Продуцирующие антитела млекопитающие, не являющиеся человеком

Иллюстрации

Показать все

Изобретение относится к области биотехнологии. Предложено трансгенное животное, представляющее собой мышь или крысу, в геном которого встроена нуклеиновая кислота, кодирующая перестроенную вариабельную область легкой цепи иммуноглобулина человека, функционально связанную с константной областью иммуноглобулина указанного животного и функционально связанную с промотором, обеспечивающим экспрессию трансгенной легкой цепи в В-клетках млекопитающего, таким образом, что она образует пары с различными эндогенными тяжелыми цепями, обеспечивая получение антител. Также рассмотрены способы получения антител с использованием трансгенного животного, В-клетка трансгенного животного, применение животного и его В-клетки для получения антител и способ получения трансгенного животного по изобретению. Данное изобретение позволяет продуцировать антитела, содержащие легкую цепь с вариабельной областью иммуноглобулина человека в паре с различными тяжелыми цепями иммуноглобулинов животного. 8 н. и 16 з.п. ф-лы, 27 ил., 11 табл., 22 пр.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Изобретение относится к получению и применению не являющихся человеком животных, способных продуцировать антитела и их производные, которые экспрессируются по меньшей мере частично, из экзогенных нуклеиновых кислот (трансгенов). Описаны трансгены для продуцирования и способы получения таких гетерологичных антител; также описаны способы и векторы для получения таких трансгенных животных.

УРОВЕНЬ ТЕХНИКИ

Гуморальный иммунитет опосредуется B-клетками путем продуцирования специфических антител. Основной структурной субъединицей антитела (Ab) является молекула иммуноглобулина (Ig). Молекулы Ig состоят из комплекса двух идентичных тяжелых (H) и двух идентичных легких (L) полипептидных цепей. На аминном конце каждой H-цепи и L-цепи находится участок с изменяющейся аминокислотной последовательностью, называемый вариабельной (V) областью. Остальная часть H- и L-цепей сравнительно постоянна по своей аминокислотной последовательности, и называется константной (C) областью. В молекуле Ig V-области H- и L-цепей (VH и VL) накладываются друг на друга с образованием потенциального участка связывания антигена. Гены, которые кодируют V-области H- и L-цепей, собираются соматически из сегментов ДНК зародышевой линии во время дифференциации предшественника B-клетки (pre-B): сегменты гена V, D и J для H-цепи и сегменты гена V и J для L-цепи. Среди V-участков Ig имеется три участка с наибольшей изменчивостью аминокислотной последовательности, которые взаимодействуют с образованием участка распознавания антигена, и поэтому называются гипервариабельными участками, отвечающими за комплементарное взаимодействие с антигеном (CDR).

Сегмент гена V кодирует основной объем домена V-участка, включая CDR1 и CDR2. Вариабельность в CDR1 и CDR2 происходит из гетерогенности последовательности для множества различных закодированных в зародышевой линии сегментов V. CDR3 кодируется последовательностями, которые образуются путем соединения сегментов гена V, D и J H-цепи и сегментов гена V и J L-цепи и посредством механизмов, которые создают гетерогенность нуклеотидной последовательности при соединении данных сегментов. Дополнительная вариабельность может происходить из соединения различных V-областей H и L-цепей. Вместе данные процессы производят иммунный репертуар антител, кодируемых сегментами генов зародышевой линии, и экспрессируемых вновь образовавшимися B-клетками.

Дополнительный источник вариабельности антител налагается поверх вариабельности, сгенерированной рекомбинацией сегментов генов Ig. B-клетки имеют возможность внесения мутаций в V-области антитела, которое они экспрессируют, посредством процесса, называемого соматической сверхмутацией. Соответственно, когда животному впервые встречается антиген, антиген связывается со специфической B-клеткой, которая оказалась носителем антител, имеющих V-область, связывающую антиген. Такой первичный ответ может активировать данную B-клетку для продолжения секретирования родственного антитела. Данные активированные B-клетки также могут направлять процесс соматической мутации для своих перестроенных сегментов генов антитела, что позволяет осуществлять продуцирование дочерних клеток, которые создают варианты антител первичного ответа. В процессе выбора распространяются те вариантные потомки B-клетки, которые создают антитело с повышенной аффинностью антигена. В B-клетках соматические сверхмутации нацелены на ограниченный участок генома, содержащий перестроенные гена для VH и VL. Таким образом, соматическая мутация позволяет осуществлять созревание аффинности - продуцирование и выбор высокоаффинных антител. Следовательно, соматическая мутация является важной для генерации высокоаффинных антител.

