Универсальная система подготовки образцов и применение в интегрированной системе анализа

Иллюстрации

Показать все

Изобретение относится к области биотехнологии. Система состоит из следующих элементов: а) модуля подготовки образца, выполненного с возможностью захвата аналита из биологического образца в немикрожидкостном объеме на захватывающей частице, реагирующей на магнитное поле, и направления связанной с аналитом захватывающей частицы, реагирующей на магнитное поле, через первый микрожидкостный канал; б) реакционного модуля, включающего реакционную камеру, имеющую жидкостное сообщение с первым микрожидкостным каналом, и выполненного с возможностью иммобилизации связанной с аналитом захватывающей частицы, реагирующей на магнитное поле, и проведения реакции амплификации множества STR-маркеров аналита. При этом модуль подготовки образца и реакционный модуль интегрированы в одноразовый картридж, который состоит из: 1) по меньшей мере одной совокупности жидкостных камер, 2) платы с реагентами или картриджа с реагентами и 3) одного или более чем одного пневматически активируемого MOVe-клапана; в) модуля анализа. Причем система сконфигурирована для захвата аналита, для проведения химической или биохимической реакции с аналитом и для проведения анализа продукта реакции менее чем за 4 часа. За счет использования в данной системе MOVe-клапанов осуществляется перенос текучих средств, устойчивый к утечкам, и появляется возможность уменьшить размеры устройства для подготовки образцов. Также с помощью данной системы можно отбирать организмы мишени из образцов с большим количеством фоновых примесей, различать два разных штамма бактерий, эффективно захватывать клетки и токсины, значительно уменьшить объем целевого образца. 1 н. и 29 з.п. ф-лы, 104 ил., 3 пр.

Реферат

ПЕРЕКРЕСТНАЯ ССЫЛКА

Данная заявка является родственной по отношению к USSN 61/184759, поданной 5 июня 2009 г, и USSN 61/235664, поданной 20 августа 2009 г., полностью и во всех отношениях включенным сюда посредством ссылки.

ЗАЯВЛЕНИЕ ОТНОСИТЕЛЬНО ИССЛЕДОВАНИЯ, ФИНАНСИРУЕМОГО ИЗ ФЕДЕРАЛЬНОГО БЮДЖЕТА

Это изобретение было осуществлено при поддержке правительства по контракту №2004*Н838109*000, заключенному Центральным разведывательным управлением. Правительство может иметь определенные права на это изобретение.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Подготовка образцов является распространенной проблемой в биологических аналитических системах. Проблема получения по существу очищенных мишеней из различных типов необработанных образцов для надежного проведения последующих аналитических исследований очень распространена и затрагивает клеточную биологию, геномику, протеомику, метаболомику, биологию питания, молекулярную диагностику и многие другие биологические и медицинские исследования. В то время как в подготовке образцов были достигнуты существенные успехи, наиболее успешным решением является разработка реагентов, используемых вручную или в робототехнических системах, в которых используют прямолинейные платформы или многоосевые манипуляторы для манипуляций с образцами.

Микрогидродинамика и наногидродинамика позволяют подготавливать для анализа миниатюрные объемы образцов. Преимущества включают незначительный расход реагентов с уменьшением эксплуатационных расходов и полную автоматизацию, исключающую человеческий фактор. Подготовка микрожидкостного образца может либо включать применение существующих способов детектирования или способов детектирования, которые будут разработаны в будущем, либо являться частью полностью интегрированной системы. В настоящей заявке раскрыты способы и аппараты, в которые интегрирована подготовка полнообъемных образцов, объем которых превышает 10 мл, с объемами для подготовки и анализа образцов, составляющими несколько микролитров или менее.

Начиная с образца, настоящее изобретение может быть использовано для концентрирования и предварительного разделения компонентов для дальнейшей обработки с детектированием и классификацией организмов в матрицах, включая аэрозольные образцы, воду, жидкости, кровь, кал, назальные, буккальные и другие мазки, биологические жидкости, образцы окружающей среды, с анализом посредством твердофазного иммуноферментного анализа (ELISA), полимеразной цепной реакции (ПЦР) или других методик амплификации нуклеиновых кислот, детектирования единичных молекул, белковых биочипов, масс-спектроскопии и других аналитических способов, хорошо известных специалисту в данной области техники.

Микрожидкостная очистка нуклеиновых кислот может быть проведена для подготовки образца для исследований нуклеиновых кислот.Для анализа ДНК одним современным способом является ПЦР-амплификация. Для анализа с использованием ДНК-, РНК- и белковых микрочипов также необходима тщательная подготовка образца перед тем, как образец можно будет нанести на микрочип для проведения реакции и получения результатов.

