Система и способ обнаружения давления

Иллюстрации

Показать все

Настоящее раскрытие относится к обнаружению давления, а именно к системам и способам измерения давления жидкости внутри одноразового набора для внутривенного вливания, соединенного с насосом для подачи жидкости. Заявленная система включает бесконтактную систему обнаружения давления для измерения как положительного, так и отрицательного давлений жидкости в пределах изолированного пути прохождения жидкости с использованием камеры, включенной в состав изолированного пути прохождения и соединенной с насосом для подачи жидкости, кассету, сконфигурированную для соединения с насосом для подачи жидкости и способ измерения давления жидкости в одноразовом наборе для внутривенного IV вливания, соединенном с насосом для подачи жидкости. При этом бесконтактная система обнаружения давления для измерения как положительного, так и отрицательного давлений жидкости в пределах изолированного пути прохождения жидкости с использованием камеры, включенной в состав изолированного пути прохождения и соединенной с насосом для подачи жидкости, содержит основу датчика, соединенную с насосом и имеющую, по меньшей мере, одно средство обнаружения, являющееся неподвижным относительно основы датчика, причем средство обнаружения сконфигурировано для генерирования сигнала измеряемого параметра, указывающего переменную величину обнаруживаемого измерения, схему измерения, электрически соединенную со средством обнаружения для приема сигнала измеряемого параметра, камеру или корпус, сконфигурированный для прикрепления к основе датчика, камеру, имеющую: впускное отверстие для жидкости и выпускное отверстие для жидкости, и подвижный элемент, сконфигурированный для перемещения с изменениями давления жидкости внутри камеры и тем самым вызова изменения переменной величины обнаруживаемого измерения, без контакта со средством обнаружения, причем величина перемещения подвижного элемента связана с величиной изменения давления жидкости. Технический результат заключается в обеспечении системы обнаружения давления для измерения давления жидкости внутри кассеты, которая является как точной, так и экономичной. 3 н. и 31 з.п. ф-лы, 9 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее раскрытие относится к обнаружению давления. В частности, это раскрытие относится к системам и способам измерения давления жидкости внутри одноразового набора для IV вливания, соединенного с насосом для подачи жидкости.

Уровень техники

Насосы для подачи жидкости широко используются в медицинских и в других областях применения. В медицинских областях применения, например, использование насосов для внутривенного (IV) вливания для ввода жидкостей, таких как лекарства и питательные растворы, было широко распространенной практикой в больницах. Насосы для IV вливания получили широкое распространение в связи с тем, что они способны вводить жидкости для IV вливания при точно и жестко контролируемых условиях таким образом, чтобы лекарства и т.п. могли быть внутривенно введены пациенту в тех случаях, когда отклонения от желательной скорости введения могут иметь пагубные последствия.

Устройство насоса для IV вливания часто предоставлено с механизмом перекачки, который приспособлен для получения кассеты, содержащей насосную камеру. Кассета, как правило, разработана исключительно для одного использования, и ее производство должно быть экономичным для уменьшения ее стоимости. Кассета, как правило, активируется посредством возвратно-поступательной (например, перистальтической) движущей силы механизма перекачки и имеет впускное отверстие для жидкости для соединения с трубкой, ведущей к подающей емкости, и выпускное отверстие для жидкости для соединения с трубкой, которая вводит пациенту жидкость для IV вливания.

В целях управления и наблюдения желательно измерять давление жидкости внутри одноразовой кассеты для IV вливания. Например, сигнал давления жидкости может быть использован для обнаружения, помимо прочего, пустого сосуда для подачи, перекрытого пути для впуска или выпуска, соединения сосуда с каналом, уровня жидкости в бутылке и сопротивления течению в пути прохождения жидкости. Одной задачей является обеспечение системы обнаружения давления для измерения давления жидкости внутри кассеты, которая является как экономичной, так и точной. В идеальном случае датчик точно измеряет как положительные, так и отрицательные давления, причем отрицательные давления обычно возникают вследствие подъема объекта воздействия емкости относительно элемента датчика. Для вышеупомянутых целей также необходимо высокое разрешение порядка 1 мм рт.ст.