Сильная специфичность и высокая аффинность антител и изобретение технологии гибридом, позволяющей генерировать моноклональные антитела (mAb), дало большие надежды на их использование в качестве адресного терапевтического средства для болезней человека. MAb идентичны, поскольку они продуцируются единичной B-клеткой и ее потомством. MAb создаются путем слияния клеток селезенки мыши, которая была иммунизирована необходимым антигеном, с клетками миеломы с целью создания иммортализованных гибридом. Одним из главных препятствий для разработки in vivo приложений для mAb у человека является иммуногенность, свойственная нечеловеческим Ig. Пациенты отвечают на терапевтические дозы mAb мыши посредством создания антител против последовательностей Ig мыши (антимышиные антитела человека; HAMA), вызывающих острую токсичность, изменения их биораспределения и ускорения выведения, что в результате снижает эффективность последовательных введений (Mirick, et al., (2004) Q. Nucl. Med. Mol. Imaging 48, 251-257).

С той целью, чтобы обойти создание HAMA, были разработаны методы гуманизации антител в попытке продуцирования mAb с пониженной иммуногенностью при применении у человека. Результатом таких попыток стали различные подходы, основанные на рекомбинантных ДНК и направленные на повышение содержания аминокислотных последовательностей человека в mAb при условии сохранения специфичности и аффинности родительского антитела, не принадлежащего человеку. Гуманизация началась с создания химерных антител мыши-человека (Morrison, S. L., et al., (1984). Proc. Natl. Acad. Sci. USA., 81, 6851-5), в которых С-области Ig в mAb мыши были заменены С-областями человека. Химерные mAb содержат 60-70% аминокислотных последовательностей человека и имеют значительно меньшую иммуногенность, чем их аналоги мыши, при инъецировании человеку, хотя ответ человека против химерного антитела все еще наблюдался (Hwang, W. Y., et al. (2005). Methods, 36, 3-10).

В попытках дальнейшей гуманизации mAb мыши была разработана прививка CDR. При прививке CDR антитела мыши гуманизируются путем прививки их CDR в VL- и VH-каркасы молекул Ig человека при сохранении остатков каркаса мыши, считающихся важными для специфичности и аффинности (Jones, P.T., et al., (1986). Nature, 321, 522). В целом, антитела с привитыми CDR состоят более чем на 80% из аминокислотных последовательностей человека (Queen, C. et al. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 10029; Carter, P. et al. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 4285). Несмотря на эти попытки, было показано, что гуманизированные антитела все еще вызывали образование антител против привитой V-области (Hwang, W. Y., et al. (2005). Methods, 36, 3).

После прививки CDR были разработаны методы гуманизации, основанные на различных парадигмах, таких как ремоделирование (Padlan, E. A., et al., (1991). Mol. Immunol., 28, 489), сверхгуманизация (Tan, P., D. A., et al., (2002) J. Immunol., 169, 1119), оптимизация содержания последовательностей человека (Lazar, G. A., et al., (2007). Mol. Immunol., 44, 1986) и гуманиринг (humaneering), в попытке дальнейшего снижения содержания последовательностей, не принадлежащих человеку, в терапевтических mAb (Almagro, J. C, et al., (2008). Frontiers in Bioscience 13, 1619). Так же как и подходы, основанные на прививке CDR, данные методы опираются на анализ структуры антитела и сравнение последовательности нечеловеческих и человеческих mAb с целью оценки влияния процесса гуманизации на иммуногенность конечного продукта. При сравнении иммуногенности химерных и гуманизированных антител оказывается, что гуманизация вариабельных областей еще больше снижает иммуногенность (Hwang, W. Y., et al. (2005). Methods, 36, 3-10).

Еще одним подходом, разработанным для снижения иммуногенности химерных антител или антител мыши, является деиммунизация. Она включает идентификацию линейных эпитопов T-клеток в исследуемом антителе, с применением биоинформатики, и их последующую замену посредством сайт-направленного мутагенеза на последовательности человека или неиммуногенные последовательности (WO09852976A1). Несмотря на то, что деиммунизированные антитела продемонстрировали сниженную иммуногенность в приматах, по сравнению с их химерными аналогами, наблюдалась некоторая потеря связывающей способности (Jain, M., et al., (2007). Trends in Biotechnol. 25, 307).

