычисления времени переключения и секция формирования управляющих сигналов, выполненная с возможностью формировать управляющие сигналы для переключающих элементов на основе первого времени переключения и второго времени переключения, при этом секция вычисления времени переключения вычисляет первое время переключения, которое является временем, в течение которого один из переключающих элементов схемы верхнего плеча из нескольких пар из переключающих элементов, содержащихся в одной фазе из соответствующих фаз, включается, другие переключающие элементы схемы верхнего плеча из нескольких пар из переключающих элементов, содержащихся в других фазах, выключаются, по меньшей мере, один переключающий элемент схемы нижнего плеча из нескольких пар из переключающих элементов, содержащихся в других фазах, включается, а другие переключающие элементы схемы нижнего плеча из нескольких пар из переключающих элементов, содержащихся в одной фазе, выключаются, с использованием определенных напряжений, определенных посредством средства определения напряжения, и выходного значения команды управления, и вычисляет второе время переключения, в течение которого несколько пар из переключающих элементов, содержащихся в одной фазе из соответствующих фаз, включаются, а несколько пар из переключающих элементов, содержащихся в других фазах из соответствующих фаз, выключаются, с использованием несущей и первого времени переключения, и при этом в один период электрической мощности переменного тока, выведенной из схемы преобразования, второе время переключения, содержащееся в первом полупериоде периода, задается равным второму времени переключения, содержащемуся во втором полупериоде периода.

[0007] Согласно настоящему изобретению, второе время переключения в равной степени выделяется первому полупериоду и второму полупериоду. Таким образом, может не допускаться перекрытие операций переключения между первым моментом времени для второго времени переключения и последним моментом времени для второго времени переключения. Следовательно, может предотвращаться возникновение нарушения коммутации.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0008] Фиг. 1 является блок-схемой зарядной системы, включающей в себя устройство преобразования электрической мощности, в предпочтительном варианте осуществления согласно настоящему изобретению.

Фиг. 2 является блок-схемой зарядной системы в первом сравнительном примере.

Фиг. 3 является блок-схемой зарядной системы во втором сравнительном примере.

Фиг. 4 является блок-схемой контроллера, управляющего устройством преобразования электрической мощности, показанным на фиг. 1.

Фиг. 5 является графиком, представляющим последовательность переключения элемента переключения R-фазы, показанного на фиг. 1.

Фиг. 6 является схемой, представляющей взаимосвязь между базисным вектором и вектором напряжения в секции модуляции пространственных векторов, показанной на фиг. 4.

Фиг. 7(a) является схемой, которая представляет собой добавление комбинации переключения на векторную диаграмму по фиг. 6, и фиг. 7(b) является принципиальной схемой источника 1 питания переменного тока и матричного преобразователя 4 в зарядной системе, показанной на фиг. 1.

Фиг. 8 является концептуальной схемой таблицы шаблонов переключения по фиг. 4.

Фиг. 9(1)-9(6) являются схемами для пояснения переходов переключающих элементов на фиг. 1.

Фиг. 10 является графиком, представляющим взаимосвязь между несущей и временем вывода в контроллере на фиг. 4.

Фиг. 11 является графиком, представляющим форму сигнала выходного напряжения матричного преобразователя на фиг. 1.

Фиг. 12 является графиком, представляющим другую форму сигнала выходного напряжения матричного преобразователя на фиг. 1.

Фиг. 13 является графиком, представляющим взаимосвязь между несущей и значением команды управления и формой сигнала выходного напряжения в устройстве инвертора в третьем сравнительном примере.

Фиг. 14 является графиком, представляющим взаимосвязь между несущей и временем вывода и формой сигнала выходного напряжения в контроллере, показанном на фиг. 4.

Фиг. 15 является графиком, представляющим взаимосвязь между несущей и временем вывода и формой сигнала выходного напряжения в устройстве преобразования электрической мощности в модификации предпочтительного варианта осуществления согласно настоящему изобретению.

ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

[0009] В дальнейшем в этом документе описывается предпочтительный вариант осуществления согласно настоящему изобретению на основе чертежей.

ПЕРВЫЙ ПРЕДПОЧТИТЕЛЬНЫЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ

Фиг. 1 является блок-схемой аккумуляторной системы, включающей в себя устройство преобразования электрической мощности, связанное с предпочтительным вариантом осуществления согласно настоящему изобретению.

В дальнейшем в этом документе в качестве примера поясняется случай, в котором устройство преобразования электрической мощности в этом варианте осуществления применяется к зарядной системе, но этот вариант осуществления может применяться к транспортному средству и т.п., включающему в себя электродвигатель, и к устройству управления, управляющему электродвигателем, и т.п.

[0010] Зарядная система в этом варианте осуществления включает в себя: источник 1 питания переменного тока; входной фильтр 2; датчики 31-33 напряжения; матричный преобразователь 4; схему 5 высокочастотного трансформатора; выходной фильтр 6; и аккумулятор 7.

[0011] Источник 1 питания переменного тока является источником питания трехфазного переменного тока и предоставляет источник электрической мощности для зарядной системы. Входной фильтр 2 является фильтром для выпрямления электрической мощности переменного тока, вводимой из источника 1 питания переменного тока, и сконструирован посредством LC-схем, имеющих катушки 21, 22, 23 и конденсаторы 24, 25, 26. Катушки 21, 22, 23 подключаются между соответствующими фазами источника 1 питания переменного тока и матричного преобразователя 4. Конденсаторы 24, 25, 26 подключаются между катушками 21, 22, 23 и подключаются между соответствующими фазами.

[0012] Датчики 31, 32, 33 напряжения подключаются между источником 1 питания переменного тока и матричным преобразователем 4, чтобы определять входное напряжение (Vr, Vs, Vt) каждой фазы из источника 1 питания переменного тока в матричный преобразователь 4, и выводит определенные напряжения в контроллер 10, как описано ниже. Датчик 31 напряжения подключается к средней точке R-фазы матричного преобразователя 4, датчик 32 напряжения подключается к средней точке S-фазы матричного преобразователя 4, и датчик 33 напряжения подключается к средней точке T-фазы матричного преобразователя 4.

[0013] Матричный преобразователь 4 содержит множество переключающих элементов Srp, Srn, Ssp, Ssn, Stp, Stn, двунаправленно переключаемых, преобразует электрическую мощность переменного тока, введенную из источника электрической мощности переменного тока 1, в высокочастотную электрическую мощность переменного тока и выводит высокочастотную электрическую мощность переменного тока в схему 5 высокочастотного трансформатора. Матричный преобразователь 4 подключается между входным фильтром 2 и схемой 5 высокочастотного трансформатора. Переключающий элемент Srp, чтобы предоставлять элемент, двунаправленно переключаемый, включает в себя: транзистор Trrp1, к примеру, MOSFET-транзистор или IGBT-транзистор; транзистор Trrp2, к примеру, MOSFET-транзистор или IGBT-транзистор; диод DrP1; и диод DrP2. Транзистор Trrp1 и транзистор Trrp2 последовательно подключаются друг к другу во взаимно противоположных направлениях, и диод DrP1 и диод DrP2 последовательно подключаются друг к другу во взаимно противоположных направлениях, транзистор Trp1 и диод DrP1 подключаются параллельно друг другу во взаимно противоположных направлениях, транзистор Trrp2 и диод DrP2 подключаются параллельно друг другу во взаимно противоположных направлениях. Аналогично, другие переключающие элементы Srn, Ssp, Ssn, Stp, Stn сконструированы посредством мостовой схемы из транзисторов Trrn1, Trrn2 и диодов Drn1, Drn2, мостовой схемы из транзисторов Trsp1, Trsp2 и диодов Dsp1, Dsp2, мостовой схемы из транзисторов Trsn1, Trsn2 и диодов Dsn1, Dsn2, мостовой схемы из транзисторов Trtp1, Trtp2 и диодов Dtp1, Dtp2 и мостовой схемы из транзисторов Trtn1, Trtn2 и диодов Dtn1, Dtn2.

