Способ нанесения жаростойкого металлокерамического покрытия на изделия из жаропрочных сплавов

Изобретение относится к машиностроению и может быть использовано при изготовлении деталей с повышенной жаростойкостью. Способ нанесения жаростойкого металлокерамического покрытия на изделие из жаропрочного сплава включает нанесение на поверхность упомянутого изделия чередующихся керамических слоев тугоплавких окислов металлов и разделение этих слоев промежуточными компенсационными слоями пластичного металла. Компенсационные слои выполняют из тех же металлов, окислы которых составляют основу тугоплавких металлокерамических слоев, а состав компонентов покрытия подбирают так, чтобы коэффициенты термического расширения покрытия и материала изделия отличались не более чем на 15%. В качестве чередующихся керамических слоев тугоплавких окислов металлов наносят слои окислов хрома и иттрия до получения слоя тугоплавкой шпинели YCrO3 толщиной 100 нм. Упомянутые керамические слои наносят с дополнительной металлизацией, при которой доля металлической компоненты Cr+Y составляет 5-10%. Нанесение каждого из керамических и компенсационных слоев проводят с чередованием напыления в течение 3 минут и распыления в течение 30 секунд. Обеспечивается повышение прочности и жаростойкости покрытия.

Реферат

Изобретение относится к машиностроению и может быть использовано при изготовлении деталей с повышенной жаростойкостью.

Известен способ упрочнения инструмента (патент РФ №2296813, МПК С23С 28/00; С23С 14/48 от 13.07.2004 г.), при котором наносят чередующиеся между собой промежуточные и компенсационные слои покрытия. Это позволяет повысить прочность покрытия. Однако покрытие, получаемое по известному способу, имеет повышенную хрупкость, так как слои напыляют микрометровой толщины.

Известен способ нанесения защитного эрозионно-стойкого покрытия, согласно которому производят плазменное напыление на поверхность изделия металлического подслоя из сплава на никелевой основе, а затем наносят керамическое покрытие из оксида циркония, стабилизированного оксидом иттрия, путем послойного плазменного напыления (патент РФ №2260071, МПК С23С 4/04; С23С 4/12 от 30.09.2004). Этот способ также позволяет повысить прочность и твердость покрытия, однако, получаемое покрытие также формируется микрометровой толщины, что не обеспечивает его пластичности.

Известен также способ напыления жаростойкого металлокерамического покрытия (патент РФ №2309194, МПК С23С 14/34 от 11.01.2005 г.), принятый за прототип. По прототипу наносят покрытие, состоящее из чередующихся слоев тугоплавких окислов металлов, разделенных компенсационными слоями пластичного металла, причем компенсационные слои выполняют из тех же металлов, окислы которых составляют основу тугоплавких металлокерамических слоев, а состав компонентов подбирают таким образом, чтобы коэффициенты термического расширения покрытия и основы отличались не более чем на 15%. Способ по прототипу повышает жаростойкость покрытия, однако покрытие также получается хрупким из-за большой толщины керамических слоев.

Технической задачей, на решение которой направлено заявляемое изобретение, является одновременное повышение твердости, прочности, пластичности и жаростойкости покрытия.

Сущность предлагаемого способа заключается в том, что на поверхность изделия из жаропрочного сплава наносят чередующиеся керамические слои тугоплавких окислов металлов и разделяют эти слои промежуточными компенсационными слоями пластичного металла. Компенсационные слои выполняют из тех же металлов, окислы которых составляют основу тугоплавких металлокерамических слоев. При этом состав компонентов покрытия подбирают так, чтобы коэффициенты термического расширения компонентов покрытия и материала изделия отличались не более чем на 15%.

В отличие от прототипа в качестве чередующихся керамических слоев тугоплавких окислов металлов наносят слои окислов хрома и иттрия до получения слоя тугоплавкой шпинели YCrO3 толщиной 100 нм. Керамические слои наносят с дополнительной металлизацией, при которой долю металлической компоненты Cr+Y выбирают в пределах 5…10%. Первым на поверхность изделия наносят компенсационный слой, добавляя в него элемент, составляющий основу сплава, из которого изготовлено изделие. Нанесение каждого из керамических и компенсационных слоев производят с чередованием напыления в течение 3 минут и распыления в течение 30 секунд. При этом осуществляется ионно-плазменная полировка, подогрев и активация поверхности изделия.

Совокупность признаков предлагаемого способа обеспечивает по сравнению с прототипом возможность повышения твердости и прочности покрытия за счет обеспечения наноразмеров толщины керамических слоев, повышения пластичности за счет обеспечения мелкозернистой структуры композиционных слоев и повышения жаростойкости за счет того, что в покрытии использовано сочетание металлов (Cr+Y), не имеющих полиморфных превращений.

Предлагаемый способ осуществляется следующим образом.

