Высокопрочный холоднокатаный стальной лист, имеющий превосходные равномерное относительное удлинение и способность к расширению отверстия, и способ его изготовления
Иллюстрации
Показать всеИзобретение относится к области металлургии, а именно к высокопрочному холоднокатаному стальному листу, используемому в автомобилестроении. Лист выполнен из стали, содержащей в мас.%: С: от 0,01 до 0,4, Mn: от 0,001 до 4,0, Р: от 0,001 до 0,15, S: от 0,0005 до 0,03, N: от 0,0005 до 0,01, О: от 0,0005 до 0,01, Si и Al каждый по меньшей мере 0,001 и при содержании Si + Al до менее 1,0%, остальное количество составлено железом и неизбежными загрязняющими примесями. Структура стали, в единицах доли площади, содержит от 5 до 80% феррита, от 5 до 80% бейнита и 1% или менее мартенсита, при общем содержании мартенсита, перлита и остаточного аустенита, составляющем 5% или менее. В центральной области толщины листа, находящейся в диапазоне от 5/8 до 3/8 толщины листа от поверхности стального листа, среднее значение полюсных плотностей группы ориентаций от {100}<011> до {223}<110> составляет 5,0 или менее, а полюсная плотность кристаллографической ориентации {332}<113> составляет 4,0 или менее. Значение показателя анизотропии «r», в направлении, перпендикулярном направлению прокатки (rC), составляет 0,70 или более, а значение показателя анизотропии «r» в направлении под углом 30° к направлению прокатки (r30) составляет 1,10 или менее. Лист имеет повышенные равномерное относительное удлинение и способность к раздаче отверстия. 2 н. и 12 з.п. ф-лы, 1 ил., 5 табл., 1 пр.
Реферат
Область техники, к которой относится изобретение
[0001] Изобретение относится к высокопрочному холоднокатаному стальному листу, имеющему превосходные равномерное относительное удлинение и способность к расширению отверстия, который главным образом используют для автомобильных деталей и тому подобных, и способу его изготовления.
Настоящая заявка основана и притязает на приоритет предшествующей Японской Патентной Заявке № 2011-095254, поданной 21 апреля 2011 года, полное содержание которой включено в настоящее описание ссылкой.
Уровень техники
[0002] Для сокращения выбросов газообразного диоксида углерода из автомобилей стимулировалось снижение веса кузовов автомобильных транспортных средств с использованием высокопрочных стальных листов. Кроме того, чтобы также обеспечить безопасность пассажиров, также в возрастающем масштабе использовался высокопрочный стальной лист для кузова автомобильных транспортных средств, в дополнение к листу из мягкой стали. Чтобы дополнительно содействовать снижению веса кузовов автомобильных транспортных средств, в дальнейшем необходимо повышать прочность высокопрочного стального листа в большей степени, чем обычно.
[0003] Для применения высокопрочного стального листа в деталях нижней части кузова, например, должна быть повышена обрабатываемость, в частности, в отношении снятия заусенцев. Однако когда прочность стального листа в целом возрастает, снижается формуемость и сокращается равномерное относительное удлинение, важное для вытяжки и выгибания.
[0004] В Непатентном Документе 1 раскрыт способ, в котором оставляют аустенит в структуре стального листа для обеспечения равномерного относительного удлинения. Кроме того, в Непатентном Документе 2 представлен способ обеспечения равномерного относительного удлинения при одинаковой прочности путем создания комплексной металлографической структуры стального листа.
[0005] При этом также раскрыто регулирование металлографической структуры, которая повышает локальную пластичность, необходимую для изгибания, расширения отверстия и снятия заусенцев. Непатентный Документ 3 сообщает, что регулирование включений, делающих структуру однородной, и дополнительное снижение разности в величинах твердости между структурами, являются эффективными для улучшения изгибаемости и способности к расширению отверстия.
[0006] Это представляет собой метод улучшения способности к расширению отверстия, делая структуру однородной путем регулирования структуры, но, чтобы сделать структуру однородной, основной операцией является термическая обработка однофазной аустенитной структуры, как представлено в Непатентном Документе 4.
[0007] Для достижения прогресса в плане прочности и пластичности, Непатентный Документ 4 сообщает, что структурное превращение контролируют регулированием охлаждения, тем самым получая надлежащие фракции феррита и бейнита. Однако все ситуации сводятся к улучшению локальной деформируемости, основанному на регулировании структуры, и желательные свойства в значительной мере обусловлены тем, как сформирована структура.