Образцы могут быть получены с использованием широкого спектра субстратов и матриц. Матрица может содержать сложные смеси, содержащие соединения-ингибиторы, такие как гемы, индиго, гуминовые кислоты, двухвалентные катионы, и белки, и так далее, препятствующие амплификации на основе ДНК. Аэрозоли могут содержать большие количества плесени, металлов, и гумусовых почв, и других кислот, препятствующих ПЦР-амплификации, являющейся золотым стандартом.

В проведенных ранее работах была показана возможность детектирования всего трех высеянных организмов в разведенных образцах почвенных экстрактов с последующей ПЦР-амплификацией двух 16S рибосомных генных фрагментов. Агарозу с низкой температурой плавления использовали для выделения ДНК из образцов почвы для ПЦР-амплификации 16S и 18S рибосомной ДНК (рДНК) с использованием универсальных праймеров. Могут быть использованы гели для разделения центрифугированием в формате колонок, такие как колонки Sephadex. Были разработаны многостадийные методики очистки, такие как экстракции органическими растворителями в комбинации с колонками Sephadex. Было обнаружено, что измельчение гранулами является эффективным способом подготовки образцов при больших количествах организмов, и что измельчение в жидком азоте является эффективным для детектирования малых количеств организмов. Несмотря на эффективность этих способов, они лучше всего подходят для условий исследовательских лабораторий.

Твердофазные экстракции на колонках, гранулы и поверхности могут быть использованы для очистки ДНК перед анализом ДНК. Было проведено сравнение протеиназы К с последующим использованием колонок с силикагелевой мембраной Qiagen QIA Amp и IsoCode Stix, импрегнационной технологии на основе мембран, с последующим нагреванием, отмывкой и непродолжительным центрифугированием при использовании вегетативных клеток В. anthracis Sterne в буфере, сыворотке и цельной крови, и спор в буфере, и было обнаружено, что оба способа были эффективны.

С применением устройств и способов по изобретению может быть проведено множество разделений. Например, устройства и способы по изобретению могут быть использованы для проведения хроматографии, фазового или магнитного разделения, электрофореза, дистилляции, экстракции и фильтрации. Например, микрожидкостный канал или капилляр может быть использован для хроматографии или электрофореза. Также, гранулы, такие как магнитные гранулы, могут быть использованы для фазовых разделений и магнитных разделений. Гранулы или любые другие поверхности, описанные здесь, могут быть функционализированы связывающими группировками, демонстрирующими специфичное или неспецифичное связывание с мишенью. Связывание может быть основано на электростатике, взаимодействиях Ван-дер-Ваальса, гидрофобности, гидрофильности, водородных связях, ионных взаимодействиях, а также частично ковалентных взаимодействиях, как взаимодействия между золотом и серой. В предпочтительных воплощениях в устройствах и способах по изобретению используют иммуномагнитные сепарации.

Иммуномагнитная сепарация (IMS) представляет собой эффективную технологию, позволяющую захватывать и концентрировать мишени за одну стадию с использованием механически упрощенного формата с использованием парамагнитных гранул и магнитного поля (см. Grodzinski P, Liu R, Yang J, Ward MD. Microfluidic system integration in sample preparation microchip-sets - a summary. Conf Proc IEEE Eng Med Biol Soc. 2004; 4:2615-8., Peoples MC, Karnes HT. Microfluidic immunoaffinity separations for bioanalysis. J Chromatogr В Analyt Technol Biomed Life Sci. 2007 Aug 30., и Stevens KA, Jaykus LA. Bacterial separation and concentration from complex sample matrices: a review. Crit Rev Microbiol. 2004; 30(1):7-24.). IMS может быть использована для захвата, концентрирования и затем очистки определенных целевых антигенов, белков, токсинов, нуклеиновых кислот, клеток и спор. Несмотря на то, что изначальное применение IMS включало использование антитела, авторы изобретения расширяют ее применение с включением других специфичных аффинных взаимодействий, включая лектиновые, ДНК-ДНК-, ДНК-РНК-, биотин-стрептавидиновые и другие аффинные взаимодействия на твердой фазе. Механизм IMS включает связывание специфичного аффинного реагента, обычно антитела или ДНК, с парамагнитными гранулами, проявляющими магнитные свойства только в присутствии внешнего магнитного поля. Гранулы могут быть добавлены в сложные образцы, такие как аэрозоли, жидкости, биологические жидкости или пищевые продукты. После связывания мишени с аффинным реагентом (который в свою очередь связан с парамагнитной гранулой) проводят захват гранулы магнитным полем. Несвязанные или непрочно связанные вещества удаляют отмывкой совместимыми буферами, что обеспечивает очистку мишени от других нежелательных веществ исходного образца. Поскольку гранулы имеют небольшие размеры (от приблизительно 1 нм до приблизительно 1 мкм) и активно связываются с мишенью, при концентрировании гранул магнитным полем они обычно образуют слои гранул объемом от 1 нл до 1 мкл, концентрируя, таким образом, мишень во время ее очистки. Очищенные и концентрированные мишени могут быть легко транспортированы, денатурированы, лизированы или проанализированы без их отсоединения от гранул или с их элюированием из гранул для дальнейшей подготовки образца или анализа.