Разработка технологии фагового дисплея дополнила и расширила подходы к иммунизации в попытке получения менее иммуногенных mAb для терапии людей. В фаговом дисплее большие наборы («библиотеки») VH- и VL-областей антител человека экспрессируются на поверхности нитеобразных частиц бактериофага. Из этих библиотек выбираются редкие фаги с помощью связывающего взаимодействия с антигеном; растворимые фрагменты антител экспрессируются зараженными бактериями, и связывающая способность выбранных антител улучшается посредством мутации (Winter, G., et al. (1994). Annu. Rev. Immunol. 12, 433). Данный процесс имитирует иммунный отбор, и с использованием данного подхода были выделены антитела со многими различными специфичностями связывания (Hoogenboom, H. R., et al. (2005). Nat. Biotechnol., 23, 1105). Различные источники V-области H- и L-цепей были использованы для построения фагового дисплея, включая выделение из неиммунных или иммунных доноров. Кроме того, библиотеки фагового дисплея были сформированы из V-областей, которые содержали искусственно рандомизированные синтетические CDR-области, с целью создания дополнительного разнообразия. Часто антитела, полученные из библиотек фагового дисплея, подвергаются созреванию аффинности in vitro с целью получения высокоаффинных антител (Hoogenboom, H. R., et al. (2005). Nat. Biotechnol., 23, 1105).

Создание трансгенных линий мыши, продуцирующих антитела человека при отсутствии антител мыши, обеспечило создание еще одной технологической платформы для создания специфических и высокоаффинных mAb мыши для применения в людях. У таких трансгенных животных эндогенный механизм продуцирования антител инактивирован и заменен локусами Ig человека с целью, по существу, воспроизведения гуморальной иммунной системы человека в мышах (Jakobovits, A., et al. (2007). Nat. Biotechnol. 25, 1134. Lonberg, N. (2005). Nat. Biotechnol. 23, 1117). Развитие B-клеток, а также диверсификация Ig посредством рекомбинации сегментов генов корректно воспроизводится в этих мышах, в результате чего получается широкий репертуар B-клеток мыши, экспрессирующих Ig человека. Посредством иммунизации этих мышей антигенами было дополнительно продемонстрировано, что данные трансгенные животные накопили соматические мутации в V-областях как тяжелой, так и легкой цепей, достаточные для продукции широкого разнообразия высокоаффинных mAb человека (Lonberg, N. (2005). Nat. Biotechnol. 23, 1117).

На вопрос, являются ли «полностью человеческие» mAb, такие как полученные из библиотек фагового дисплея или трансгенных мышей, менее иммуногенными, чем гуманизированные mAb, пока еще нет ответа, поскольку полные данные по иммуногенности доступны только для двух mAb человека. mAb против фактора некроза опухоли, разработанное на основе библиотек фагового дисплея человека, вызывает иммунный ответ у 12% пациентов - на верхней границе уровня противоантительных ответов гуманизированных антител (Hwang, W. Y., et al. (2005). Methods, 36, 3-10).

Оценка иммуногенности первого зарегистрированного mAb человека, созданного посредством трансгенного подхода, показала, что обработка с помощью mAb привела к образованию антител примерно у 5,5% подвергавшихся обработке раковых пациентов (Jakobovits, A., et al. (2007). Nat. Biotechnol. 25, 1134., Lofgren, J. A., et al. (2007). J. Immunol. 178, 7467).

Следовательно, по-прежнему остается необходимость в способе и средствах получения антител, являющихся специфичными для своих мишеней, но менее иммуногенных. В соответствии с изобретением, снижение иммуногенности по меньшей мере частично достигается путем получения не являющегося человеком трансгенного млекопитающего, содержащего по меньшей мере в клеточной линии своих B-клеток, нуклеиновую кислоту, кодирующую по меньшей мере легкую цепь и тяжелую цепь иммуноглобулина, при этом кодирующая тяжелую или легкую цепь последовательность предоставлена вместе со средствами, которые делают ее устойчивой к перестройкам ДНК и/или к соматическим гипермутациям, при этом предпочтительное не являющееся человеком млекопитающее является грызуном, конкретнее, мышью. Нуклеиновая кислота предпочтительно кодирует цепь человеческого, подобного человеческому или гуманизированного иммуноглобулина.

Остальное описание относится к примерам, в которых обычно в качестве не являющихся человеком млекопитающих используются мыши. Трансгенные не являющиеся человеком млекопитающие-хозяева способны индуцировать иммунный ответ на антиген, при этом ответ заключается в продукции антител, имеющих вариабельные области примата, в частности, человека. Могут быть использованы различные трансгенные хозяева, в частности, мыши и крысы, зайцеобразные, овечьи, жвачные, свиноподобные, лошадиные, псовые, кошачьи и т.п. Мыши были использованы для продукции B-лимфоцитов для иммортализации в целях продуцирования антитела. Поскольку с мышами легко работать, они могут быть разведены в большом количестве, и о них известно, что они имеют широкий иммунный репертуар, то мыши будут обычно являться выбираемыми животными. Следовательно, в приведенном ниже обсуждении будут рассматриваться мыши, но следует понимать, что другие животные, в частности, не являющиеся приматами млекопитающие, могут быть с легкостью использованы вместо мышей при следовании тем же процедурам.