[0008] Между тем, в качестве метода улучшения материала горячекатаного стального листа представлен способ повышения степени обжатия при непрерывной горячей прокатке. Это то, что называется способом измельчения кристаллических зерен, в котором выполняют интенсивное обжатие при настолько низкой температуре, насколько возможно, в аустенитной области, и нерекристаллизованный аустенит превращается в феррит, чтобы обеспечить тонкодисперсные кристаллические зерна феррита, который представляет собой основную фазу продукта.
[0009] Непатентный Документ 5 описывает, что этим измельчением зерен целенаправленно увеличивают прочность и повышают ударную вязкость. Однако Непатентный Документ 5 не затрагивает улучшения способности к расширению отверстия, которую желательно достигнуть настоящим изобретением, и также не раскрывает средств воздействия на холоднокатаный стальной лист.
Документы предшествующего уровня техники
Непатентные Документы
[0010] Непатентный Документ 1: автор Takahashi, журнал «Nippon Steel Technical Report» (2003), № 378, стр. 7.
Непатентный Документ 2: авторы O. Matsumura и другие, журнал «Trans. ISIJ» (1987), том 27, стр. 570.
Непатентный Документ 3: авторы Kato и другие, журнал «Steelmaking Research» (1984), том 312, стр. 41.
Непатентный Документ 4: авторы K. Sugimoto и другие, (2000), том 40, стр. 920.
Непатентный Документ 5: Nakayama Steel Works, Ltd. NFG Catalog.
Сущность изобретения
Проблемы, разрешаемые изобретением
[0011] Как было описано выше, выполнение регулирования структуры, содержащей включения, является основным методом улучшения характеристик локальной пластичности высокопрочного стального листа. Однако в той мере, насколько выполняется регулирование структуры, должны контролироваться формы выделившихся фаз и фракции феррита и бейнита, и существенным условием является установление пределов металлографической структуры как основы.
[0012] Таким образом, настоящее изобретение имеет задачей улучшение равномерного относительного удлинения и обрабатываемости в отношении снятия заусенцев высокопрочного стального листа, и также улучшение в плане анизотропии в стальном листе регулированием фракций и формированием металлографической структуры как базы, и регулированием текстуры. Настоящее изобретение имеет целью создание высокопрочного холоднокатаного стального листа, имеющего превосходные равномерное относительное удлинение и способность к расширению отверстия, которые решают эту задачу, и способ его изготовления.
Средства разрешения проблем
[0013] Авторы настоящего изобретения обстоятельно исследовали способ решения вышеописанной задачи. В результате было найдено, что, когда условия прокатки и условия охлаждения регулируют до требуемых диапазонов для формирования предварительно заданной текстуры и структуры стального листа, тем самым может быть изготовлен высокопрочный холоднокатаный стальной лист, имеющий превосходную изотропную обрабатываемость.
[0014] Настоящее изобретение выполнено на основе вышеописанного знания, и его сущность состоит в следующем.
[0015]
[1] Высокопрочный холоднокатаный стальной лист, имеющий превосходные равномерное относительное удлинение и способность к расширению отверстия, содержит, в % по массе:
С: от 0,01 до 0,4%;
Si: от 0,001 до 2,5%;
Mn: от 0,001 до 4,0%;
Р: от 0,001 до 0,15%;
S: от 0,0005 до 0,03%;
Al: от 0,001 до 2,0%;
N: от 0,0005 до 0,01%; и
О: от 0,0005 до 0,01%; причем содержание Si+Al ограничено до менее 1,0%, и
остальное количество составлено железом и неизбежными загрязняющими примесями, причем в центральной области толщины листа, находящейся в диапазоне от 5/8 до 3/8 толщины листа от поверхности стального листа, среднее значение полюсных плотностей группы ориентаций от {100}<011> до {223}<110>, представленной соответствующими кристаллографическими ориентациями {100}<011>, {116}<110>, {114}<110>, {113}<110>, {112}<110>, {335}<110> и {223}<110>, составляет 5,0 или менее, и полюсная плотность кристаллографической ориентации {332}<113> составляет 4,0 или менее,
металлографическая структура содержит от 5 до 80% феррита, от 5 до 80% бейнита, и 1% или менее мартенсита, в единицах доли площади, и общее содержание мартенсита, перлита и остаточного аустенита составляет 5% или менее, и
значение «r» (rC) в направлении, перпендикулярном направлению прокатки, составляет 0,70 или более, и значение «r» (r30) в направлении под углом 30° к направлению прокатки, составляет 1,10 или менее.
[2] Высокопрочный холоднокатаный стальной лист, имеющий превосходные равномерное относительное удлинение и способность к расширению отверстия, согласно пункту [1], в котором
значение «r» (rL) в направлении прокатки составляет 0,70 или более, и значение «r» (r60) в направлении под углом 60° к направлению прокатки составляет 1,10 или менее.