Иммуномагнитные сепарации широко используют для множества применений, включая детектирование микроорганизмов в пищевых продуктах, биологических жидкостях и других матрицах. Парамагнитные гранулы можно легко смешивать, ими легко манипулировать, и их можно адаптировать к микромасштабным и микрожидкостным применениям. Эта технология обеспечивает отличное решение для интерфейса макроскопического масштаба и микроскопического масштаба: гранулы являются почти идеальным носителем для очистки образцов в макроскопическом масштабе и дальнейшего концентрирования в наноскопическом масштабе (порядка 100 нл) для введения в микрожидкостные или наножидкостные платформы. Иммуномагнитные сепарации обычно используют в качестве стадии очистки, предшествующей ПЦР в реальном времени, электрохемилюминесценции и магнитной селекции (magnetic force discrimination).

Возможность перемещения текучих сред на микрочипах очень важна. В данном изобретении описаны технологии захвата и очистки образцов, микросепарарации, микроклапаны, микронасосы и микромаршрутизаторы, технологии наножидкостного контроля и наноскопической биохимии. Ключевым компонентом технологии является технология микроробототехнических чиповых клапанов (MOVe, Micro-robotic On-chip Valves) (пример которых показан на Фиг.1) и ее применение для миниатюризации и автоматизации сложных технологических процессов. Вместе взятые, MOVe-клапаны, насосы, и маршрутизаторы, и оборудование для управления ими можно назвать микрочиповой платформой жидкостной обработки (microchip fluid processing platform).

Центральным элементом технологии микрочиповой платформы жидкостной обработки являются MOVe-насосы, клапаны и маршрутизаторы, обеспечивающие перемещение и обработку образцов и позволяющие проводить их анализ. Эти новые внешне активируемые пневматически управляемые чиповые клапаны, насосы и маршрутизаторы, изначально разработанные в лаборатории Mathies Калифорнийского университета Беркли (University of California at Berkeley, U.C.Berkeley) (Grover, W.H. A.M.Skelley, C.N.Liu, E.T.Lagally, and R.M.Mathies. 2003. Sensors and Actuators B89:315-323; Richard A. Mathies et al., заявка на патент США, 20040209354 А1, 21 октября 2004 г.; каждая из которых полностью включена сюда посредством ссылки), позволяют контролировать поток текучей среды в манипулируемых объемах от 20 нл до 10 мкл.

MOVe-клапаны и насосы (Фиг.1) позволяют комбинировать два стеклянных и/или пластиковых микрожидкостных слоя и слой деформируемой мембраны из полидиметилсилоксана (PDMS), открывающий и закрывающий клапан, и пневматический слой, деформирующий мембрану и активирующий клапан. Микрожидкостный канал, проделанный в верхней стеклянной жидкостной пластине, прерывист и ведет к седлу клапана, которое обычно закрыто (Фиг.1А). При подаче вакуума в пневматическую камеру переменного объема с использованием обычных источников вакуума и давления, обычно закрытая PDMS-мембрана поднимается от седла клапана, открывая клапан (Фиг.1Б). На Фиг.1В показан вид клапана сверху в масштабе, сходном с Фиг.1А-Б.

Три микроклапана могут быть использованы для создания микронасоса на микрочипе для перемещения текучих сред из области внесения к области выведения на микрочипе А. Перемещение текучих сред осуществляют с использованием трех или более клапанов. Клапаны могут быть созданы передвижением деформируемой структуры. В некоторых воплощениях создают седло клапана, и в других воплощениях в седле клапана может не быть необходимости. На Фиг.2 показаны MOVe-устройства, сверху вниз: клапан, маршрутизатор, мешалка, устройство для захвата гранул. Самовсасывающие MOVe-насосы (Фиг.2, сверху) изготавливают, координируя действие трех клапанов, и эти насосы могут создавать поток в любом направлении. Маршрутизаторы изготавливают из трех или более MOVe-клапанов (Фиг.2, второе изображение сверху). Перемешивание является «Священным Граалем» микрогидродинамики: MOVe-мешалки (Фиг.2, второе изображение снизу) быстро перемешивают образцы и реагенты. MOVe-устройства очень точно работают с магнитными гранулами для подачи совокупностей гранул насосом или их захвата (Фиг.2, нижнее изображение).