Причина предотвращения перестроек и гипермутации состоит в том, что таким образом неиммуногенный полипептид может быть выбран заблаговременно, поскольку будет известно, что его полипептидная цепь останется неиммуногенной. По меньшей мере одна из цепей полученного в результате иммуноглобулина будет, таким образом, менее иммуногенной. Полученное в результате антитело должно (обычно) иметь и легкую, и тяжелую цепь. Следовательно, неиммуногенная цепь должна быть способна к соединению с другой цепью. Другая цепь может являться эндогенной цепью, экзогенной цепью или гибридом обеих. Для терапии человека неиммуногенная цепь должна быть близка к цепи человека насколько это возможно.

Средства получения гена, кодирующего цепь (или цепи) иммуноглобулина, устойчивую(-ые) к перестройке и/или мутации ДНК, состоят, очевидно, в удалении всех генетических элементов, ответственных за вышеупомянутую перестройку и/или мутацию. Их недостаток заключается в том, что устраняется вариабельность двух цепей, тогда как в изобретении предпочтительно сохранение вариабельности в одной из цепей (предпочтительно, в тяжелой цепи), и подавляется и/или предотвращается перестройка-мутация другой цепи (предпочтительно, легкой цепи).

Элементы для перестройки и/или гипермутации, охарактеризованные ранее, размещаются в пределах локусов для иммуноглобулинов. Следовательно, средство получения кодирующей иммуноглобулин последовательности, устойчивой к перестройке и/или мутации ДНК, состоит во вставке гена в локус вне локусов иммуноглобулина.

Таким образом, изобретение относится к трансгенному не являющемуся человеком млекопитающему, у которого последовательность, кодирующая легкую/тяжелую цепь, интегрирована в геном не являющегося человеком млекопитающего в локусе вне локусов иммуноглобулина. Предпочтительно, вставка производится в локусе, устойчивом к сайленсингу генов. В соответствии с изобретением, интеграция происходит в локусе Rosa или сопоставимом локусе.

Предпочтительным является экспрессионная кассета, которая может быть вставлена в локус Rosa со средствами, допускающими экспрессию цепи(-ей) иммуноглобулина, в основном ограниченную клетками линии B-клеток, предпочтительно, со средствами, которые допускают экспрессию легкой цепи, кодирующей нуклеиновую кислоту, в течение определенной стадии развития B-клетки. Термин «по существу ограниченная экспрессия» означает, что экспрессия происходит преимущественно в клетках клеточной линии B-клеток, но при этом допускается возможность более низких уровней экспрессии, по сравнению с экспрессией в B-клетках, в других клетках. В предпочтительном варианте осуществления термин «по существу ограниченная экспрессия» означает, что экспрессия имеет место исключительно в клетках из клеточной линии B-клеток. Такие средства обычно и предпочтительно включают специфические промоторы B-клетки (стадия развития), такие как CD19, CD20, μHC (все V-гены), VpreB1, VpreB2, VpreB3, λ5, Igα, Igβ, κLC (все гены), λLC (все гены), BSAP (Pax5). Несмотря на то, что имеется хорошая возможность управления экспрессией цепи, устойчивой к перестройкам и/или мутациям ДНК, посредством таких промоторов, они являются относительно слабыми. Сильный промотор обычно будет требоваться для обеспечения адекватной поверхностной экспрессии рецептора B-клетки (сформированного из прикрепленных к мембране H и L цепей Ig) и для конкурирования с экспрессией и соединением эндогенных цепей (при наличии) посредством исключения аллеля. Однако такой промотор обычно не является тканеспецифичным. Для обеспечения тканеспецифичности предпочтительной является непрямая система, использующая Cre/lox и т.п. Нужная цепь помещается под управление сильного промотора, ингибируемого элементом, который может быть удален посредством воздействия Cre-белка, что приведет к активации нужного гена, кодирующего иммуноглобулин. Данная система подробно описана в работе Wunderlich F. T. (2004), "Generation of inducible Cre systems for conditional gene inactivation in mice", Inauguraldissertation zur Erlangung des Doktorgrades der Mathematisch- Naturwissenschaftlichen Fakultat der Universitat zu KoIn; http://deposit.ddb.de/cgi-bin/dokserv?idn= 97557230x&dok_var=dl&dok_ext=pdf&filename=97557230x.pdf.