[3] Высокопрочный холоднокатаный стальной лист, имеющий превосходные равномерное относительное удлинение и способность к расширению отверстия, согласно пункту [1], в котором
в металлографической структуре среднеобъемный диаметр кристаллических зерен составляет 7 мкм или менее, и среднее значение, в кристаллических зернах, отношения длины dL в направлении прокатки к длине dt по направлению толщины листа: dL/dt составляет 3,0 или менее.
[4] Высокопрочный холоднокатаный стальной лист, имеющий превосходные равномерное относительное удлинение и способность к расширению отверстия, согласно пункту [1], дополнительно содержит:
элемент одного типа или двух, или более типов из
в % по массе,
Ti: от 0,001 до 0,2%,
Nb: от 0,001 до 0,2%,
В: от 0,0001 до 0,005%,
Mg: от 0,0001 до 0,01%,
Rem (редкоземельные металлы): от 0,0001 до 0,1%,
Са: от 0,0001 до 0,01%,
Mo: от 0,001 до 1,0%,
Cr: от 0,001 до 2,0%,
V: от 0,001 до 1,0%,
Ni: от 0,001 до 2,0%,
Cu: от 0,001 до 2,0%,
Zr: от 0,0001 до 0,2%,
W: от 0,001 до 1,0%,
As: от 0,0001 до 0,5%,
Со: от 0,0001 до 1,0%,
Sn: от 0,0001 до 0,2%,
Pb: от 0,001 до 0,1%,
Y: от 0,001 до 0,10%, и
Hf: от 0,001 до 0,10%.
[5] Высокопрочный холоднокатаный стальной лист, имеющий превосходные равномерное относительное удлинение и способность к расширению отверстия, согласно пункту [1], в котором поверхность снабжена слоем гальванического покрытия, полученным погружением.
[6] Высокопрочный холоднокатаный стальной лист, имеющий превосходные равномерное относительное удлинение и способность к расширению отверстия, согласно пункту [1], в котором
после горячей гальванизации погружением выполняют обработку для легирования при температуре от 450 до 600°С.
[7] Способ изготовления высокопрочного холоднокатаного стального листа, имеющего превосходные равномерное относительное удлинение и способность к расширению отверстия, который включает стадии, в которых:
на стальной заготовке, содержащей:
в % по массе,
С: от 0,01 до 0,4%;
Si: от 0,001 до 2,5%;
Mn: от 0,001 до 4,0%;
Р: от 0,001 до 0,15%;
S: от 0,0005 до 0,03%;
Al: от 0,001 до 2,0%;
N: от 0,0005 до 0,01%; и
О: от 0,0005 до 0,01%; причем содержание Si+Al ограничено до менее 1,0%, и
остальное количество составлено железом и неизбежными загрязняющими примесями,
выполняют первую горячую прокатку, в которой проводят прокатку со степенью обжатия 40% или более один раз или более в температурном диапазоне не ниже 1000°С и не выше 1200°С;
регулируют диаметр аустенитного зерна на величину 200 мкм или менее первой горячей прокаткой;
выполняют вторую горячую прокатку, в которой проводят прокатку со степенью обжатия 30% или более в одном проходе по меньшей мере один раз в температурном диапазоне не ниже чем температура Т1+30°С и не выше чем Т1+200°С, согласно нижеприведенному Выражению (1);
регулируют общую степень обжатия при второй горячей прокатке на 50% или более;
выполняют конечное обжатие при степени обжатия 30% или более во второй горячей прокатке, и затем начинают первичное охлаждение перед холодной прокаткой таким образом, чтобы время выдержки t секунд удовлетворяло нижеприведенному Выражению (2);
регулируют среднюю скорость охлаждения в первичном охлаждении на 50°С/секунду или более, и выполняют первичное охлаждение таким образом, чтобы изменение температуры происходило в диапазоне не менее чем на 40°С и не более чем на 140°С;
выполняют холодную прокатку со степенью обжатия не менее 30% и не более 70%;
выполняют нагрев до температуры в диапазоне от 700 до 900°С, и проводят выдерживание в течение времени не короче 1 секунды и не дольше 1000 секунд;
выполняют первичное охлаждение после холодной прокатки до температуры в диапазоне от 580 до 750°С со средней скоростью охлаждения 12°С/секунду или менее;
выполняют вторичное охлаждение после холодной прокатки до температуры в диапазоне от 350 до 500°С со средней скоростью охлаждения от 4 до 300°С/секунду; и
выполняют термическую обработку в режиме перестаривания, в которой проводят выдерживание в течение времени не короче t2 секунд, удовлетворяющее нижеприведенному Выражению (4), и не дольше 400 секунд, в температурном диапазоне не ниже 350°С и не выше 500°С.