Обычно закрытые MOVe-клапаны, насосы и маршрутизаторы долговечны, просты и недороги в изготовлении, применимы с высокоплотными биочипами (dense arrays) и имеют небольшое мертвое пространство. Чипы с MOVe-клапанами, насосами и маршрутизаторами легко изготовить на микрочипах. Существенно, что все MOVe-клапаны, насосы и маршрутизаторы на микрочипе создают одновременно простым способом изготовления с использованием одного листа PDMS-мембраны, стоимость изготовления 5 и 500 MOVe-микронасосов на микрочипе одинакова. Эта инновационная технология впервые позволяет создавать сложные микро- и наножидкостные контуры на микрочипах.

Патенты и заявки, в которых обсуждены применение и разработка микрочипов, включают US 7312611, выданный 25 декабря 2007 г.; патент США 6190616, выданный 20 февраля 2001 г.; патент США 6423536, выданный 23 июля 2002 г.; патент США 10633171, 22 марта 2005 г.; патент США 6870185, выданный 22 марта 2005 г.; заявку на патент США №US 2001-0007641, поданную 25 января 2001 г.; заявку на патент США US 20020110900, поданную 18 апреля 2002 г.; заявку на патент США 20070248958, поданную 15 сентября 2005 г.; заявку на патент США US 20040209354, поданную 29 декабря 2003 г.; заявку на патент США US 2006/0073484, поданную 29 декабря 2003 г.; US 20050287572, поданную 25 мая 2005 г.; заявку на патент США US 20070237686, поданную 21 марта 2007 г.; US 20050224352, поданную 24 ноября 2004 г.; US 20070248958, поданную 15 сентября 2005 г.; US 20080014576, поданную 2 февраля 2007 г.; и заявку на патент США US 20070175756, поданную 26 июля 2006 г.; каждая/каждый из которых полностью включена/включен сюда посредством ссылки.

КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Согласно изобретению предложена система, позволяющая обрабатывать несколько необработанных биологических образцов, проводить биохимические реакции и обеспечивать вывод результатов анализа. Например, система позволяет выделять ДНК из мазка, амплифицировать локусы коротких тандемных повторов (STR-локусы) с использованием ДНК и анализировать амплифицированные локусы и STR-маркеры в образце. Система интегрирует эти функции посредством применения микрожидкостных компонентов для соединения макрожидкостных функциональных компонентов. В одном воплощении система включает модуль очистки образца, реакционный модуль, модуль послереакционной очистки, модуль капиллярного электрофореза и компьютер. В определенных воплощениях система включает одноразовый картридж для проведения захвата аналита. Картридж может включать жидкостный распределитель, имеющий макрожидкостные камеры, соединенные с микрожидкостными чипами, направляющими жидкости между камерами. Система может быть помещена в корпус объемом не более 10 кубических футов (куб. футов) (0,28 м3) и может представлять собой закрытую, переносную и/или работающую от аккумулятора систему. Система может быть использована для проведения анализа образца менее чем за 4 часа.