[0014] Другими словами, три из пары схем, в которых последовательно подключаются два переключающих элемента Srp, Srn, Ssp, Ssn, Stp, Stn, подключаются параллельно к первичной стороне трансформатора 51. Затем, мостовая схема, в которой три линии, подключенные между соответствующими парами переключающих элементов Srp, Srn, Ssp, Ssn, Stp, Stn, электрически подключены к трем секциям вывода фазы источника 1 питания переменного тока, составляет матричный преобразователь 4 трехфазного тока в однофазный.

[0015] Схема 5 высокочастотного трансформатора содержит трансформатор 51 и выпрямительную мостовую схему 52 и подключается между матричным преобразователем 4 и выходным фильтром 6. Схема 5 высокочастотного трансформатора преобразует высокочастотную электрическую мощность переменного тока, введенную из матричного преобразователя 4, в электрическую мощность постоянного тока и подает электрическую мощность постоянного тока в аккумулятор 7 через выходной фильтр 6. Трансформатор 51 повышает напряжение высокочастотного переменного тока, введенное из матричного преобразователя 4, и выводит этот повышенный переменный ток в выпрямительную мостовую схему 52. Следует отметить, что поскольку электрическая мощность переменного тока, выведенная из матричного преобразователя 4, является высокочастотной, трансформатор небольшого размера может быть использован в качестве трансформатора 51. Выпрямительная мостовая схема 52 является схемой, в которой множество диодов подключаются в мостовой конфигурации, и служит для того, чтобы преобразовывать переменный ток вторичной стороны трансформатора 51 в постоянный ток.

[0016] Выходной фильтр 6 сконструирован посредством LC-схемы из катушки 61 и конденсатора 62 и подключается между схемой 5 высокочастотного трансформатора и аккумулятором 7. Выходной фильтр 6 выпрямляет электрическую мощность постоянного тока, выведенную из схемы 5 высокочастотного трансформатора, и подает электрическую мощность постоянного тока в аккумулятор 7. Аккумулятор 7 является вторичным элементом, заряженным посредством зарядной системы в этом варианте осуществления, и сконструирован, например, посредством литий-ионного перезаряжаемого аккумулятора. Аккумулятор 7, например, монтируется в транспортном средстве и предоставляет динамичный источник (мощности) транспортного средства.

[0017] Таким образом, зарядная система в этом варианте осуществления преобразует переменный ток из источника 1 питания переменного тока в высокочастотный переменный ток, повышает высокочастотный переменный ток через схему 5 высокочастотного трансформатора, преобразует повышенный переменный ток в постоянный ток и подает повышенную электрическую мощность постоянного тока и высокого напряжения в аккумулятор 7.

[0018] Признаки зарядной системы, показанной на фиг. 1 с использованием устройства преобразования электрической мощности в этом варианте осуществления, поясняются в сравнении со сравнительным примером 1 и другим сравнительным примером 2, описанными ниже. Фиг. 2 показывает блок-схему зарядной системы, связанной со сравнительным примером 1, и фиг. 3 показывает блок-схему зарядной системы, связанной со сравнительным примером 2.

В качестве зарядной системы, отличающейся от предпочтительного варианта осуществления, согласно настоящему изобретению, известна такая система, как показано на фиг. 2, в которой электрическая мощность переменного тока, поданная из источника 1 питания переменного тока, пропускается через трансформатор 101 и преобразуется в электрическую мощность постоянного тока через выпрямитель 102 (сравнительный пример 1).