T1(°С)=850+10×(C+N)×Mn+350×Nb+250×Ti+40×B+10×Cr+100×Mo+100×V …(1)
Здесь, каждый из С, N, Mn, Nb, Ti, В, Cr, Mo, и V представляет содержание элемента (% по массе),
t≤2,5×t1 … (2)
Здесь, t1 получается согласно нижеприведенному Выражению (3):
t1=0,001×((Tf-T1)×P1/100)2-0,109×((Tf-T1)×Р1/100)+3,1 … (3)
Здесь, в вышеуказанном Выражении (3), Tf представляет температуру стальной заготовки, полученной после конечного обжатия при степени обжатия 30% или более, и Р1 представляет степень обжатия при конечном обжатии на уровне 30% или более:
log(t2)=0,0002(Т2-425)2+1,18 … (4)
Здесь, Т2 представляет температуру обработки в режиме перестаривания, и максимальное значение t2 регулируют на 400.
[8] Способ изготовления высокопрочного холоднокатаного стального листа, имеющего превосходные равномерное относительное удлинение и способность к расширению отверстия, согласно пункту [7], дополнительно включающий стадию, в которой:
после выполнения первичного охлаждения перед холодной прокаткой выполняют вторичное охлаждение перед холодной прокаткой до температуры прекращения охлаждения 600°С или ниже, со средней скоростью охлаждения от 10 до 300°С/секунду, перед проведением холодной прокатки, и выполняют намотку в рулон при температуре 600°С или ниже для получения горячекатаного стального листа.
[9] Способ изготовления высокопрочного холоднокатаного стального листа, имеющего превосходные равномерное относительное удлинение и способность к расширению отверстия, согласно пункту [7], в котором
общая степень обжатия в температурном диапазоне ниже Т1+30°С составляет 30% или менее.
[10] Способ изготовления высокопрочного холоднокатаного стального листа, имеющего превосходные равномерное относительное удлинение и способность к расширению отверстия, согласно пункту [7], в котором
время выдержки t секунд дополнительно удовлетворяет нижеприведенному Выражению (2а):
t<t1 … (2а)
[11] Способ изготовления высокопрочного холоднокатаного стального листа, имеющего превосходные равномерное относительное удлинение и способность к расширению отверстия, согласно пункту [7], в котором
время выдержки t секунд дополнительно удовлетворяет нижеприведенному Выражению (2b):
t1≤t≤t1×2,5 … (2b)
[12] Способ изготовления высокопрочного холоднокатаного стального листа, имеющего превосходные равномерное относительное удлинение и способность к расширению отверстия, согласно пункту [7], в котором
первичное охлаждение после горячей прокатки начинают между клетями прокатного стана.
[13] Способ изготовления высокопрочного холоднокатаного стального листа, имеющего превосходные равномерное относительное удлинение и способность к расширению отверстия, согласно пункту [7], в котором,
когда выполняют нагрев до температуры в диапазоне от 700 до 900°С после холодной прокатки, среднюю скорость нагрева от температуры не ниже, чем комнатная температура, и не выше 650°С, регулируют на значение HR1 (°С/секунду), согласно нижеприведенному Выражению (5), и
среднюю скорость нагрева от температуры выше 650°С до температуры от 700 до 900°С регулируют на значение HR2 (°С/секунду), согласно нижеприведенному Выражению (6):
HR1≥0,3 … (5)
HR2≤0,5×HR1 … (6)
[14] Способ изготовления высокопрочного холоднокатаного стального листа, имеющего превосходные равномерное относительное удлинение и способность к расширению отверстия, согласно пункту [7], дополнительно включающий стадию, в которой:
выполняют на поверхности горячее нанесение гальванического покрытия погружением.
[15] Способ изготовления высокопрочного холоднокатаного стального листа, имеющего превосходные равномерное относительное удлинение и способность к расширению отверстия, согласно пункту [14], дополнительно включающий стадию, в которой:
после проведения горячего нанесения покрытия погружением выполняют обработку для легирования при температуре от 450 до 600°С.
Эффект изобретения
[0016] Согласно настоящему изобретению, возможно создание высокопрочного холоднокатаного стального листа, который не имеет значительной анизотропии, даже когда добавлены Nb, Ti и/или тому подобные, и имеет превосходные равномерное относительное удлинение и способность к расширению отверстия.
Краткое описание чертежей
[0017]
[ФИГ. 1] ФИГ. 1 представляет пояснительный вид технологической линии непрерывной горячей прокатки.
Вариант осуществления изобретения
[0018] Далее настоящее изобретение будет описано подробно.
[0019] Прежде всего, будет разъяснен высокопрочный холоднокатаный стальной лист, имеющий превосходные равномерное относительное удлинение и способность к расширению отверстия, согласно настоящему изобретению, (который далее иногда будет называться «стальным листом согласно настоящему изобретению»).