В одном аспекте согласно данному изобретению предложена система, которая может быть помещена в корпус объемом не более 10 куб. футов (0,28 м3), включающая: (а) модуль подготовки образца, выполненный с возможностью захвата аналита из немикрожидкостного объема на захватывающей частице и направления захваченного аналита через микрожидкостный канал; (б) реакционный модуль, включающий реакционную камеру, имеющую жидкостное сообщение с микрожидкостным каналом, выполненный с возможностью иммобилизации захваченного аналита и проведения биохимической реакции с аналитом в немикрожидкостном объеме с получением продукта реакции; (в) модуль анализа, имеющий жидкостное сообщение с реакционной камерой, выполненный с возможностью проведения анализа продукта реакции. В одном воплощении система сконфигурирована для захвата аналита, проведения биохимической реакции с аналитом и проведения анализа продукта менее чем за 4 часа, менее чем за 3 часа или даже менее чем за 2 часа. В одном воплощении система дополнительно включает модуль анализа данных, сконфигурированный для получения данных об анализе от модуля анализа и включающий исполняемую программу, преобразующую данные и выводящую результат анализа. В другом воплощении система дополнительно включает модуль обработки, имеющий жидкостное сообщение с реакционной камерой и модулем анализа и выполненный с возможностью (1) направления продукта реакции через второй микрожидкостный канал в нем и крожид костную камеру для обработки, (2) обработки продукта реакции и (3) направления обработанного продукта реакции в модуль анализа, В одном определенном воплощении система может быть помещена в корпус объемом не более 8 куб. футов (0,23 м3), не более 5 куб. футов (0,14 м3) или не более 2,5 куб. фута (0,07 м3). В другом воплощении системы модуль подготовки образца выполнен с возможностью высвобождения аналита из клетки. В другом воплощении системы захватывающая частица представляет собой захватывающую частицу, реагирующую на магнитное поле, и реакционный модуль включает источник магнитного поля, сконфигурированный для иммобилизации захваченного аналита. В другом воплощении системы реакционный модуль выполнен с возможностью проведения термоциклирования. В другом воплощении системы система представляет собой закрытую систему и/или работающую от аккумулятора систему.

В другом аспекте согласно данному изобретению предложена система, включающая крышку картриджа, картридж и пневматический распределитель, где картридж может быть присоединен к крышке картриджа и пневматическому распределителю с возможностью отсоединения, где картридж включает один или более чем один пневматически активируемый клапан и один или более чем один микрожидкостный канал, где как пневматический распределитель, так и крышка картриджа имеют жидкостное соединение с по меньшей мере одним источником давления, и где как пневматический распределитель, так и крышка картриджа выполнены с возможностью управления потоком текучей среды в картридже. В одном воплощении пневматический распределитель выполнен с возможностью открытия пневматически активируемых клапанов, и крышка картриджа выполнен с возможностью подачи давления в одну или более чем одну камеру картриджа.

В другом аспекте согласно данному изобретению предложена система, включающая: (а) одноразовый картридж, включающий по меньшей мере одну совокупность жидкостных камер, включающую камеру для образца, камеру для смешивания и камеру для термоциклирования, имеющие жидкостное сообщение друг с другом, и плату с реагентами, содержащую реагенты для проведения химической реакции, включающей термоциклирование, сконфигурированную для транспортировки на картридже в закрытой конфигурации и для установления жидкостного сообщения с по меньшей мере одной совокупностью жидкостных камер; (б) узел привода, сконфигурированный для перемещения текучих сред между камерами, когда картридж соединен с узлом привода; (в) термоциклер, сконфигурированный для циклического изменения температуры в камере для термоциклирования, когда картридж соединен с узлом привода; (г) блок капиллярного электрофореза, сконфигурированный для получения образца из картриджа, когда картридж соединен с узлом привода, и для проведения капиллярного электрофореза образца; и (д) компьютеризированную систему управления, сконфигурированную для управления узлом привода, термоциклером и блоком капиллярного электрофореза.

В другом аспекте согласно данному изобретению предложен картридж, включающий: (а) жидкостный распределитель, включающий сторону жидкостных элементов и сторону платы с реагентами, где жидкостный распределитель включает: (1) по меньшей мере одну совокупность жидкостных камер, где каждая камера включает вход/выход на стороне жидкостных элементов; (2) по меньшей мере одну камеру для термоциклирования, включающую по меньшей мере один вход/выход; (3) по меньшей мере один выход; (4) гнездо на стороне платы с реагентами, выполненное с возможностью присоединения платы с реагентами, включающее множество каналов гнезда, включающих канюли на стороне платы с реагентами и обеспечивающих сообщение между двумя сторонами; (б) по меньшей мере один микрожидкостный чип, включающий: (1) по меньшей мере один жидкостный контур; (2) множество входов/выходов, имеющих жидкостное сообщение с жидкостным контуром; (3) по меньшей мере один пневматически активируемый мембранный клапан, сконфигурированный для регулирования потока текучей среды в жидкостном контуре; где по меньшей мере один чип соединен с жидкостным распределителем таким образом, что входы/выходы по меньшей мере одного чипа имеют жидкостное сообщение с входами/выходами камер и каналами гнезда, где каждая жидкостная камера имеет жидкостное сообщение с по меньшей мере одной другой жидкостной камерой, и каждая канюля имеет сообщение с жидкостной камерой; и (в) плату с реагентами, вставленную в гнездо, включающую множество камер для реагентов, содержащих реагенты, каждая из которых выровнена с по меньшей мере одной канюлей и адаптирована для первого вставочного положения, где камеры для реагентов не проколоты канюлями, и второго вставочного положения, где камеры для реагентов проколоты канюлями, устанавливая, посредством этого, жидкостное сообщение камер для реагентов с жидкостным контуром. В одном воплощении реагенты включают реагенты для проведения ПЦР. В другом воплощении реагенты включают праймеры для амплификации множества коротких тандемных повторов. В другом воплощении по меньшей мере одна совокупность жидкостных камер представляет собой множество совокупностей жидкостных камер. В еще одном воплощении картридж характеризуется тем, что жидкостный распределитель дополнительно включает по меньшей мере один дополнительный жидкостный канал на стороне жидкостных элементов распределителя, по меньшей мере один чип представляет собой множество чипов, и жидкостные контуры каждого из множества чипов имеют жидкостное сообщение с жидкостными контурами по меньшей мере одного другого чипа через дополнительный жидкостный канал. В данном воплощении картридж может дополнительно включать прокладку между чипами и распределителем, закрывающую каналы распределителя. В другом воплощении картриджа жидкостные камеры включают распределительную камеру, камеру для захвата, камеру для образца и очистительную камеру. В другом воплощении картриджа по меньшей мере одна жидкостная камера содержит частицы, реагирующие на магнитное поле. В другом воплощении картриджа по меньшей мере одна совокупность жидкостных камер представляет собой по меньшей мере 4 совокупности или по меньшей мере 8 совокупностей. В другом воплощении картриджа чипы включают по меньшей мере один мембранный клапан.