Традиционно, давление жидкости внутри кассеты измеряется посредством способа контактного измерения, в котором кассета или объект, прикрепленный к кассете, физически контактирует со средством обнаружения (например, тензиометрическим датчиком силы) для приложения контактного давления/усилия к средству обнаружения. В таких контактных системах обнаружения давления средство обнаружения, как правило, преднамеренно предварительно загружается положительным давлением/усилием, таким как прикладываемое посредством деформированной стенки трубки для искусственного отклонения точки нулевого давления для того, чтобы могло быть измерено отрицательное давление. Одна проблема такой схемы с положительным отклонением с предварительно загруженным средством обнаружения заключается в том, что предварительно загруженная сила может уменьшаться по прошествии некоторого времени вследствие снятия напряжения, что приводит к тому, что связанная отклоняемая точка с течением времени понижается. Это может вызвать заниженную оценку истинного давления жидкости.

Сущность изобретения

Описанные в настоящем документе варианты осуществления устраняют обсуждаемую выше проблему, связанную с контактным измерением давления, посредством предоставления систем и способов бесконтактного измерения давления жидкости внутри кассеты, соединенной с насосом для подачи жидкости, таким как насос для IV вливания. В одном аспекте бесконтактное обнаружение давления предусматривает соединение основы датчика, имеющей бесконтактное средство обнаружения, с насосом, и соединение подвижного элемента, имеющего изменяемый измерительный элемент датчика, с элементом в одноразовом наборе для IV вливания. Измерительный элемент датчика перемещается в ответ на изменения давления жидкости в пределах пути прохождения жидкости и тем самым вызывает пропорциональное изменение выходного сигнала из средства обнаружения. Давление жидкости определяется из измерения сигнала, указывающего переменную величину обнаруживаемого измерения.

Определенные варианты осуществления предоставляют систему обнаружения давления для измерения давления жидкости внутри одноразового набора для IV вливания, соединенного с насосом для подачи жидкости. Система может содержать основу датчика, соединенную с насосом. Основа датчика может иметь, по меньшей мере, одно средство обнаружения, являющееся неподвижным относительно основы датчика. Средство обнаружения может быть сконфигурировано для генерирования сигнала измеряемого параметра на основе переменной величины обнаруживаемого измерения. Система может дополнительно содержать схему измерения, электрически соединенную со средством обнаружения. Система может дополнительно содержать элемент внутри одноразового набора для IV вливания, сконфигурированного для его размещения максимально близко к основе датчика. Одноразовый компонент может иметь впускное отверстие для жидкости и выпускное отверстие для жидкости и подвижный элемент для его перемещения вместе с изменениями давления жидкости внутри кассеты. Величина перемещения подвижного элемента может быть связана с величиной изменения давления жидкости. Система может дополнительно содержать изменяемый измерительный элемент датчика, соединенный для его перемещения с подвижным элементом посредством бесконтактного обнаруживающего поля, такого как свет или другие электромагнитные поля. Изменяемый измерительный элемент датчика может тем самым вызвать изменение переменной величины обнаруживаемого измерения без контакта со средством обнаружения.

Определенные варианты осуществления предусматривают кассету, сконфигурированную для присоединения к насосу для подачи жидкости. Кассета может содержать насосную камеру, имеющую впускное отверстие для жидкости и выпускное отверстие для жидкости и сконфигурированную для приема жидкости из блока хранения жидкости через впускное отверстие для жидкости. Кассета может дополнительно содержать мембранную структуру, соединенную с насосной камерой, причем мембранная структура содержит подвижный элемент, сконфигурированный для перемещения с изменениями давления жидкости внутри насосной камеры и тем самым вызывать изменение переменной величины обнаруживаемого измерения, обнаруживаемого посредством, по меньшей мере, одного средства обнаружения, соединенного с насосом для подачи жидкости без контакта со средством обнаружения, в котором величина перемещения подвижного элемента связана с величиной изменения давления жидкости.

Определенные варианты осуществления предоставляют способ измерения давления жидкости в одноразовом наборе для IV вливания, соединенном с насосом для подачи жидкости. Способ может содержать предоставление, по меньшей мере, одного средства обнаружения, соединенного с насосом для подачи жидкости. Способ может дополнительно содержать предоставление камеры, имеющей подвижный элемент, сконфигурированный для перемещения вместе с подвижным элементом в ответ на изменения давления жидкости внутри одноразового набора для IV вливания, и тем самым вызывать изменения в переменной величине обнаруживаемого измерения, связанного со средством обнаружения, без контакта со средством обнаружения. Способ может дополнительно содержать генерирование сигнала измеряемого параметра, указывающего переменную величину обнаруживаемого измерения. Способ может дополнительно содержать определение давления жидкости внутри одноразового набора для IV вливания на основе сигнала измеряемого параметра.