[0020] Ориентация кристаллов
В стальном листе согласно настоящему изобретению особенно важную характеристическую величину представляет среднее значение полюсных плотностей группы ориентаций от {100}<011> до {223}<110> в центральной области толщины листа, находящейся в диапазоне от 5/8 до 3/8 толщины листа от поверхности стального листа. В той мере, насколько среднее значение полюсных плотностей группы ориентаций от {100}<011> до {223}<110> составляет 5,0 или менее, когда измерение рентгеновской дифракции выполняют в центральной области толщины листа, находящейся в диапазоне от 5/8 до 3/8 толщины листа от поверхности стального листа, для получения полюсных плотностей соответствующих ориентаций, может быть удовлетворено отношение «толщина листа/радиус изгиба ≥1,5», которое требуется для необходимой в недавние годы обработки каркасных деталей.
[0021] Когда вышеописанное среднее значение превышает 5,0, становится исключительно высокой анизотропия механических характеристик стального листа, и дополнительно улучшается локальная деформируемость только по определенным направлениям, но по отличному от них направлению материал значительно ухудшается, приводя к тому, что становится невозможным удовлетворение отношения «толщина листа/радиус изгиба ≥1,5».
[0022] Среднее значение полюсных плотностей группы ориентаций от {100}<011> до {223}<110> желательно составляет 4,0 или менее. Когда требуется еще более улучшенная способность к расширению отверстия и менее ограниченная изгибаемость, вышеописанное среднее значение желательно составляет 3,0 или менее.
[0023] С другой стороны, когда вышеописанное среднее значение становится меньшим чем 0,5, что является труднодостижимым в современном общем процессе непрерывной горячей прокатки, возникает проблема ухудшения локальной деформируемости, так что вышеописанное среднее значение предпочтительно составляет 0,5 или более.
[0024] В группу ориентаций от {100}<011> до {223}<110> входят ориентации {100}<011>, {116}<110>, {114}<110>, {113}<110>, {112}<110>, {335}<110> и {223}<110>.
[0025] Полюсная плотность синонимична отношению произвольных интенсивностей рентгеновского излучения. Полюсная плотность (отношение произвольных интенсивностей рентгеновского излучения) представляет собой численное значение, полученное измерением интенсивностей рентгеновского излучения на стандартном образце, не имеющем скопления с конкретной ориентацией, и испытательного образца, в одних и тех же условиях с помощью рентгеновской дифрактометрии или тому подобного, и делением полученной интенсивности рентгеновского излучения от испытательного образца на интенсивность рентгеновского излучения стандартного образца. Эту полюсную плотность измеряют с использованием устройства для рентгеновской дифракции, EBSD (дифракции обратно рассеянных электронов), или тому подобного. Кроме того, она может быть измерена с помощью метода EBSP (анализ дифракционной картины обратного рассеяния электронов) или метода ECP (анализ картины каналирования электронов). Она может быть получена из трехмерной текстуры, рассчитанной векторным методом на основе полюсной фигуры {110}, или также может быть получена из трехмерной текстуры, рассчитанной методом разложения в ряд с использованием многочисленных (предпочтительно трех или более) полюсных фигур из серии полюсных фигур {110}, {100}, {211} и {310}.
[0026] Например, для полюсной плотности каждой из вышеописанных кристаллографических ориентаций, может быть использована как таковая каждая интенсивность из (001)[1-10], (116)[1-10], (114)[1-10], (113)[1-10], (112)[1-10], (335)[1-10] и (223)[1-10] при ϕ2=45° сечения трехмерной текстуры (ODF, функция распределения ориентаций).
[0027] Среднее значение полюсных плотностей группы ориентаций от {100}<011> до {223}<110> представляет собой среднее арифметическое из полюсных плотностей этих ориентаций. Когда невозможно получить все интенсивности этих ориентаций, в качестве подстановки также может быть использовано среднее арифметическое полюсных плотностей соответственных ориентаций из {100}<011>, {116}<110>, {114}<110>, {112}<110> и {223}<110>.
[0028] Кроме того, по подобным соображениям, полюсная плотность кристаллографической ориентации {332}<113> плоскости листа в центральной области толщины листа, находящейся в диапазоне от 5/8 до 3/8 толщины листа от поверхности стального листа, должна составлять 4,0 или менее. В той мере, насколько она составляет 4,0 или менее, может быть удовлетворено отношение «толщина листа/радиус изгиба ≥1,5», которое требуется для необходимой в недавние годы обработки каркасных деталей. Желательно, чтобы она составляла 3,0 или менее.