Помимо этого в качестве другой зарядной системы, отличающейся от зарядной системы в этом варианте осуществления, известна система, как показано на фиг. 3, в которой переменный ток из источника 1 питания переменного тока преобразуется в постоянный ток через PWM-выпрямитель 201, постоянный ток инвертируется в переменный ток через схему 203 инвертора первичной стороны схемы 202 высокочастотного трансформатора, преобразованный переменный ток повышается посредством трансформатора 204, повышенный переменный ток преобразуется в постоянный ток через выпрямительную мостовую схему 205 схемы 202 высокочастотного трансформатора, и постоянный ток подается в аккумулятор 7 (сравнительный пример 2).

[0019] В случае сравнительного примера 1, схемная структура является простой, но трансформатор 101 становится крупным. Помимо этого существует проблема в том, что появляется необходимость подключать электролитический конденсатор большой емкости между выпрямителем 102 и прерывателем повышения напряжения 103.

В случае сравнительного примера 2, хотя трансформатор небольшого размера может быть использован в качестве трансформатора 204, потери становятся большими, поскольку число преобразований является большим. Помимо этого существует проблема в том, что необходимо подключать электролитический конденсатор большой емкости между PWM-выпрямителем 201 и высокочастотным трансформатором 202.

[0020] В этом варианте осуществления, поскольку, как описано выше, использование матричного преобразователя 4 позволяет уменьшать потери, вызываемые посредством преобразования электрической мощности, позволяет делать необязательным электролитический конденсатор большой емкости на первичной стороне трансформатора 51 и позволяет достигать небольших размеров трансформатора 51.

[0021] Далее поясняется контроллер 10, управляющий матричным преобразователем 4, включенным в устройство преобразования электрической мощности в этом варианте осуществления, на фиг. 4. Фиг. 4 показывает блок-схему контроллера 10. Контроллер 10 включает и выключает переключающие элементы Srp, Srn, Ssp, Ssn, Stp, Stn и управляет матричным преобразователем 4 через PWM-управление. Контроллер 10 включает в себя: секцию 11 преобразования координат; секцию 12 модуляции пространственных векторов; секцию 13 вычисления времени вывода нулевых векторов; таблицу 14 шаблонов переключения; и секцию 15 формирования сигналов переключения.

[0022] Секция 11 преобразования координат сравнивает определенные напряжения, определенные посредством датчиков 31, 32, 33 напряжения, выясняет взаимосвязь абсолютных величин между ними, выполняет преобразование из трехфазного в двухфазное для определенных напряжений (Vr, Vs, Vt) в фиксированной системе координат, которые должны быть преобразованы в напряжения (vα, vβ) в статической системе координат, и выводит напряжения (vα, vβ) в секцию 12 модуляции пространственных векторов. Секция 12 модуляции пространственных векторов заменяет формы сигналов трехфазного напряжения на вектор с использованием модуляции пространственных векторов. Таким образом, времена (T1, T2) вывода векторов напряжения вычисляются с использованием фазового угла (θ) напряжений (vα, vβ).

[0023] Секция 13 вычисления времени вывода нулевых векторов вычисляет время (Tz) вывода нулевого вектора с использованием несущего сигнала, такого как треугольная волна, и времени, вычисленного посредством секции 12 модуляции пространственных векторов. Частота несущего сигнала задается выше частоты электрической мощности переменного тока источника 1 питания переменного тока. Таблица 14 шаблонов переключения сохраняет шаблон переключения, предварительно установленный с возможностью выполнять переключение переключающих элементов Srp, Srn, Ssp, Ssn, Stp, Stn, соответствующих фазовому углу (θ), в форме таблицы.

[0024] Секция 15 формирования сигналов переключения извлекает шаблон переключения, соответствующий фазовому углу (θ), посредством обращения к таблице 14 шаблонов переключения и выводит управляющие сигналы (Drp, Drn, Dsp, Dsn, Dtp, Dtn), чтобы включать или выключать переключающие элементы (Srp, Srn, Ssp, Ssn, Stp, Stn), с использованием извлеченного шаблона переключения, времен (T1, T2) вывода вектора напряжения и времени (Tz) вывода нулевого вектора, в схему возбуждения (не показана), включенную в матричный преобразователь 4. Переключающие элементы Srp, Srn, Ssp, Ssn, Stp, Stn управляются посредством импульсных сигналов. Таким образом, включение и выключение переключающих элементов Srp, Srn, Ssp, Ssn, Stp, Stn, включенных в матричный преобразователь 4, переключается таким образом, чтобы включаться и выключаться посредством управления контроллером 10, и электрическая мощность преобразуется.