Определенные варианты осуществления предоставляют систему обнаружения давления для измерения давления жидкости внутри одноразового набора для IV вливания, соединенную с насосом для подачи жидкости. Система может содержать основу датчика, соединенную с насосом. Основа датчика может иметь, по меньшей мере, одно средство обнаружения, являющееся неподвижным относительно основы датчика. Средство обнаружения может быть сконфигурировано для генерирования сигнала измеряемого параметра на основе переменной величины обнаруживаемого измерения. Система может дополнительно содержать схему измерения, электрически соединенную со средством обнаружения. Система может дополнительно содержать элемент внутри одноразового набора для IV вливания, сконфигурированный для его размещения максимально близко к основе датчика. Одноразовый компонент может иметь впускное отверстие для жидкости и выпускное отверстие для жидкости и подвижный элемент для перемещения вместе с изменениями давления жидкости внутри кассеты. Величина перемещения подвижного элемента может быть связана с величиной изменения давления жидкости. Система может дополнительно содержать изменяемый измерительный элемент датчика, соединенный для перемещения вместе с подвижным элементом посредством бесконтактного обнаруживающего поля, такого как свет или другие электромагнитные поля. Изменяемый измерительный элемент датчика может тем самым вызвать изменение переменной величины обнаруживаемого измерения без контакта со средством обнаружения.

Определенные варианты осуществления предоставляют одноразовый элемент обнаружения давления, сконфигурированный для присоединения к насосу для подачи жидкости. Элемент может служить исключительно для обнаружения давления или может быть скомбинирован с другими деталями, такими как насосная камера, имеющая впускное отверстие для жидкости и выпускное отверстие для жидкости. Обнаруживающий элемент может быть сконфигурирован для приема жидкости из блока хранения жидкости через впускное отверстие для жидкости. Обнаруживающий элемент может дополнительно содержать мембранную структуру. Мембранная структура может содержать подвижный элемент, сконфигурированный для перемещения вместе с изменениями давления жидкости в пределах пути ввода жидкости. Величина перемещения подвижного элемента может быть связана с величиной изменения давления жидкости. Одноразовый элемент обнаружения давления может быть дополнительно разработан для обеспечения переменных физических качеств, таких как положение бесконтактного измерительного элемента датчика. Изменяемый измерительный элемент датчика может тем самым вызывать изменение обнаруживаемой переменной величины обнаруживаемого измерения, обнаруживаемого посредством, по меньшей мере, одного средства обнаружения, соединенного с насосом для подачи жидкости без контакта со средством обнаружения.

Определенные варианты осуществления предоставляют способ измерения давления жидкости внутри одноразового элемента для измерения давления или скомбинированного в пределах многофункциональной одноразовой кассеты, соединенной с насосом для подачи жидкости. Способ может содержать обеспечение, по меньшей мере, одного средства обнаружения, соединенного с насосом для подачи жидкости. Способ может дополнительно содержать обеспечение подвижного элемента, соединенного с кассетой и имеющего изменяемый измерительный элемент датчика. Изменяемый измерительный элемент датчика может быть соединен для перемещения вместе с подвижным элементом в ответ на изменения давления жидкости внутри кассеты и тем самым вызывать изменения переменной величины обнаруживаемого измерения, связанной со средством обнаружения, без контакта со средством обнаружения. Способ может дополнительно содержать генерирование сигнала измеряемого параметра, указывающего переменную величину обнаруживаемого измерения. Способ может дополнительно содержать определение давления жидкости внутри кассеты на основе сигнала измеряемого параметра.

Следует понимать, что как предшествующая сущность, так и последующее подробное описание являются иллюстративными и объяснительными и предназначены для обеспечения дополнительного объяснения заявленных вариантов осуществления.

Краткое описание чертежей

Сопроводительные чертежи, которые включены в состав настоящего документа для обеспечения дополнительного понимания изобретения, а также составляют часть этой спецификации, иллюстрируют раскрытые варианты осуществления и вместе с описанием служат для объяснения принципов раскрытых вариантов осуществления.