В другом аспекте согласно изобретению предложена система, включающая: (а) пневматический блок, включающий: (1) пневматический распределитель, выполненный с возможностью присоединения картриджа со стороны жидкостных элементов с возможностью отсоединения, включающий множество пневматических входов/выходов, сконфигурированных для соединения с пневматическими каналами по меньшей мере одного микрожидкостного чипа и активации мембранных клапанов; и (2) источник давления, сконфигурированный для подачи положительного или отрицательного давления в пневматические каналы; (б) блок активации картриджа, выполненный с возможностью присоединения картриджа со стороны платы с реагентами, включающий: (1) пневматический распределитель реагентов, включающий сторону пневматических элементов и сторону платы с реагентами, где пневматический распределитель реагентов включает каналы пневматического распределителя реагентов, обеспечивающие сообщение между двумя сторонами и включающие канюлю на стороне платы с реагентами; (2) источник давления, сконфигурированный для подачи положительного или отрицательного давления в каналы пневматического распределителя реагентов; и (3) зажим, сконфигурированный для перемещения платы с реагентами из первого вставочного положения во второе вставочное положение, где фиксация зажимом приводит к прокалыванию камер для реагентов канюлями пневматического распределителя реагентов и установлению сообщения камер для реагентов с источником давления; (в) термоциклер, сконфигурированный для циклического изменения температуры в по меньшей мере одной камере для термоциклирования, когда картридж зафиксирован зажимом; (г) блок капиллярного электрофореза, включающий: (1) по меньшей мере один сепарационный канал, имеющий жидкостное сообщение с выходом, когда картридж зафиксирован зажимом; и (2) оптический подблок, сконфигурированный для детектирования сигнала от по меньшей мере одного сепарационного канала; и (д) компьютеризированную систему управления, сконфигурированную для управления пневматическим блоком, блоком активации картриджа, термоциклером и блоком капиллярного электрофореза. В одном воплощении данной системы фиксация зажимом приводит к соединению входов/выходов камер и каналов гнезда с по меньшей мере одним микрожидкостным чипом. В другом воплощении данной системы блок активации картриджа дополнительно включает по меньшей мере один нагреватель, сконфигурированный для нагревания по меньшей мере одной из жидкостных камер, когда пневматический распределитель реагентов соединен с картриджем. В другом воплощении данной системы блок активации картриджа дополнительно включает подвижные магниты, сконфигурированные для перемещения в и из положения, где магниты воздействуют магнитным полем на по меньшей мере одну жидкостную камеру. В другом воплощении данной системы блок активации картриджа дополнительно включает сенсоры, сконфигурированные для детектирования присутствия образца в камере для образца жидкостного распределителя. В другом воплощении данной системы термоциклер включает устройство Пельтье. В другом воплощении система содержится в переносном контейнере. В одном определенном воплощении контейнер имеет внутренний объем не более 10 куб. футов (0,28 м3) или не более 2,5 куб. фута (0,07 м3), В родственном воплощении системы согласно изобретению предложен продукт в машиночитаемой форме, содержащий программу для управления системой.