Предпочтительно, цепь иммуноглобулина, продуцируемая устойчивой к перестройкам и гипермутации, является легкой цепью, способной к соединению с различными тяжелыми цепями, кодируемыми не являющимся человеком млекопитающим. Таким образом, легкая цепь будет одной и той же (и менее иммуногенной) во всех антителах, но разнообразие специфичности сохраняется посредством перестроек и гипермутаций в тяжелых цепях. В этом случае может быть предпочтительным сайленсинг по меньшей мере одного из эндогенных локусов, кодирующего легкую цепь, хотя исключение аллеля может привести к отсутствию такой необходимости.

В соответствии с данным вариантом осуществления, предпочтительным является функциональный сайленсинг эндогенной легкой цепи каппа (κ).

Если сайленсинг выполнен для локуса эндогенной легкой цепи κ, но также и по другим причинам, предпочтительно, чтобы устойчивая легкая цепь представляла собой легкую цепь κ, предпочтительно, легкую цепь, имеющую последовательность, подобную последовательности зародышевой линии. В соответствии с изобретением, такая легкая цепь приводила бы к наличию антитела со сниженной иммуногенностью. Предпочтительная последовательность зародышевой линии, основывающая на IGKV1-39 человека (O12) в качестве такой легкой цепи, очень часто наблюдается в репертуаре человека (de Wildt et al. 1999. J. Mol. Biol. 285(3):895) и имеет исключительную термодинамическую стабильность, выход и растворимость (Ewert et al. 2003. J. Mol. Biol. 325(3):531).

Ниже приведены более конкретные варианты осуществления экспрессионной кассеты, с помощью которой может быть получено не являющееся человеком животное по изобретению. Несмотря на то, что это обычно является благоприятным для иммуноглобулинов, также предполагаются и другие представляющие интерес гены.

Таким образом, изобретение в конкретном варианте осуществления относится к трансгенному не являющемуся человеком млекопитающему, у которого легкая цепь, кодирующая нуклеиновую кислоту, содержит в направлении 5'-3': специфичный для B-клетки промотор, лидерную последовательность, перестроенный V-ген человека, необязательно, энхансер MoEκi, константную область (κ) и, необязательно, (сокращенный) энхансер MoEκ3'. Нюбергером был обнаружен и исследован новый специфичный для B-клеток энхансер, расположенный по ходу транскрипции относительно константной области каппа (EP004690251). Было показано, что данный энхансер играет ключевую роль в экспрессии каппа-генов, поскольку удаление состоящего из 808 п.н. энхансера сильно снижает экспрессию. Удаление 3'-каппа энхансера также сильно снижает уровень соматических гипермутаций (SHM). При изучении трансгенной и клеточной экспрессии было обнаружено, что сокращение, мутирование или удаление 3'-каппа энхансеров не только снижает уровни экспрессии, но также снижает уровень соматических гипермутаций. В настоящее время нельзя определить, вовлечен ли 3'-каппа энхансер в процессы SHM, регуляцию экспрессии, или в оба процесса (обзор Odegard, V. H., et al.(2006). Nat. Rev. Immunol. 6, 573; Inlay, M., et al. (2002). Nat. Immunol. 3, 463).

Всесторонние исследования экспрессии с использованием вариантов 3'-каппа энхансера, созданных способами генной инженерии показали, что 50-нуклеотидный участок является достаточным для контроля экспрессии. Однако для надлежащей экспрессии предпочтительна сокращенная последовательность из 145 нуклеотидов (EP04690251; Meyer, K. B., et al. (1990) Nucleic Acids Res. 18(19):5609-15)

Таким образом, изобретение в одном из аспектов относится к нуклеиновой кислоте для встраивания в геном не являющегося человеком животного, представляющую собой экспрессионную кассету для экспрессии необходимой белковой молекулы в клетках, развивающихся в зрелые B-клетки, в течение определенной стадии развития, при этом вышеупомянутая кассета содержит средства для предотвращения сайленсинга экспрессии необходимой белковой молекулы после введения в клетку хозяина и средства для согласования времени экспрессии необходимой белковой молекулы с необходимой стадией развития клетки-хозяина.