Фиг.1 является видом в поперечном разрезе иллюстративной бесконтактной системы 100 обнаружения давления емкостного типа, которая основана на емкости как на переменном значении обнаруживаемого измерения в соответствии с определенными вариантами осуществления.

Фиг.2 является графическим представлением иллюстративной бесконтактной системы обнаружения давления емкостного типа из Фиг.1, показанной с кассетой, отделенной от основы датчика.

Фиг.3 является видом снизу вверх подложки печатной схемы, изображающей первую и вторую пластины, сформированные на подложке.

Фиг.4 является видом сверху вниз мембранной структуры, изображающей проводящий слой, сформированный поверх подвижного элемента мембранной структуры.

Фиг.5 является видом в перспективе в поперечном разрезе мембранной структуры и соединительного устройства, сконфигурированного для соединения мембранной структуры с кассетой, в соответствии с определенными вариантами осуществления.

Фиг.6 является видом в поперечном разрезе иллюстративной бесконтактной системы обнаружения давления оптического типа, которая основана на интенсивности света в качестве переменного значения обнаруживаемого измерения, в соответствии с определенными вариантами осуществления.

Фиг.7 является видом в поперечном разрезе иллюстративной бесконтактной системы обнаружения давления магнитного типа, которая основана на магнитном поле в качестве переменного значения обнаруживаемого измерения, в соответствии с определенными вариантами осуществления.

Фиг.8 является блок-схемой последовательности операций, иллюстрирующей иллюстративный процесс, для выполнения бесконтактного измерения давления жидкости внутри кассеты, в соответствии с определенными вариантами осуществления.

Фиг.9 является блок-схемой, которая иллюстрирует иллюстративную компьютерную систему, на основе которой могут быть реализованы определенные характерные особенности систем и способов, описанных в настоящем документе.

Подробное описание

В следующем подробном описании сформулированы многочисленные определенные детали для обеспечения полного понимания раскрытых и заявленных вариантов осуществления. Однако специалисту в данной области техники будет очевидно, что варианты осуществления могут быть осуществлены на практике без некоторых из этих определенных деталей. В других случаях широко известные структуры и технические приемы не были подробно изображены, чтобы избежать излишнего затруднения в понимании этого раскрытия.

Слово «иллюстративный» используется в настоящем документе для обозначения выражения «служащий примером, образцом или иллюстрацией». Любой вариант осуществления или конструкция, описанные в настоящем документе как «иллюстративные», необязательно должны рассматриваться в качестве предпочтительных или эффективных по отношению к другим вариантам осуществления или конструкциям.

Различные варианты осуществления настоящего раскрытия устраняют и решают проблемы, связанные с обычными системами и способами измерения давления жидкости внутри кассеты, которые полагаются на положительное отклонение для измерения как отрицательного, так и положительного давлений жидкости. Определенные варианты осуществления настоящего раскрытия предоставляют бесконтактную систему обнаружения давления для измерения давлений жидкости внутри кассеты, соединенной с насосом для подачи жидкости. Основа датчика, имеющая, по меньшей мере, одно средство обнаружения, соединена с насосом, а подвижный элемент, имеющий изменяемый измерительный элемент датчика, соединен с кассетой. Изменяемый измерительный элемент перемещается вместе с изменениями давления жидкости внутри кассеты и тем самым вызывает изменение переменной величины обнаруживаемого измерения (например, емкости, интенсивности света и магнитного поля) без контакта со средством обнаружения. Элемент обнаружения давлений может быть реализован внутри многофункциональной стерильной одноразовой «кассеты» или внутри специализированного корпуса, используемого только для измерения давления.

Фиг.1 является поперечным разрезом иллюстративной бесконтактной системы 100 обнаружения давления емкостного типа, которая основана на емкости в качестве переменного значения обнаруживаемого измерения, в соответствии с определенными вариантами осуществления. Система 100 включает в себя основу 101A датчика, соединенную с корпусом 110 насоса, и кассету 102A. Кассета 102A сконфигурирована для прикрепления или для загрузки в насос или, более конкретно, к основе 101A датчика. Для прикрепления кассеты 102A к основе 101A датчика может быть использована обычная структура соединения, такая как разъемное защелочное соединение. Фиг.1 показывает основу 101A датчика и кассету 102A в соединенном или загруженном состоянии, а Фиг.2 изображает основу 101A датчика и кассету 102A в раздельном или незагруженном состоянии, где стрелка 201 указывает направление загрузки или соединения кассеты 102A с основой 101A датчика. В иллюстрированном примере основа 101A датчика включает в себя подпружиненную каркасную конструкцию 130 и подложку 140 печатной схемы (PC). Подпружиненная каркасная конструкция 130 соединена с корпусом насоса 110 при помощи пружин 120 и удерживает подложку 140 PC неподвижно относительно остальной части основы 101A датчика.