[0029] Когда полюсная плотность кристаллографической ориентации {332}<113> составляет больше чем 4,0, становится исключительно высокой анизотропия механических характеристик стального листа, и дополнительно улучшается локальная деформируемость только по определенным направлениям, но по отличному от них направлению материал значительно ухудшается, приводя к тому, что становится невозможным надежное удовлетворение отношения «толщина листа/радиус изгиба ≥1,5». С другой стороны, когда полюсная плотность становится меньшей 0,5, что является труднодостижимым в современном общем процессе непрерывной горячей прокатки, возникает проблема ухудшения локальной деформируемости, так что полюсная плотность кристаллографической ориентации {332}<113> предпочтительно составляет 0,5 или более.
[0030] Причина того, что полюсные плотности вышеописанных кристаллографических ориентаций являются важными для характеристики фиксации формы во время гибочной обработки, не обязательно является очевидной, но, будучи выведенной логическим путем, относится к характеристикам скольжения кристалла во время изгибной деформации.
[0031] Образец, подвергаемый измерению рентгеновской дифракции, изготавливают таким образом, что толщину стального листа сокращают до предварительно заданной толщины листа механическим шлифованием или тому подобным способом, и затем устраняют напряжения химической полировкой, электролитической полировкой, или тому подобной, и плоскостью измерения становится подходящая плоскость в области от 5/8 до 3/8 толщины листа от поверхности стального листа. Разумеется, полюсная плотность удовлетворяет вышеописанному ограниченному диапазону полюсных плотностей не только в центральной области толщины листа, находящейся от 5/8 до 3/8 толщины листа от поверхности стального листа, но также во многих положениях по толщине листа, насколько возможно, и тем самым дополнительно улучшаются равномерное относительное удлинение и способность к расширению отверстия. Однако измерение проводят в диапазоне от 5/8 до 3/8 от поверхности стального листа, чтобы тем самым сделать возможным представление характеристики материала по всему стальному листу в целом. Таким образом, в качестве диапазона измерения предписывается область от 5/8 до 3/8 толщины листа.
[0032] Между прочим, кристаллографическая ориентация, представленная как {hkl}<uvw>, означает, что направление, перпендикулярное плоскости стального листа, является параллельным <hkl>, и направление прокатки параллельно <uvw>. В отношении кристаллографической ориентации, как правило, ориентация, перпендикулярная плоскости листа, представлена [hkl] или {hkl}, и ориентация, параллельная направлению прокатки, представлена (uvw) или <uvw>. Обозначения {hkl} и <uvw> представляют собой родовые термины для эквивалентных плоскостей, и каждое из обозначений [hkl] и (uvw) соответствует индивидуальной кристаллографической плоскости. То есть в настоящем изобретении целевой является объемно-центрированная кубическая структура, и таким образом, например, плоскости (111), (-111), (1-11), (11-1), (-1-11), (-11-1), (1-1-1) и (-1-1-1) являются эквивалентными до такой степени, что их невозможно различить. В таком случае эти ориентации совокупно обозначают как {111}. В ODF-представлении (функции распределения ориентаций) [hkl](uvw) также используется для выражения ориентаций других низкосимметричных кристаллических структур, и тем самым является общим выражением для каждой ориентации как [hkl](uvw), но в настоящем изобретении [hkl](uvw) и {hkl}<uvw> синонимичны друг другу. Измерение кристаллографической ориентации с помощью рентгеновского излучения выполняют согласно методу, описанному, например, автором Cullity в книге «Elements of X-Ray Diffraction» («Основы рентгеновской дифракции»), новое издание (опубликовано в 1986 году, перевод MATSUMURA, Gentaro, опубликовано фирмой AGNE Inc.), на страницах 274-296.
[0033] Значение «r»
Для стального листа согласно настоящему изобретению является важным значение «r» (rC) в направлении, перпендикулярном направлению прокатки. В результате обстоятельного исследования авторы настоящего изобретения обнаружили, что хорошая способность к расширению отверстия и изгибаемость не могут быть всегда получены, даже когда полюсные плотности разнообразных кристаллографических ориентаций находятся в надлежащих диапазонах. Для получения хороших способности к расширению отверстия и изгибаемости должны удовлетворяться диапазоны вышеописанных полюсных плотностей, и в то же время значение rC должно составлять 0,70 или более. Верхний предел значения rC не является конкретно определенным, но если оно составляет 1,10 или менее, может быть получена улучшенная способность к расширению отверстия.