[0025] Далее описывается управление переключением переключающих элементов Srp, Srn, Ssp, Ssn, Stp, Stn с использованием фиг. 5.

Фиг. 5 показывает график, представляющий последовательность переключения для переключающих элементов Srp, Srn, Ssp, Ssn, Stp, Stn.

На фиг. 5 высокий уровень обозначает включенное состояние, а низкий уровень обозначает отключенное состояние. Система (способ) коммутации напряжения используется для переключения переключающих элементов Srp, Srn, Ssp, Ssn, Stp, Stn. Контроллер 10 отслеживает взаимосвязь абсолютных величин входных напряжений из определенных напряжений (Vr, Vs, Vt), чтобы выполнять коммутацию. Предположим, что осуществляется переход состояния Trrp1, Trrp2, Trsp1, Trsp2 из начального состояния в последовательности i, ii, iii и iv.

[0026] В дальнейшем в этом документе описывается конкретный пример системы (способа) коммутации напряжения.

Для простоты пояснения ниже описывается только управление коммутацией для схемы верхнего плеча матричного преобразователя 4.

Предположим, что транзисторы Trrp1, Trrp2, включенные в переключающий элемент Srp, находятся во включенном состоянии, а транзисторы Trsp1, Trsp2, включенные в переключающий элемент Ssp, находятся в отключенном состоянии. Далее поясняется случай, в котором в состоянии, в котором напряжение переключающего элемента Srp выше напряжения переключающего элемента Ssp, коммутация выполняется из переключающего элемента Srp на напряжение в переключающем элементе Ssp.

[0027] Во-первых, когда осуществляется переход состояния из начального состояния в состояние (i), транзистор Trsp1 включается, когда осуществляется переход состояния из состояния (i) в состояние (ii), транзистор Trrp1 выключается, когда осуществляется переход состояния из состояния (ii) в состояние (iii), транзистор Trsp2 включается, и когда осуществляется переход состояния из состояния (iii) в состояние (iv), транзистор Trrp2 выключается. Это вызывает переключение переключающих элементов, так что источник 1 питания переменного тока не замыкается накоротко. Таким образом, исключается нарушение коммутации.

[0028] Далее описывается управление в контроллере 10 с использованием фиг. 1, 4 и 6-12.

[0029] Когда напряжение (vα, vβ) в статических координатах системы координат, преобразованных и вычисленных посредством секции 11 преобразования координат, вводится в секцию 12 модуляции пространственных векторов, секция 12 модуляции пространственных векторов вычисляет фазовый угол (θ) напряжения (vα, vβ) из введенного напряжения (vα, vβ). Следует отметить, что напряжение (vα, vβ) и фазовый угол (θ) представляются посредством вектора, как показано на фиг. 6. Фиг. 6 показывает векторную диаграмму, на которой определенные напряжения (Vr, Vs, Vt) преобразуются в двухфазную систему координат αβ, и входные напряжения наблюдаются в качестве векторов напряжения в статической системе координат. Va на фиг. 6 представляет базисный вектор и соответствует выходному значению команды управления, имеющему фазовый угол (θ) входного напряжения в системе координат αβ. Базисный вектор вращается с центральной точкой, показанной на фиг. 6, в качестве центра в соответствии с взаимосвязью абсолютных величин между входными напряжениями соответствующих фаз.