Подложка 140 PC имеет первую пластину 103A и вторую пластину 104A, сформированные (например, напыленные и нанесенные) с нижней стороны подложки 140 PC, находящейся лицом к кассете 102A, а схема 105A измерения расположена на верхней стороне подложки 140 PC. Первая и вторая пластины 103A, 104A составляют обнаруживающие элементы или средства для бесконтактной системы 100 обнаружения давления емкостного типа. Фиг.3 является видом снизу вверх (например, в направлении +z) подложки 140 PC, изображающей первую и вторую пластины 103A, 104A. В иллюстрированном примере первая и вторая пластины 103A, 104A являются двумя пластинами полукруглой формы, разделенными посредством маленькой (например, 0,005 дюйма) изоляционной прокладки 310. Альтернативно, одна или обе - первая и вторая пластины 103A, 104A могут иметь различные формы, включающие в себя, помимо прочего, прямоугольники, треугольники, полные круги и круг и кольцо вокруг этого круга.

Возвращаясь к Фиг.1, первая и вторая пластины 103A, 104A электрически соединены со схемой 105A измерения через покрытые проводником сквозные отверстия 142, предоставленные в подложке 140 PC. В определенных вариантах осуществления схема 105A измерения включает в себя IC измерения датчика, такую как аналоговые устройства AD7754 и т.п., со способностью измерения дифференциальных емкостей. Альтернативно, схема 105A измерения может содержать множество дискретных аналоговых и/или цифровых компонентов, обеспечивающих возбуждение сигнала и, например, функции предварительного формирования сигнала. В иллюстрированном примере основа 101A датчика дополнительно включает в себя тонкий изоляционный слой 160, содержащий изоляционный материал, такой как майлар или парилен для покрытия первой и второй пластин 103A, 104A таким образом, чтобы обеспечивать защиту от повреждений вследствие электростатического разряда схемы 105A измерения и других электронных компонентов.

Кассета 102A включает в себя корпус 180 кассеты и мембранную структуру 170, соединенную с корпусом 180 кассеты. Корпус 180 кассеты включает в себя насосную камеру 182 и стенку 182 для насосной камеры 182. Несмотря на то что на части, изображенной на Фиг.1, это не показано, корпус 180 кассеты дополнительно включает в себя впускное отверстие для жидкости, ведущее к подающей емкости для приема жидкости в насосную камеру 182, и выпускное отверстие для жидкости, выводящее жидкость на принимающее устройство или принимающую сторону (например, пациента).

Мембранная структура 170 включает в себя подвижный элемент 172, деформируемый элемент 176 и боковую стенку 178. В иллюстрированном примере подвижный элемент 172 является плоским диском. Подвижный элемент 172 соединен с боковой стенкой 178 через деформируемый элемент 176, присоединенный к периметру подвижного элемента 172 с одной стороны и к внутреннему периметру боковой стенки 178 с другой стороны. Мембранная структура 170 также включает в себя углубление 179, которое сконфигурировано для приема жидкости из корпуса 180 кассеты (например, насосной камеры 182).

Кассета 102 дополнительно включает в себя проводящий слой 109A, сформированный поверх (например, нанесенный или покрытый, прикрепленный или приклеенный) диска 172. Фиг.4 является видом сверху вниз (например, в направлении -z) мембранной структуры 170, изображающим проводящий слой 109A, сформированный поверх подвижного элемента 172 мембранной структуры. Как будет дополнительно обсуждаться ниже, проводящий слой 109A составляет изменяемый измерительный элемент датчика бесконтактной системы 100 обнаружения емкостного типа. Используемый в настоящем документе термин «изменяемый измерительный элемент датчика» относится к структуре, устройству, слою или детали, который может быть соединен с подвижным элементом (например, диском 72) для перемещения относительно одного или нескольких средств обнаружения (например, первой и второй пластин 103A, 104A) в ответ на изменения давления жидкости внутри кассеты и тем самым могут вызвать соответствующее изменение в переменной величине обнаруживаемого измерения (например, емкости между первой и второй пластинами 103A, 103B). Примеры других изменяемых измерительных элементов датчика включают в себя оптический аттенюатор, используемый в бесконтактной системе обнаружения давления оптического типа (Фиг.6), и магнит для использования в бесконтактной системе обнаружения давления магнитного типа (Фиг.7). Иллюстрированные варианты осуществления являются исключительно иллюстративными ввиду того, что могут быть использованы другие типы бесконтактных систем обнаружения давления.