Экспрессионная кассета определена как нуклеиновая кислота, которая была введена средствами внедрения в геном клетки хозяина, такими как последовательности, которые допускают гомологичную рекомбинацию с определенным участком в геноме. Как правило, нуклеиновой кислотой является ДНК, обычно двухцепочечная. Обычно экспрессионную кассету вводят в клетку с помощью вектора, из которого она переносится в геном клетки. Экспрессионная кассета также содержит все элементы, необходимые для экспрессии гена в клетке-хозяине, хотя в определенных вариантах осуществления некоторые из таких элементов могут присутствовать во второй нуклеиновой кислоте, предназначенной для внесения, посредством чего данные элементы действуют в процессе передачи. Элементы, необходимые для экспрессии в клетке-хозяине, включают промоторы, энхансеры и другие регуляторные элементы. Необходимыми являются только те элементы, которые не предоставляются клеткой-хозяином.

В соответствии с изобретением важно, чтобы экспрессия представляющего интерес гена не подвергалась сайленсингу в геноме клетки-хозяина, особенно на стадии развития, на которой требуется экспрессия. Эта цель может быть достигнута различными средствами, такими как вставка в эндогенный локус, или посредством предоставления кассеты с элементами нуклеиновой кислоты, которые предотвращают сайленсинг (Kwaks et al. (2006) Trends Biotechnol. 24(3), p.137-142; включенная в настоящий документ посредством ссылки). Предпочтительно, чтобы экспрессионная кассета вставлялась в локус, который не подвергался сайленсингу в клетках-хозяевах (EP 01439234; включенная в настоящий документ посредством ссылки).

Вышеупомянутые средства для предотвращения сайленсинга включают стабилизирующие последовательности против репрессии (STAR®-последовательности) и участки прикрепления к матриксу (MAR). STAR-последовательность представляет собой последовательность нуклеиновой кислоты, которая имеет способность влияния на транскрипцию генов в cis-положении. Как правило, хотя и не обязательно, STAR-последовательность сама не кодирует функциональный белковый элемент. В одном из вариантов осуществления используется один STAR-элемент. Однако предпочтительно использовать более одного STAR-элемента. В особенно предпочтительном варианте осуществления экспрессионная кассета по изобретению имеет две STAR-последовательности; одна STAR-последовательность на 5'-стороне кодирующей последовательности гена иммуноглобулина и одна STAR-последовательность на 3'-стороне кодирующей последовательности гена иммуноглобулина. MAR представляют собой последовательности ДНК, которые вовлечены в фиксирование ДНК/хроматина на ядерном матриксе; они были описаны для млекопитающих и растений. MAR обладают рядом характеристик, которые способствуют открытию и поддержке эухроматина. MAR могут повышать экспрессию трансгенов и ограничивать позиционные эффекты.

В соответствии с изобретением важно, чтобы экспрессия из кассеты имела место только в определенный период развития клетки, в частности, развития B-клетки, конкретнее, B-клетки в трансгенном не являющемся человеком животном, в частности, в мыши. В данном конкретном случае период развития выбирается таким образом, чтобы экспрессия гена из кассеты (полипептида, подобного легкой или тяжелой цепи) не являлась значительной помехой для нормальной дифференциации и/или созревания клетки и, при необходимости, допускала соединение продуцированной полипептидной цепи с ее копией.

В соответствии с изобретением, это может быть достигнуто, в одном из вариантов осуществления, путем получения нуклеиновой кислоты по изобретению, при этом вышеупомянутые средства для согласования времени экспрессии представляют собой промотор, активность которого в основном ограничена определенной стадией развития. В процессе развития B-клетка, которая, например, созревает и/или дифференцируется после иммунизации, экспрессия представляющего интерес гена, когда он представляет собой одну из полипептидных цепей иммуноглобулина, не должна являться (значительной) помехой для вышеупомянутого созревания и/или дифференциации, и она должна быть согласована по времени таким образом, чтобы результирующий полипептид мог соединяться со своими аналогами. Следовательно, изобретение относится к нуклеиновой кислоте по изобретению, при этом вышеупомянутая определенная стадия начинается сразу после, или совпадает с началом, экспрессии молекул легкой цепи вышеупомянутыми клетками на определенной стадии развития в зрелые B-клетки.

Этого можно достигнуть посредством выбора промотора, который является активным только в течение вышеупомянутого подходящего периода. Такой промотор может представлять собой промотор CD19, промотор Ig-α, промотор Ig-β, промотор μhc (все гены), промотор Vk или их аналоги и гомологи.

В конкретном варианте осуществления настоящего изобретения промотор, как описано выше, не контролирует экспрессию представляющего интерес гена напрямую. Вместо этого он контролирует экспрессию гена, продукт которого активирует в транс-положении экспрессию представляющего интерес гена. Таким активируемым геном может быть ген, кодирующий так называемую Cre-рекомбиназу или Cre-подобный белок. Экспрессионная кассета для представляющего интерес гена может, например, вводиться с последовательностью, которая подавляет экспрессию представляющего интерес гена. Вышеупомянутая последовательность может быть удалена посредством воздействия Cre-рекомбиназы, находящейся под управлением желаемого промотора (активного во время соответствующей стадии развития). В данном варианте осуществления требуется множество экспрессионных кассет.