[0030] В этом варианте осуществления в статической системе координат, координаты разделяются по 60 градусов на шесть областей от α-оси в направлении против часовой стрелки. Оси V1-V6 выделяются граничным линиям соответствующих областей. Область между V1 и V2 допускается в качестве "области 1", область между V2 и V3 допускается в качестве "области 2", область между V3 и V4 допускается в качестве "области 3", область между V4 и V5 допускается в качестве "области 4", область между V5 и V6 допускается в качестве "области 5" и область между V6 и V1 допускается в качестве "области 6". Помимо этого V7-V9 выделяются началу координат.

Затем, векторы V1-V9 являются векторами напряжений, выведенных из матричного преобразователя 4. Векторы V1-V6, имеющие абсолютные величины в качестве векторов (ненулевых), представляют то, что ненулевые напряжения выводятся из матричного преобразователя 4. Другими словами, векторы V1-V6 соответствуют ненулевым векторам напряжения (в дальнейшем в этом документе, называемым "векторами напряжения"). С другой стороны, векторы V7-V9 представляют векторы нуля напряжения (нулевого напряжения) (в дальнейшем в этом документе, называемые "нулевыми векторами").

[0031] Помимо этого в этом варианте осуществления векторы V1-V9 напряжения задаются согласно взаимно различным шаблонам переключения переключающих элементов Srp, Srn, Ssp, Ssn, Stp, Stn, и шаблоны переключения для того, чтобы управлять переключающими элементами Srp, Srn, Ssp, Ssn, Stp, Stn определяются в зависимости от того, какой области принадлежат входные напряжения. Следует отметить, что ниже описывается взаимосвязь между векторами V1-V9 напряжения и шаблоном переключения.

[0032] Затем, секция 12 модуляции пространственных векторов определяет то, какой области принадлежит входное напряжение в момент времени определения, из фазового угла (θ) базисного вектора va. В примере, показанном на фиг. 6, поскольку базисный вектор va находится в области 1, секция 12 модуляции пространственных векторов определяет то, что входное напряжение принадлежит области 1, из фазового угла (θ) напряжения (vα, vβ). Помимо этого, например, в случае если взаимосвязь абсолютных величин входных напряжений (Vr, Vs, Vt) соответствующих фаз изменяется, и фазовый угол (θ) координат напряжений (vα, vβ) по αβ-оси, преобразованных согласно секции 11 преобразования координат, указывает 90 градусов, секция 12 модуляции пространственных векторов идентифицирует область 2, включающую в себя фазовый угол в 90 градусов.

[0033] Секция 12 модуляции пространственных векторов вычисляет время вывода вектора напряжения из компонента по оси области базисного вектора (Va), когда область идентифицируется.

В случае примера, показанного на фиг. 6, базисный вектор (Va) принадлежит области 1. Секция 12 модуляции пространственных векторов вычисляет компонент (Va1) вдоль оси V1 и компонент (Va2) вдоль оси V2 с использованием оси V1 и оси V2, которые являются осями области 1. Затем, абсолютная величина (Va1) компонента по оси V1 является временем вывода шаблона переключения, соответствующего V1, и абсолютная величина (Va2) компонента по оси V2 является временем вывода шаблона переключения, соответствующего V2. Здесь следует отметить, что времена вывода векторов V1-V6 напряжения допускаются в качестве T1, T2, а времена вывода нулевых векторов (V7-V9) допускаются в качестве Tz. Как описано ниже, в этом варианте осуществления два вектора напряжения выводятся в течение полупериода первой половины несущей. Следовательно, время вывода первого вектора напряжения из двух векторов напряжения допускается в качестве T1, и время вывода второго вектора напряжения допускается в качестве T2.

[0034] Каждое время (T1, T2, Tz) вывода представляется посредством нормализованного времени, соответствующего периоду несущей.

Как описано ниже, в этом варианте осуществления, чтобы обеспечивать время (Tz) вывода нулевых векторов (V7-V9) за полупериод несущей, накладывается ограничение на времена (T1, T2, Tz) вывода. Секция 12 модуляции пространственных векторов вычисляет времена (T1, T2) вывода так, что каждое из времен (T1, T2) вывода, в течение которых выводится соответствующий один из двух векторов напряжения, равно или ниже предварительно определенного наименьшего предельного значения. Следует отметить, что предварительно определенное наименьшее предельное значение соответствует времени, в течение которого обеспечивается время (Tz) вывода, и задается равным времени, которое меньше времени, соответствующего полупериоду несущей.