Фиг.5 является видом в перспективе в поперечном разрезе мембранной структуры 170 и соединительного устройства 500 для соединения мембранной структуры с корпусом 180 кассеты (Фиг.1), в соответствии с определенными вариантами осуществления. В определенных вариантах осуществления соединение содержит помещение обнаруживающего элемента рядом с устройством обнаружения в пределах насоса. Для ясности, мембранная структура 170 изображается без изменяемого измерительного элемента датчика (например, проводящего слоя 109A), расположенного поверх подвижного элемента 172. Деформируемый элемент 76 присоединен между внешней окружностью подвижного элемента 172 и внутренней окружностью боковой стенки 178. Деформируемый элемент 176 сконфигурирован для деформации в ответ на изменения давления жидкости внутри кассеты 102A, или, более конкретно, внутри насосной камеры 182 корпуса 180 кассеты и тем самым вызывает перемещение подвижного элемента 172 в направлении +z, если давление увеличивается, или в направлении -z, если давление уменьшается. В иллюстрированном примере поперечный разрез деформируемого элемента 176 имеет «S-образную» или «сигмообразную» форму, но поперечный разрез может иметь другую форму, такую как тонкий прямоугольник, криволинейную форму, «Z-образную» форму или подковообразную форму.

В определенных вариантах осуществления подвижный элемент 172 является негибким, что означает, что подвижный элемент не сгибается или не деформируется при подвергании его отличному от нуля давлению жидкости. В этих вариантах осуществления только деформируемый элемент 176 сгибается или деформируется при подвергании его отличному от нуля давлению жидкости. Подвижный элемент 172 и деформируемый элемент 176 могут быть выполнены таким образом, чтобы иметь различную гибкость или деформируемость (например, первый негибкий, а второй гибкий) посредством их изготовления, например, из различных материалов, различной толщины, и/или с различными формами поперечных разрезов. В одном аспекте использование негибкого подвижного элемента является эффективным в связи с тем, что во время измерения давления меньше изменяется полезный объем. Другими словами, наличие негибкого неупругого подвижного элемента помогает минимизировать значение упругой деформации, например, приблизительно до 0,1 мкл/мм рт.ст. Низкая упругая деформация для датчика давления означает, что действие измерения давления имеет низкий эффект на состояние измеряемой величины, а именно давления жидкости, также как и непосредственно смещения жидкости. Кроме того, негибкий подвижный элемент может лучше сохранять структурную целостность изменяемого измерительного элемента датчика, такого как проводящий слой 109A, прикрепленного к подвижному элементу. Например, проводящий слой, который нанесен на гибкий подвижный элемент, может отделиться или отслоиться от подвижного элемента после многократного сгибания подвижного элемента. Кроме того, использование негибкого подвижного элемента в настоящих вариантах осуществления также может привести к более управляемой, линейной и повторяющейся чувствительности (изменения смещения изменения давления на каждый блок). В других вариантах осуществления как деформируемый элемент 176, так и подвижный элемент 172 выполнены таким образом, чтобы изгибаться или деформироваться при их подвергании отличному от нуля давлению жидкости. Еще в других вариантах осуществления гибкий/деформируемый подвижный элемент соединен непосредственно с боковой стенкой 178 без наличия между ними деформируемого элемента.

Кроме того, в иллюстрированном примере подвижный элемент 172, деформируемый элемент 176 и боковая стенка 178 сформированы из одного и того же материала, такого как поликарбонат, в виде одной отлитой детали. Альтернативно, подвижный элемент 172, деформируемый элемент 176 и боковая стенка 178 изготавливаются из двух или более различных материалов и спаиваются вместе. В некоторых определенных вариантах осуществления подвижный элемент 172 и боковая стенка 178 изготовлены из поликарбонатного материала, в то время как деформируемый элемент изготовлен из термопластического эластомера для гибкости. Еще в других вариантах осуществления подвижный диск 172 изготовлен из металла и функционирует в качестве проводящего слоя 109A, тем самым избавляя от необходимости отдельного проводящего слоя.