В другом аспекте согласно изобретению предложен способ, включающий получение из образца, содержащэго по меньшей мере одну клетку, содержащую ДНК, машинного файла, идентифицирующего множество STR-маркеров в ДНК, осуществляемый менее чем за 4 часа. В одном воплощении способ осуществляют менее чем за 3 часа. В другом воплощении способ осуществляют менее чем за 2 часа. В родственном воплощении получение включает выделение ДНК из по меньшей мере одной клетки, амплификацию STR-маркеров с использованием ДНК, проведение капиллярного электрофореза амплифицированных маркеров, детектирование амплифицированных маркеров и проведение компьютерного анализа детектированных амплифицированных маркеров для идентификации маркеров. В одном воплощении множество STR-маркеров представляет собой по меньшей мере 5 STR-маркеров. В другом воплощении множество маркеров представляет собой STR-маркеры, входящие в систему CODIS (Combined DNA Index System, Объединенная система данных ДНК). В родственном воплощении множество STR-маркеров представляет собой по меньшей мере 5, 10 или 13 STR-маркеров, входящих в систему CODIS. В этих воплощениях по меньшей мере одна клетка может представлять собой множество клеток. В некоторых воплощениях образец представляет собой образец для судебной экспертизы. В определенных воплощениях способ осуществляют на месте сбора образца. Образец может включать кровь или может включать буккальный мазок. Способ может быть осуществлен любой системой, описанной здесь.

В родственном аспекте согласно изобретению предложена система, сконфигурированная для осуществления способа, включающего получение из образца, содержащего по меньшей мере одну клетку, содержащую ДНК, машинного файла, идентифицирующего множество STR-маркеров в ДНК, где способ осуществляют менее чем за 4 часа.

В другом аспекте согласно данному изобретению предложен способ, включающий (а) предоставление системы, включающей: (1) одноразовый картридж, включающий по меньшей мере одну совокупность жидкостных камер, включающую камеру для образца, камеру для смешивания и камеру для термоциклирования, имеющие жидкостное сообщение друг с другом, и плату с реагентами, содержащую реагенты для проведения химической реакции, включающей термоциклирование, сконфигурированную для переноски на картридже в закрытой конфигурации и для установления жидкостного сообщения с по меньшей мере одной совокупностью жидкостных камер; (2) узел привода, сконфигурированный для перемещения текучих сред между камерами, когда картридж соединен с узлом привода; (3) термоциклер, сконфигурированный для циклического изменения температуры в камере для термоциклирования, когда картридж соединен с узлом привода; (4) блок капиллярного электрофореза, сконфигурированный для получения образца из картриджа, когда картридж соединен с узлом привода, и проведения капиллярного электрофореза образца; и (5) компьютеризированную систему управления, сконфигурированную для управления узлом привода, термоциклером и блоком капиллярного электрофореза; (б) установление жидкостного сообщения платы с реагентами с по меньшей мере одной совокупностью жидкостных камер; (в) внесение образца, содержащего молекулу нуклеиновой кислоты, в камеру для образца; и (г) управление системой для амплификации и детектирования по меньшей мере одной последовательности нуклеиновой кислоты в образце. В одном воплощении проведение стадий (б)-(г) занимает менее 4 часов. В одном воплощении способ включает внесение каждого из множества образцов в отдельную камеру для образца. В другом воплощении способ включает амплификацию и детектирование множества последовательностей нуклеиновых кислот в образце. В родственном воплощении множество последовательностей нуклеиновых кислот включает короткие тандемные повторы (STR). В определенном воплощении короткие тандемные повторы включают множество маркеров, входящих в систему CODIS (Combined DNA Index System, Объединенная система данных ДНК). В другом воплощении маркеры, входящие в систему CODIS, включают множество маркеров, выбранных из AMEL, D3S1358, THO1, D21s11, D18s51, D5s818, D13s317, D7s820, D16s539, CSF1PO, vWA, D8S1179, ТРОХ и FGA. В одном воплощении система включает: (а) пневматический блок, включающий: (1) пневматический распределитель, выполненный с возможностью присоединения картриджа со стороны жидкостных элементов с возможностью отсоединения, включающий множество пневматических входов/выходов, сконфигурированных для соединения с пневматическими каналами по меньшей мере одного микрожидкостного чипа и активации мембранных клапанов; и (2) источник давления, сконфигурированный для подачи положительного или отрицательного давления в пневматические каналы; (б) блок активации картриджа, выполненный с возможностью присоединения картриджа со стороны платы с реагентами, включающий: (1) пневматический распределитель реагентов, включающий сторону пневматических элементов и сторону платы с реагентами, где пневматический распределитель реагентов включает каналы пневматического распределителя реагентов, обеспечивающие сообщение между двумя сторонами и включающие канюлю на стороне платы с реагентами; (2) источник давления, сконфигурированный для подачи положительного или отрицательного давления в каналы пневматического распределителя реагентов; и (3) зажим, сконфигурированный для перемещения платы с реагентами из первого вставочного положения во второе вставочное положение, где фиксация зажимом приводит к прокалыванию камер для реагентов канюлями пневматического распределителя реагентов и установлению сообщения камер для реагентов с источником давления; (в) термоциклер, сконфигурированный для циклического изменения температуры в по меньшей мере одной камере для термоциклирования, когда картридж зафиксирован зажимом; (г) блок капиллярного электрофореза, включающий: (1) по меньшей мере один сепарационный канал, имеющий жидкостное сообщение с выходом, когда картридж зафиксирован зажимом; и (2) оптический подблок, сконфигурированный для детекции сигнала от по меньшей мере одного сепарационного канала; и (д) компьютеризированную систему управления, сконфигурированную для управления пневматическим блоком, блоком активации картриджа, термоциклером и блоком капиллярного электрофореза. В другом воплощении система представляет собой любую систему, названную здесь. В одном воплощении образец представляет собой образец для судебной экспертизы. В родственном воплощении образец выбран из буккального мазка, крови, волоса или семенной жидкости. В другом воплощении образец представляет собой необработанный образец. В некоторых воплощениях способ дополнительно включает транспортировку системы на место проведения судебной экспертизы.