На очищенную и подготовленную поверхность изделия из жаропрочного сплава наносят чередующиеся керамические слои тугоплавких окислов металлов и разделяют эти слои промежуточными компенсационными слоями пластичного металла. Компенсационные слои выполняют из тех же металлов, окислы которых составляют основу тугоплавких металлических слоев. Состав компонентов покрытия выбирают так, чтобы коэффициенты термического расширения компонентов покрытия и материала изделия отличались не более чем на 15%. В качестве чередующихся керамических слоев тугоплавких окислов металлов наносят окислы хрома и иттрия до получения тугоплавкой шпинели YCrO3 толщиной 100 нм. Это повышает твердость и прочность покрытия. Наноразмер толщины покрытия наряду с повышением прочности обеспечивает повышение пластичности покрытия. Керамические слои наносят с дополнительной металлизацией, при которой долю металлической компоненты Cr+Y выбирают в пределах 5…10%. При уменьшении этой доли менее 5% возникает хрупкость покрытия, при увеличении более 10% - доли керамической составляющей недостаточно, что понизит жаростойкость покрытия. Дополнительная металлизация с соблюдением указанной доли металлической компоненты обеспечивает в процессе эксплуатации изделия и износа покрытия образование дополнительного количества тугоплавкой шпинели хрома и иттрия, что восстанавливает керамическую составляющую поверхности покрытия. Это повышает жаростойкость покрытия и увеличивает ресурс работы изделия. Выбор в качестве компонентов покрытия хрома и иттрия обусловлен тем, что эти металлы имеют высокие механические свойства и не имеют полиморфных превращений, что также повышает жаростойкость покрытия.

Нанесение каждого из керамических и компенсационных слоев производят с чередованием напыления в течение 3 минут и распыления в течение 30 секунд. В процессе напыления, по мере роста кристаллитов, формируется слой покрытия. В процессе распыления рост кристаллитов временно прекращается, а после окончания распыления, в процессе последующего напыления, начинается вновь. Это обеспечивает образование наноразмерной структуры слоев покрытия, что повышает их прочность и уменьшает хрупкость. Одновременно в процессе распыления происходит ионно-плазменная полировка, подогрев и активация поверхности напыленной части слоя, что повышает адгезионные свойства этой поверхности и способствует повышению прочности покрытия.

Первым наносят компенсационный слой, в состав которого добавляют элемент, составляющий основу сплава, из которого изготовлено изделие, после чего наносят чередующиеся керамические слои с промежуточными компенсационными слоями. Это обеспечивает хорошую адгезию первого слоя покрытия с поверхностью изделия, что позволяет применять предлагаемый способ к изделиям из любых жаропрочных сплавов.

Таким образом, новые признаки предлагаемого способа являются существенными, способ обладает новизной, изобретательским уровнем и обеспечивает технический эффект, заключающийся в повышении твердости, прочности, пластичности и жаростойкости покрытия, наносимого на поверхность жаропрочных материалов.

Примером реализации предлагаемого способа может служить процесс нанесения покрытия на изделие из никелевого сплава ЖС6К. Сначала производили предварительную обработку поверхности изделия: механическую и электрохимическую полировку поверхности. Затем производили ультразвуковую мойку изделия в спирте. Эти операции выполнялись известными способами и с применением известного оборудования и инструмента. Потом помещали изделие в вакуумную ионно-плазменную установку ННВ 6.6-И1 производства Саратовского завода электротермического оборудования, создавали в ней вакуум 2·10-5 мм рт.ст. и производили ионную очистку поверхности. Затем наносили на поверхность изделия первый компенсационный слой, добавляя в него никель, после чего наносили последовательно чередующиеся керамические слои окислов хрома и иттрия до получения слоя тугоплавкой шпинели YCrO3 толщиной до 100 нм и компенсационные слои. При нанесении керамических слоев осуществляли дополнительную металлизацию, при которой долю металлической компоненты Cr+Y выбирали 8%. Нанесение каждого из керамических и компенсационных слоев производили с чередованием напыления и распыления. Напыление производили в течение 3 минут при токе дуги 70…80 А и ускоряющем напряжении 200…220 В и остаточном давлении 2,5·10-3 мм рт.ст. После этого уменьшали подачу активных газов, понижали давление до 1·10-5 мм рт.ст и в течение 30 секунд производили распыление при силе тока дуги 70…90 А и ускоряющем напряжении 1000…1500 В. Повторяли чередование напыления и распыления до получения необходимого количества слоев.

Экспериментальная проверка предлагаемого способа была также проведена на сплаве ВХ2К, основой которого является хром. В этом случае в первый композиционный слой добавляли хром. Поскольку все компоненты покрытия в первом (на сплаве ЖС6К) и во втором (на сплаве ВХ2К) эксперименте были согласно признакам предлагаемого способа одинаковыми, то оборудование, операции и параметры режима нанесения покрытий в обоих экспериментах не изменялись.

Рентгеноструктурный и рентгеноспектральный анализы нанесенных покрытий показали, что в керамических слоях содержалось 80% шпинели YCrO3, остальное составляли хром, иттрий и кислород.

Из примера применения предлагаемого способа нанесения покрытия очевидно, что предлагаемый способ может быть применен с помощью известных в технике средств. Следовательно, он обладает промышленной применимостью.

Способ нанесения жаростойкого металлокерамического покрытия на изделие из жаропрочного сплава, включающий нанесение на поверхность упомянутого изделия чередующихся керамических слоев тугоплавких окислов металлов и разделение этих слоев промежуточными компенсационными слоями пластичного металла, причем компенсационные слои выполняют из тех же металлов, окислы которых составляют основу тугоплавких металлокерамических слоев, а состав компонентов покрытия подбирают так, чтобы коэффициенты термического расширения покрытия и материала изделия отличались не более чем на 15%, отличающийся тем, что в качестве чередующихся керамических слоев тугоплавких окислов металлов наносят слои окислов хрома и иттрия до получения слоя тугоплавкой шпинели YCrO3 толщиной 100 нм, упомянутые керамические слои наносят с дополнительной металлизацией, при которой доля металлической компоненты Cr+Y составляет 5-10%, а нанесение каждого из керамических и компенсационных слоев проводят с чередованием напыления в течение 3 минут и распыления в течение 30 секунд.