Теперь, со ссылкой на Фиг.5, соединительное устройство 500 сконфигурировано для соединения или связи мембранной структуры 170 с корпусом 180 кассеты или, более конкретно, с насосной камерой 182 при помощи жидкостной и механической связи. В иллюстрированном примере соединительное устройство 500 включает в себя первую внешнюю стенку 501 и вторую внешнюю стенку 502. Первая внешняя стенка 501 используется для формирования герметичного механического соединения (например, прессовой посадки) между соединительным устройством 500 и мембранной структурой 170. Вторая внешняя стенка 502 используется для формирования герметичного механического соединения между составной конструкцией, между мембраной и соединительным устройством и корпусом 180 кассеты (Фиг.1). В иллюстрированном варианте осуществления в прорезь, сформированную в стенке 184 насосной камеры 182, вставлена вторая внешняя стенка 502 (например, запрессована) (Фиг.1). Соединительное устройство 500 также включает в себя отверстия 510 для создания жидкостной связи между углублением 179 и насосной камерой 182 и выравнивание давления жидкости между ними.

При работе кассета 102A загружается или соединяется с основой датчика 101, как показано посредством стрелки 201 из Фиг.2. Когда кассета 102A сначала соединяется с основой датчика 101A, пружины 120 сжимаются и прикладывают силу упругости (например, в направлении -z), противодействующую кассете 102A через каркасную конструкцию 130. Эта подпружиненная конструкция устраняет большинство технологических отклонений ошибок наложения и помех, создаваемых посредством относительного перемещения между основой 101A датчика и кассетой 102A. На данном этапе внутри углубления 109 нет никакого полезного давления и нет никакой результирующей силы, прилагаемой к подвижному элементу 172. Следовательно, подвижный элемент 172 находится в своей точке покоя нулевого давления. После того как кассета 102A состыковывается с основой 110A, а жидкость (например, жидкое лекарство) вводится в насосную камеру 182 кассеты 102A, углубление 179 принимает часть жидкости через отверстия 510 в соединительном устройстве 500 (Фиг.5). Тем самым давление жидкости внутри углубления 179 делается таким образом, чтобы быть, по существу, таким же, что и давление жидкости внутри насосной камеры 182 (с возможным небольшим смещением постоянной составляющей (DC)). Давление жидкости (положительное или отрицательное) внутри углубления 179 прикладывает силу (положительную или отрицательную) к подвижному элементу 172 и вызывает перемещение подвижного элемента 172. Например, если давление является положительным, то подвижный элемент 172 перемещается в направлении +z от точки покоя нулевого давления в направлении первой и второй пластин 103A, 104A. С другой стороны, если давление является отрицательным, то подвижный элемент 172 перемещается в направлении -z от точки покоя нулевого давления в сторону от первой и второй пластин 103A, 104A. Следовательно, положительное давление вызывает перемещение проводящего слоя 109A, который присоединен к подвижному элементу 172, ближе к первой и второй пластинам 103A, 104A и приводит к повышенной емкости между этими двумя пластинами 103A, 104A. С другой стороны, отрицательное давление вызывает перемещение проводящего слоя 109A в сторону от первой и второй пластин 103A, 104A и приводит к пониженной емкости между этими двумя пластинами 103A, 104A.

Схема 105A измерения сконфигурирована для измерения емкости между первой и второй пластинами 103A, 104A и предоставления сигнала измеряемого параметра, указывающего на емкость. Это может быть достигнуто одним из многих известных способов измерения емкости, включающих в себя дифференциальное измерение емкости, подразумевающее один или более фиксированных эталонных конденсаторов. Интегральные схемы (IC), которые разработаны для таких дифференциальных измерений емкости, выпускаются серийно и являются, например, аналоговыми устройствами AD7754. Некоторые из таких специализированных IC могут выводить цифровые данные, указывающие измеренную емкость. Альтернативно, IC или комбинация дискретных аналоговых/цифровых компонентов, разработанных для измерения емкости, могут выводить аналоговый сигнал измеряемого параметра, который затем может быть конвертирован в цифровые данные для использования посредством процессора посредством аналого-цифрового преобразователя. Затем процессор может принять цифровые данные, указывающие емкость, и определить давление жидкости внутри кассеты из известной зависимости между этими двумя величинами, либо уравнения, либо таблицы преобразования, которые могут учитывать нелинейность емкости в зависимости от реакции на изменение давления жидкости. Уравнение и таблица преобразования также могут учитывать любое предварительно установленное смещение давления DC между давлением жидкости внутри насосной камеры 182 и давлением жидкости внутри углубления 179. Результатом является точное и многократное бесконтактное измерение положительного и отрицательного давлений жидкости внутри кассеты (например, насосной камеры 182) без предварительной загрузки средства обнаружения и связанного отклонения точки нулевого давления.