В другом аспекте согласно изобретению предложена оптическая система, включающая: (а) множество оптически прозрачных каналов; (б) источник света, сконфигурированный для направления в множество оптически прозрачных каналов; (в) дисперсионный элемент, рассеивающий свет, проходящий через оптически прозрачные каналы зависимым от длины волны образом; и (г) детектор, сконфигурированный для реагирования на рассеянный свет. В одном воплощении множество оптически прозрачных каналов включает по меньшей мере восемь капилляров. В другом воплощении оптически прозрачные каналы выровнены в первой плоскости, и дисперсионный элемент рассеивает свет по второй плоскости, где первая плоскость и вторая плоскость различны. В другом воплощении первая плоскость перпендикулярна второй плоскости.

В другом аспекте согласно изобретению предложена оптическая система, включающая: (а) источник возбуждения, сконфигурированный для направления света возбуждения на объект; (б) носитель для объекта, излучающего свет, отличный от света возбуждения, при возбуждении энергией возбуждения; (в) заграждающий фильтр, сконфигурированный для отфильтровывания энергии возбуждения и пропускания излученного света; (г) визуализирующую линзу, сконфигурированную для фокусировки излученного света; (д) дихроичное зеркало, по существу пропускающее энергию возбуждения и сконфигурированное для отражения излученного света на детектор; (е) систему фокусировки, включающую по меньшей мере одну линзу, сконфигурированную для фокусировки света, отраженного от дихроичного зеркала; и (ж) фотодетектор (камеру на приборе с зарядовой связью, CCD-камеру), сконфигурированный для реагирования на отраженный свет. В одном воплощении оптической системы свет возбуждения включает свет с длиной волны от 0,3 мкм до 1 мкм. В другом воплощении носитель включает ряд капилляров, и объект включает флуоресцентные частицы. В другом воплощении зеркало отражает излученный свет, и угол падения составляет от приблизительно 5 градусов до приблизительно 10 градусов. В другом воплощении дихроичное зеркало дополнительно включает блок, пропускающий по существу весь свет. В другом воплощении система фокусировки включает по меньшей мере одно складывающееся зеркало. В другом воплощении фотодетектор включает CCD-камеру. В родственном воплощении оптическая система может дополнительно включать призму, расположенную между объектом и визуализирующей линзой.

В другом аспекте согласно изобретению предложена оптическая система, включающая: (а) ряд капилляров, где капилляры выровнены по существу параллельно и по существу в одной плоскости; (б) блок возбуждения, включающий источник возбуждения и сконфигурированный для доставки света возбуждения от источника возбуждения к ряду капилляров, где блок доставки света сконфигурирован (1) для доставки тонкого пучка света, накрывающего ряд капилляров, и (2) для доставки света к ряду капилляров под углом к плоскости, отличным от 90 градусов; (в) собирающую линзу, сконфигурированну