[0034] Для стального листа согласно настоящему изобретению является важным значение «r» (r30) в направлении под углом 30º к направлению прокатки. В результате обстоятельного исследования авторы настоящего изобретения нашли, что хорошая способность к расширению отверстия и изгибаемость не могут быть всегда получены, даже когда полюсные плотности разнообразных кристаллографических ориентаций находятся в надлежащих диапазонах. Для получения хороших способности к расширению отверстия и изгибаемости должны удовлетворяться диапазоны вышеописанных полюсных плотностей, и в то же время значение r30 должно составлять 1,10 или менее. Нижний предел значения r30 не является конкретно определенным, но если оно составляет 0,70 или более, может быть получена улучшенная способность к расширению отверстия.
[0035] В результате обстоятельного исследования авторы настоящего изобретения нашли, что, если в дополнение к полюсным плотностям разнообразных кристаллографических ориентаций, значениям rC и r30, значение «r» (rL) в направлении прокатки и значение «r» (r60) в направлении под углом 60° к направлению прокатки составляют rL≥0,70 и r60≤1,10, соответственно, может быть получена лучшая способность к расширению отверстия.
[0036] Верхние пределы значений rL и r60 не являются конкретно определенными, но если значение rL составляет 1,00 или менее, и значение r60 составляет 0,90 или более, может быть получена улучшенная способность к расширению отверстия.
[0037] Вышеописанные значения «r» могут быть получены с помощью испытания на растяжение с использованием испытательного образца № 5 согласно Японскому промышленному стандарту JIS. Создаваемая деформация растяжения обычно составляет от 5 до 15% в случае высокопрочного стального листа, и значения «r» могут быть оценены в диапазоне равномерного относительного удлинения. Между прочим, направление, в котором выполняется гибочная обработка, варьирует в зависимости от обрабатываемых деталей, и тем самым не является конкретно определенным, и в случае стального листа согласно настоящему изобретению подобная изгибаемость может быть получена, даже когда стальной лист согласно настоящему изобретению изгибают по любому из направлений.
[0038] В общем и целом, текстура и значения «r» коррелируют между собой, но в стальном листе согласно настоящему изобретению ограничение полюсных плотностей кристаллографических ориентаций и ограничение значений «r» не являются синонимичными друг другу, и пока оба ограничения не удовлетворяются одновременно, хорошая способность к расширению отверстия не может быть получена.
[0039] Металлографическая структура
Далее будут разъяснены обоснования ограничений, относящихся к металлографической структуре стального листа согласно настоящему изобретению.
[0040] Структура стального листа согласно настоящему изобретению содержит от 5 до 80% феррита, в единицах доли площади. Благодаря присутствию феррита, имеющего превосходную деформируемость, улучшается равномерное относительное удлинение, но когда доля площади составляет менее 5%, хорошее равномерное относительное удлинение не может быть получено, так что нижний предел устанавливают на 5%. С другой стороны, когда феррит присутствует в количестве более 80%, в единицах доли площади, резко ухудшается способность к расширению отверстия, так что верхний предел устанавливают на 80%.
[0041] Кроме того, стальной лист согласно настоящему изобретению содержит от 5 до 80% бейнита, в единицах доли площади. Когда доля площади составляет менее 5%, значительно снижается прочность, так что нижний предел регулируют на 5%. С другой стороны, когда бейнит присутствует в количестве более 80%, значительно ухудшается способность к расширению отверстия, так что верхний предел устанавливают на 80%.
[0042] В стальном листе согласно настоящему изобретению, в качестве балансового количества, допускается присутствие мартенсита, перлита и остаточного аустенита с общей долей площади 5% или менее.
[0043] Граница раздела между мартенситом и ферритом или бейнитом становится точкой начала растрескивания, тем самым ухудшая способность к расширению отверстия, так что содержание мартенсита регулируют на 1% или менее.
[0044] Остаточный аустенит создает напряжения при превращении в мартенсит. Граница раздела между мартенситом и ферритом или бейнитом становится точкой начала растрескивания, тем самым ухудшая способность к расширению отверстия. Кроме того, когда присутствует большое количество перлита, иногда это ухудшает прочность и обрабатываемость. Поэтому общую долю площади мартенсита, перлита и остаточного аустенита регулируют на 5% или менее.
[0045] Среднеобъемный диаметр кристаллических зерен
В стальном листе согласно настоящему изобретению необходимо регулировать среднеобъемный диаметр кристаллических зерен в зеренном блоке на 7 мкм или менее. Когда присутствуют кристаллические зерна, имеющие среднеобъемный диаметр свыше 7 мкм, равномерное относительное удлинение является низким, и, кроме того, способность к расширению отверстия также является низкой, так что среднеобъемный диаметр кристаллических зерен регулируют на 7 мкм или менее.
[0046] Здесь, как правило, определение кристаллических зерен является исключительно нечетким, и количественная оценка их затруднительна. В отличие от этого, авторы настоящего изобретения нашли, что можно разрешить проблему количественной оценки кристаллических зерен, если определить «зеренный блок» следующим образом.