Несмотря на то что вышеприведенное обсуждение сосредоточено на емкости в качестве переменного значения обнаруживаемого измерения, специалистам в данной области техники должно приниматься во внимание, с учетом настоящего раскрытия, что могут быть использованы различные альтернативные варианты осуществления без отступления от объема настоящего раскрытия. Например, Фиг.6 является видом в поперечном разрезе иллюстративной бесконтактной системы 600 обнаружения давления оптического типа, которая основана на интенсивности света в качестве переменного значения обнаруживаемого измерения, в соответствии с определенными вариантами осуществления. Иллюстрированная бесконтактная система 600 обнаружения давления оптического типа из Фиг.6 разделяет большое количество структурных элементов с иллюстрированной бесконтактной системой 100 обнаружения давления емкостного типа из Фиг.1, и описание разделяемых элементов повторяться не будет. Вместо этого следующее описание сосредоточено на сравнении и противопоставлении двух систем обнаружения давления.

В иллюстрированном примере из Фиг.6 бесконтактная система 600 обнаружения давления оптического типа использует источник 103B света и оптический датчик 104B в качестве средства обнаружения и оптический аттенюатор 109B в качестве изменяемого измерительного элемента датчика. Источник 103B света может быть лазером или источником нелазерного излучения, таким как LED. Оптический датчик 104B может включать в себя один или несколько светочувствительных элементов, таких как фотодиоды или фоторезисторы, которые способны предоставлять показания интенсивности света, принятого в форме, например, изменения силы тока или сопротивления. В иллюстрированном примере оптический датчик 104B включает в себя вертикальную матрицу светочувствительных элементов 610 в целях обеспечения интегрального усреднения помех интенсивностей принятого света. Однако в альтернативных вариантах осуществления оптический датчик 104B содержит исключительно один светочувствительный элемент, и усреднение помех выполняется при помощи многократных измерений. Как и в случае проводящего слоя 109A в бесконтактной системе 100 обнаружения давления емкостного типа, оптический аттенюатор 109B соединен (например, прикреплен, приклеен, зафиксирован, объединен) с подвижным элементом 172 таким образом, чтобы оптический аттенюатор 109B перемещался вместе с подвижным элементом 172 при изменении давления жидкости внутри кассеты 102B. Оптический аттенюатор 109B может содержать светопоглощающий материал (например, конструкционный пластик, такой как поликарбонат, изопласт, акриловый полимер и т.п., который может быть сделан непрозрачным при добавлении красителей), который имеет относительно высокие значения спектральной поглощательной способности.

При работе оптический аттенюатор 109B принимает падающие лучи 602 света, испускаемые посредством источника 103B света, и передают ослабленные лучи 604 света. В зависимости от относительных положений средств обнаружения и оптического аттенюатора 109B, при определенных давлениях, верхняя часть падающих лучей 602 света может даже не проходить через оптический аттенюатор 109B. Ослабленные лучи 604 света (и, возможно, неослабленная часть падающих лучей 602 света) принимаются посредством вертикальной матрицы светочувствительных элементов 610 и предоставляют сигналы измеряемых параметров. Схема 105B измерения принимает сигналы измеряемых параметров из отдельных светочувствительных элементов и суммирует сигналы измеряемых параметров либо в аналоговом представлении, либо в цифровом представлении. Альтернативно, суммирование сигналов измеряемых параметров (например, фототоков) выполняется физически в пределах оптического датчика 104B для образования суммированного сигнала измеряемого параметра, а схема измерения 105B принимает и обрабатывает суммированный сигнал измеряемого параметра. Независимо от выбора механизма суммирование сигналов измеряемых параметров из нескольких светочувствительных элементов 610 предоставляет интегральное усреднение помех принятых интенсивн