[0035] Область 1 является областью между фазовым углом в 0-60 градусов. Например, в случае если фазовый угол базисного вектора (va) попадает между 0 и 30 градусами, абсолютная величина (Va1) компонента по оси V1 превышает абсолютную величину (Va2) компонента по оси V2. Следовательно, время (T1) вывода шаблона переключения V1 превышает время (T2) вывода шаблона переключения V2. Область 4 является областью между фазовым углом в 180 градусов и фазовым углом в 240 градусов. Например, фазовый угол базисного вектора (va) варьируется от 210 до 240 градусов, абсолютная величина (Va5) компонента по оси V5 превышает абсолютную величину (Va4) компонента по оси V4. Следовательно, время (T2) вывода шаблона переключения V5 превышает время (T1) вывода шаблона переключения V4.

Таким образом, секция 12 модуляции пространственных векторов вычисляет фазовый угол (θ) с использованием vα, vβ, соответствующих определенным напряжениям соответствующих фаз, вычисляет времена (T1, T2) вывода векторов напряжения из базисного вектора Va, имеющего вычисленный фазовый угол (θ) в качестве направленного компонента, и выводит вычисленные времена (T1, T2) вывода в секцию 13 вычисления времени вывода нулевых векторов.

[0036] Секция 13 вычисления времени вывода нулевых векторов вычитает полное время из времени (T1) вывода и времени (T2) вывода из предварительно определенного полупериода периода несущей, чтобы вычислять время нулевого вектора (Tz). Поскольку секция 12 модуляции пространственных векторов вычисляет время (T1) вывода и время (T2) вывода таким образом, что вышеописанное полное время равно или ниже предварительно определенного наименьшего предельного времени, секция 13 вычисления времени вывода нулевых векторов может вычислять время нулевого вектора (Tz). В этом варианте осуществления, чтобы предоставлять переменный ток для выходной электрической мощности матричного преобразователя 4, время, в которое выводится ненулевое напряжение, и время, в которое выводится нулевое напряжение, периодически предоставляются.

Поскольку период несущей соответствует периоду выходного напряжения, время (Tz) вывода нулевого вектора является вычитанием времени (T1) вывода и времени (T2) вывода из времени, соответствующему полупериоду несущей. Секция 13 вычисления времени вывода нулевых векторов выводит время (Tz) нулевого вектора и времена (T1, T2) векторов напряжения в секцию 15 формирования сигналов переключения.

[0037] Секция 15 формирования сигналов переключения формирует сигналы переключения, чтобы возбуждать переключающие элементы Srp, Srn, Ssp, Ssn, Stp, Stn, с использованием шаблона переключения, сохраненного в таблице 14 шаблонов переключения, времени нулевого вектора (Tz) и времен (T1, T2) векторов напряжения.

[0038] Перед тем как подробно описывается содержимое управления таблицы 14 шаблонов переключения и секции 15 формирования сигналов переключения, ниже описывается взаимосвязь между векторами (V1-V9) и фазовым углом (θ) и шаблоном переключения с использованием фиг. 7(a) и 7(b).

Фиг. 7(a) является пояснительным видом векторной диаграммы по фиг. 6, в которую добавляется шаблон переключения. Фиг. 7(b) показывает упрощенную принципиальную схему источника 1 питания переменного тока и матричного преобразователя 4 из состава зарядной системы на фиг. 1. Следует отметить, что "1", показанное на фиг. 7(a) обозначает включенное состояние, а "0" обозначает отключенное состояние.