Таким образом, изобретение относится к множеству нуклеиновых кислот, представляющих собой экспрессионные кассеты, при этом одна нуклеиновая кислота содержит экспрессионную кассету, кодирующую Cre-подобный белок под управлением промотора, активного во время желаемой стадии развития клетки-хозяина, и вторая нуклеиновая кислота содержит последовательность, кодирующую желаемую белковую молекулу под управлением конститутивного промотора, который может быть активирован посредством воздействия Cre-подобного белка. Вышеупомянутая активация предпочтительно достигается путем удаления стоп-последовательности, фланкированной сайтами loxP. Система Cre/lox подробно описана в работе Rajewsky et al. (1996) J. Clin. Invest. 98, p.600-603, которая включена в настоящий документ посредством ссылки. Обзор таких систем приведен в работе Wunderlich F. T. (2004), "Generation of inducible Cre systems for conditional gene inactivation in mice", Inauguraldissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultat der Universitat zu KoIn; http://deposit.ddb.de/cgi-bin/dokserv?idn=97557230x&dok_var=dl&dok_ext=pdf&filename=9755723ox.pd, которая включена в настоящий документ посредством ссылки.

Изобретение также относится к трансгенному не являющемуся человеком животному, в которое была введена экспрессионная кассета по изобретению, при этом желаемая белковая молекула является полипептидной цепью иммуноглобулина. Предпочтительной полипептидной цепью является легкая цепь. Более предпочтительным полипептидом является легкая цепь зародышевой линии или подобная ей. Наиболее предпочтительным полипептидом является O12, предпочтительно, перестроенная каппа-легкая цепь зародышевой линии IGKV1-39*01/IGKJ1*01 (номенклатура в соответствии с базой данных IMGT, http://www.imgt.org).

Также предпочтительно, чтобы полипептидная цепь приводилась в состояние неспособности к перестройке и/или исключения любой модификации последовательности, такой как обычно происходящая с Ig в течение процесса созревания аффинности B-клетки. Таким образом, изобретение относится к трансгенному не являющемуся человеком животному, в которое была введена экспрессионная кассета по изобретению, при этом вышеупомянутая перестройка и/или модификация последовательности предотвращается посредством отсутствия элементов по меньшей мере частично ответственных за соматическую гипермутацию, таких как, например, энхансер MoEκi.

Предпочтительная экспрессионная кассета по изобретению содержит средства для предотвращения сайленсинга. В одном из вариантов осуществления, вышеупомянутые средства для предотвращения сайленсинга представляют собой средства для вставки в локус генома клетки-хозяина, который является устойчивым к сайленсингу. Вышеупомянутые средства для вставки предпочтительно представляют собой средства для гомологичной рекомбинации в вышеупомянутом сайте, устойчивом к сайленсингу. Предпочтительным локусом в случае, когда не являющееся человеком животное представляет собой мышь, является rosa-локус.

Еще одна предпочтительная экспрессионная кассета по изобретению содержит в направлении 5'- 3': VK-промотор, лидерную последовательность мыши, V-ген человека, необязательно, энхансер MoEκi, константную область (Сκ) крысы и, необязательно, (сокращенный) энхансер MoEκ3'.

Еще одна предпочтительная экспрессионная кассета по изобретению содержит в направлении 5'- 3': VK-промотор, лидерную последовательность человека, V-ген человека, необязательно, энхансер MoEκi, константную область (Сκ) крысы и, необязательно, (сокращенный) энхансер MoEκ3'.

Естественно, конечная цель изобретения состоит в получении антител для использования в терапии человека. Таким образом, изобретение относится к способу получения желаемого антитела, включающему воздействие на не являющегося человеком млекопитающего по изобретению антигеном таким образом, что индуцируется выработка антител, и выделение антител, специфичных для антигена.

В альтернативном варианте осуществления, изобретение относится к способу получения желаемого антитела, включающему воздействие на не являющегося человеком млекопитающего по изобретению антигеном таким образом, что индуцируется выработка антител, и выделение клеток, продуцирующих такие антитела, выращивание и, необязательно, иммортализацию вышеупомянутых клеток и сбор вышеупомянутых антител.