[0047] «Зеренный блок» кристаллических зерен, определяемый в настоящем изобретении, находят следующим образом в анализе ориентаций стального листа с помощью метода EBSP (анализа дифракционной картины обратного рассеяния электронов). То есть в анализе ориентаций стального листа методом EBSP, например, ориентации измеряют при 1500-кратных увеличениях с шагом измерения 0,5 мкм или менее, и положение, в котором разориентация между соседними точками измерения превышает 15°, приписывают границе между кристаллическими зернами. Затем область, окруженную этой границей, определяют как «зеренный блок» кристаллических зерен.
[0048] В отношении кристаллических зерен в зеренном блоке, определенном таким образом, получают диаметр d эквивалентной окружности, и объем кристаллических зерен каждого зеренного блока получается равным 4/3πd3. Затем рассчитывают средневзвешенный объем и получают среднеобъемный диаметр (Среднеобъемный Диаметр).
[0049] Когда присутствуют более крупные кристаллические зерна, даже если их число невелико, становится значительным ухудшение локальной пластичности. Поэтому размер кристаллических зерен не представляет собой среднее значение ординарного размера, и среднеобъемный диаметр, определяемый как средневзвешенный объем, строго коррелирует с локальной пластичностью. Для получения этого эффекта среднеобъемный диаметр кристаллических зерен должен составлять 7 мкм или менее. Желательно, чтобы он был 5 мкм или менее, для обеспечения способности к расширению отверстия на более высоком уровне. Кстати, метод измерения кристаллических зерен настраивают, как было описано ранее.
[0050] Характеристика равноосности кристаллических зерен
Кроме того, в результате обстоятельного исследования, авторы настоящего изобретения нашли, что, когда для кристаллических зерен в зеренном блоке отношение длины dL по направлению прокатки к длине dt по направлению толщины листа: dL/dt составляет 3,0 или менее, значительно улучшается способность к расширению отверстия. Физический смысл этого неочевиден, но в принципе возможно, что форма кристаллических зерен в зеренном блоке подобна скорее сфере, нежели эллипсоиду, и тем самым снижается концентрация напряжений на границах зерен, и поэтому улучшается способность к расширению отверстия.
[0051] Кроме того, в результате обстоятельного исследования, авторы настоящего изобретения нашли, что, когда среднее значение отношения длины dL по направлению прокатки к длине dt по направлению толщины листа: dL/dt составляет 3,0 или менее, может быть получена хорошая способность к расширению отверстия. Когда среднее значение отношения длины dL по направлению прокатки к длине dt по направлению толщины листа: dL/dt составляет свыше 3,0, способность к расширению отверстия ухудшается.
[0052] Химический состав
Далее будут разъяснены обоснования для ограничения химического состава стального листа согласно настоящему изобретению. Между прочим, «%» применительно к химическому составу означает «% по массе».
[0053] С: от 0,01 до 0,4%
Углерод (С) представляет собой элемент, эффективный для повышения механической прочности, так что его добавляют в количестве 0,01% или более. Его содержание предпочтительно составляет 0,03% или более, и более предпочтительно 0,05% или более. С другой стороны, когда содержание превышает 0,4%, ухудшается обрабатываемость и свариваемость, так что верхний предел устанавливают на 0,4%. Предпочтительно он составляет 0,3% или менее, и более предпочтительно 0,25% или менее.
[0054] Si: от 0,001 до 2,5%
Кремний (Si) представляет собой элемент, эффективный в улучшении механической прочности. Однако когда содержание Si становится более 2,5%, ухудшается обрабатываемость, и, кроме того, происходит образование поверхностных дефектов, так что верхний предел регулируют на 2,5%. С другой стороны, снижение содержания ниже 0,001% в реальной стали является затруднительным, так что нижний предел регулируют на 0,001%.
[0055] Mn: от 0,001 до 4,0%
Марганец (Mn) также представляет собой элемент, эффективный для повышения механической прочности, но когда содержание Mn становится свыше 4,0%, ухудшается обрабатываемость, так что верхний предел регулируют на 4,0%. Предпочтительно он составляет 3,0% или менее. С другой стороны, снижение содержания ниже 0,001% в реальной стали является затруднительным, так что нижний предел регулируют на 0,001%. Когда такие элементы, как Ti, который подавляет возникновение горячего растрескивания, обусловленного серой (S), добавлены в недостаточном количестве, кроме Mn, то желательно добавление Mn в количестве, удовлетворяющем отношению «Mn/S≥20 в % по массе».
[0056] Р: от 0,001 до 0,15%
Верхний предел содержания фосфора (Р) устанавливают на 0,15%, чтобы предотвратить ухудшение обрабатываемости и растрески