[0039] Как показано на фиг. 7(a) и 7(b), векторы (V1-V9) соответствуют шаблону переключения переключающих элементов Srp, Srn, Ssp, Ssn, Stp, Stn. В векторе (V1) напряжения переключающие элементы Srp, Stn включаются, а другие переключающие элементы Srn, Ssp, Ssn, Stp выключаются. В векторе (V2) напряжения переключающие элементы Ssp, Stn включаются, а другие переключающие элементы Srp, Srn, Ssn, Stp выключаются. В векторе (V3) напряжения, переключающие элементы Srn, Ssp включаются, а другие переключающие элементы Srp, Ssp, Stp, Stn выключаются.

В векторе (V4) напряжения, переключающие элементы Srn, Stp включаются, а другие переключающие элементы Srp, Ssp, Ssn, Stn выключаются. В векторе (V5) напряжения, переключающие элементы Ssn, Stp включаются, а другие переключающие элементы Srp, Srn, Ssp, Stp, Stn выключаются. В векторе (V6) напряжения, переключающие элементы Srp, Ssn включаются, а другие переключающие элементы Srn, Ssp, Stp, Stn выключаются.

Другими словами, в векторах (V1-V6) напряжения, один из переключающих элементов Srp, Ssp, Stp схемы верхнего плеча, содержащихся в одной фазе из соответствующих фаз, включается, а другие переключающие элементы Srp, Ssp, Stp схемы верхнего плеча, содержащиеся в других фазах, выключаются, по меньшей мере, один из переключающих элементов Srn, Ssn, Stn схемы нижнего плеча, содержащийся в других фазах, включается, а другие переключающие элементы Srn, Ssn, Stn схемы нижнего плеча, содержащиеся в одной фазе, выключаются.

[0040] Затем, в случае если переключающие элементы Srp, Srn, Ssp, Ssn, Stp, Stn управляются по шаблону переключения, соответствующему векторам (V1-V6) напряжения, ненулевое напряжение выводится на выходную сторону матричного преобразователя 4. Помимо этого, поскольку два вектора, которые предоставляют границы двух смежных областей, используются в соответствии с областями, формы сигналов различных уровней напряжения могут выводиться из матричного преобразователя 4.

[0041] Помимо этого на векторных диаграммах, показанных на фиг. 6, 7(a) и 7(b), шаблон переключения выделяется нулевым векторам (V7-V9), показанным в начале координат по фиг. 7(a). В векторе (V7) переключающие элементы Srp, Srn включаются, а другие переключающие элементы Ssp, Ssn, Stp, Stn выключаются. В векторе (V8) переключающие элементы Ssp, Ssn включаются, а другие переключающие элементы Srp, Srn, Stp, Stn, выключаются. В векторе (V9) переключающие элементы Stp, Stn включаются, а другие переключающие элементы Srp, Srn, Ssp, Ssn, выключаются.

Другими словами, в нулевых векторах (V7-V9), переключающие элементы Srp, Srn, Ssp, Ssn, Stp, Stn, содержащиеся в одной фазе из соответствующих фаз, включаются, а переключающие элементы Srp, Srn, Ssp, Ssn, Stp, Stn, содержащиеся в других фазах, выключаются.

[0042] В случае если переключающие элементы Srp, Srn, Ssp, Ssn, Stp, Stn управляются по шаблону переключения, соответствующему нулевым векторам (V7-V9), вывод матричного преобразователя 4 указывает нуль.

[0043] Как описано выше, одна из областей идентифицируется согласно фазовому углу (θ). Затем, определяются выходные векторы (V1-V6) напряжения и время (T1, T2) вывода. Помимо этого секция 13 вычисления времени вывода нулевых векторов вычисляет нулевые векторы (V7-V9) и их время (Tz) вывода. Поскольку матричный преобразователь 4 задается с выводом электрической мощности переменного тока в качестве цели, реверсируя и управляя переключающими элементами Srp, Srn, Ssp, Ssn, Stp, Stn во второй половине периода несущей для управления переключением в первой половине периода несущей, так что может быть получена выходная электрическая мощность, имеющая обратную по