В еще одном варианте осуществления, изобретение относится к способу получения желаемого антитела, включающему воздействие на не являющегося человеком млекопитающего по изобретению антигеном таким образом, что индуцируется выработка антител, и выделение нуклеиновой кислоты, кодирующей по меньшей мере часть такого антитела, вставку вышеупомянутой нуклеиновой кислоты, или ее копии или производной, в экспрессионную кассету и экспрессирование вышеупомянутого антитела в клетке-хозяине.

Способы получения антител из трансгенных мышей известны специалистам в данной области техники. Особенно предпочтительными являются способы получения смеси антител из одной клетки, посредством чего, по изобретению, из мышей выделяются нуклеиновые кислоты, кодирующие данные антитела.

Такое так называемое олигоклонирование изложено в документах WO04106375 и WO05068622, которые включены в настоящий документ посредством ссылки.

Настоящее изобретение относится к трансгенным не являющимся человеком млекопитающим, предпочтительно, мышам, способным к созданию специфичных и высокоаффинных гибридных антител мыши-человека, предпочтительно, с вариабельными областями (VL) легкой цепи иммуноглобулина человека в конфигурации, близкой к зародышевой линии, и, предпочтительно, с вариабельными областями (VH) тяжелой цепи иммуноглобулина мыши, которые могут иметь накопленные соматические мутации во время процесса, контролируемого антигеном созревания аффинности. Предусматривается, что VH-области гибридных антител мыши могут подвергаться процедурам гуманизации с целью получения mAb, имеющих пониженную иммуногенность при применении в организме человека, на основании VL-областей зародышевой линии, или близких к ней, и VH-областей мыши, подвергшихся гуманизации.

В частности, в настоящем изобретении было показано, что трансгенные мыши, которые содержат конструкцию экспрессии ДНК, кодирующую перестроенную VL-область человека под контролем действующих в cis-положении генетических элементов, которые обеспечивают своевременную и регулируемую экспрессию трасгена в значительной части B-клеток в процессе развития B-клеток, и не имеют элементов, управляющих механизмом соматической гипермутации трансгена, способны создавать специфичные и высокоаффинные гибридные антитела мыши-человека в основном, с немутировавшими L-цепями. Было показано, что перестроенный трансген человека может соединяться с множеством эндогенных H-цепей иммуноглобулинов мыши с образованием гибридных иммуноглобулинов мыши-человека, экспрессируемых на поверхности B-клетки, и может в достаточной степени способствовать развитию B-клеток мыши для получения многочисленных и разнообразных ячеек периферийных B-клеток.

В предпочтительном варианте осуществления, конструкция для экспрессии трансгена содержит кодирующие последовательности перестроенного V-участка L-цепи человека под управлением VL-промотора человека с целью управления специфичной экспрессией B-клеток. Кроме того, конструкция содержит последовательность 3'Ck-энхансера мыши для специфичной и индуцируемой экспрессии трансгена на высоком уровне в B-клетке. Кроме того, конструкция задумана как не имеющая регуляторных элементов, которые способствуют привлечению механизма соматической гипермутации для трансгена, таких как энхансер интрона и 3'C-каппа энхансер.

В связанном варианте осуществления, перестроенный VL-ген человека вставляется в локус Rosa26 мыши посредством сайт-специфичного встраивания. Локус Rosa26 полезен в контексте подхода «направленного трансгенеза» для эффективного создания трансгенных организмов (таких как мыши) с предсказуемым профилем экспрессии трансгена.

В предпочтительном варианте осуществления перестроенная VL-область человека выбирается по ее способности к соединению с множеством различных VH-генов мыши с тем, чтобы обеспечить создание популяции B-клеток с разнообразным репертуаром VH-генов. Способ получения таких VL-областей включает амплификацию репертуара перестроенных VH-генов из B-клеток мышей и репертуара перестроенных VL-областей зародышевой линии человека из B-клеток человека, а также их клонирование в векторы фагмидного дисплея для приготовления разнообразных библиотек гибридных иммуноглобулинов в бактериях. Посредством анализа нуклеотидных последовательностей не выбранных и выбранных антигеном пар VH/VL, идентифицируются VL-гены зародышевой линии человека, которые соединяются с множеством различных VH-генов мыши. Описана коллекция VL-генов зародышевой линии человека с такой способностью.

В одном из вариантов осуществления, было показано, что после иммунизации антигеном B-клетки способны устанавливать иммунный ответ, приводящий к образованию B-клеток, которые секретируют гибридные антитела с высокой специфичностью и аффинностью. V-области, кодирующие данные антитела, характеризуются трансгенной легкой цепью человека, которая содержит очень мало мутаций, или не содержит их вообще, и тяжелой цепью мыши, которая содержит переменное количество мутаций, внесенных посредством механ